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Idea: Approach classification problems in computable algebra from
the perspective of pure recursion theory (neither via definability nor
via algebra).

The main tools: Limitwise monotonic approximations, priority
arguments, and various tricks separating algebra from combinatorics.

Definition
A function f : ω → ω ∪ {∞} is limitwise monotonic if there exists
a (total) recursive g : ω × ω → ω such that

f (x) = sup
y

g(x , y),

for all x .

If we forbid∞ then it gives a special subclass of ∆0
2 functions.
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Why do we care?
Limitwise monotonic functions show up in computable:

1 equivalence structures;
2 linear orders (η-presentations, shuffle sums, initial

segments etc.);
3 abelian groups;
4 models of ℵ1-categorical structures
5 many other things that “grow”.

See a survey of Downey, Kach, Turetsky; see also my paper
with Kalimullin and Khoussainov.

Limitwise monotonic functions are not very well understood.
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A (naive) thought: There is not much to say about computable
equivalence structures.

This class is useless and trivial.

A computable equivalence structure is essentially a limitwise
monotonic function or an approximation of a Σ0

2 multiset.
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Part 1: The problem of Khisamiev-Ash-Knight-Oates is
hard
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Countable abelian p-groups can be viewed as layers of
equivalence structures (multisets) living on a tree.

1 A group G is reduced if the tree is well-founded.
2 Iterate the Ulm derivative G→ G′ to form (essentially)

equivalence structures G/G′.
3 We have the sequence Gα = G(α)/G(α+1) that terminates

at u(G), the Ulm type of the group.
4 The sequence of Ulm factors Gα = G(α)/G(α+1) fully

describes the group (this fact is non-trivial).

Strictly speaking, the Ulm factors are direct sums of cyclic p-groups.
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Theorem (Khisamiev; Ash-Knight-Oates)

For a reduced abelian p-group G of finite Ulm type m, TFAE:

1 G has a computable copy;
2 G0,G1, . . . ,Gm have ∆0

1,∆
0
3, . . . ,∆

0
2m+1-copies, respectively.

Recall each Gi is (essentially) a limitwise monotonic function.

Problem
What happens when the Ulm type of G is ω?
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Theorem (Downey, M., and Ng)
(Essentially:) The case of Ulm type ω is hard.

We proved: Given a computable G, calculating the index of its
nth 0(2n)-monotonic function requires 0(2n+3).

If such a sequence is played by God, we must analyse an
iterated 0′′′ in its full generality to either build a copy of G or
construct a counter-example.

Our proof is the first known example of an iterated 0′′′.

Have you noticed? This was all about equivalence
structures.
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Friedberg enumerations of structures
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Suppose K is a class of (computable) algebraic structures.

Definition
A computable enumeration of structures in K is Friedberg if it is 1-1
up to isomorphism.

Very few classes admit a Friedberg enumeration.

References:

Three theorems on recursive enumeration (Friedberg)

Friedberg Numberings of Families of n-Computably Enumerable Sets (Goncharov, Lempp, Solomon)

Structure and Anti-structure theorems (Goncharov and Knigh)

Effective classification of computable structures (MillerR., Lange, and Steiner)

Effectively closed sets and enumerations (Brodhead and Cenzer)

Theory of numberings (A book by Ershov)

The CSc Dissertation of Ospichev (in Russian)
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Question (Goncharov and Knight 2002)
Is there a Friedberg enumeration of the class of computable
equivalence structures?

Goncharov and Knight conjectured that the answer is NO
because the invariants are too complicated.
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Guessing isomorphism E ∼= F between eq. structures is a

Π0
4-complete problem.

Compare this to c.e. sets where We = Wj is Π0
2.

There were earlier attempts by Goncharov and Knight, and by
Miller R., Lange, and Steiner.

Theorem (Downey, M., Ng)
There exists a Friedberg enumeration of computable eq. structures.

This is a non-uniform 0′′′.
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It would be nice to extend the result to abelian p-groups.

We know that reduced abelian p-groups of a fixed finite Ulm
type (observed by Goncharov and Knight).

Remarkably, if we drop “reduced” than such an enumeration
exists:

Theorem (with Ng)
1 For each m < ω, there exists a Friedberg enumeration of all

computable abelian p-groups of Ulm type ≤ m.
2 There exists a Friedberg enumeration of all computable abelian

p-groups of finite Ulm type.

This are the first non-trivial and natural algebraic classes with a
Friedberg enumeration. The proof is rather technical and uses
a Friedberg enumeration of computable eq. structures.
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A problem of Mal′cev
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A structure is computably categorical if it has a unique
computable copy, up to computable isomorphism.

Problem (Maltsev, in the 1960-s)
Describe computably categorical abelian groups.

We have nice satisfactory classifications for:

p-groups (Smith, indep. Goncharov)
torsion-free (Nurtazin)
infinite rank (Goncharov)

Missing cases:
torsion
mixed of finite rank > 1
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Case of study: Torsion abelian groups.

What would be considered a “good” classification of
c.c. torsion abelian groups?

It is not hard to show:

Fact
There exist c.c. but not relatively c.c. torsion abelian groups.

Thus, there should not be any algebraic description of c.c. torsion
groups.

We decided to look at the index set

{i : Mi is a c.c. torsion abelian group}.
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The crude upper bound is Π1
1.

Using known techniques it can be pushed down to Π0
5.

Theorem (M. and Ng)
The index set

{i : Mi is a c.c. torsion abelian group}

is Π0
4-complete.

Π0
4-harness of the index set is the easy(er) part.

The proof relies on several subtle algebraic reductions.
We use that a certain diagonalization attempt on
equivalence structures must fail.
Computable equivalence structures are in the (scary)
combinatorial core of the proof.
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From computable groups to Polish groups
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Definition
A computable Polish group is a computable Polish (metric) space
equipped with computable group operations.

We consider Polish groups up to topological isomorphism.

Suppose K is a natural class of Polish groups (e.g., connected
compact groups).

Can we classify members of K ?
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Theorem (M.)

1 The index sets of profinite and of connected compact
Polish groups are arithmetical.

2 The topological isomorphism problems for profinite abelian
groups and for connected compact abelian groups are
Σ1

1-complete.

We can list all partial computable Polish groups: G0,G1,G2, . . .

{i : Gi is a connected topological group} is Arithmetical.
{(i , j) : Gi

∼= Gj and Gi ,Gj are connected} is Σ1
1-complete.

The result is uniform. It follows connected and profinite (abelian)
groups are unclassifiable.
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Theorem (M.)

1 The index sets of profinite and of connected compact
Polish groups are arithmetical.

2 The topological isomorphism problems for profinite abelian
groups and for connected compact abelian groups are
Σ1

1-complete.

The main tools of the proof include:

Computable Polish space theory.
Computable (discrete) abelian group theory (e.g., the old
result of Dobrica on bases, the result of Downey and
Montalban mentioned by Julia, etc.).
Abstract harmonic analysis.
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Definition (Smith and La Roche, after Nerode)
A profinite group is recursive if it is the limit of a computable
surjective inverse system of finite groups.

(Ĝ stands for the Pontryagin dual of G.)

Theorem (M.)
Let G be a countable torsion abelian group. Then

G is computable iff Ĝ is a recursive profinite group;

G is computably categorical iff Ĝ is computably categorical (as a
recursive profinite group).

Corollary (follows from M. and Ng)

The index set of c.c. recursive profinite groups is Π0
4-complete.

eq. structures→ (discrete) abelian groups→ Polish groups.
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Definition (Smith and La Roche, after Nerode)
A profinite group is recursive if it is the limit of a computable
surjective inverse system of finite groups.

(Ĝ stands for the Pontryagin dual of G.)
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Spasibo

Thanks!
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