Algorithmically random infinite structures

Bakh Khoussainov

Computer Science Department, The University of Auckland, New Zealand

September 4, 2017

I would like to thank Rod for his friendship

- Branching classes
- Martin-Löf randomness
- Computable structures and ML-randomness
- Algorithmically random c.e. and co-c.e. structures
- Degrees of ML-random structures
- Measures of varieties

Literature

- B. Khoussainov. A quest for algorithmically random infinite structures. Proceedings of LICS-CSL conference. 2014.
- B. Khoussainov. A quest for algorithmically random infinite structures, II. Proceedings of LFCS conference. 2016.
- B. Khoussainov. Quantifire-free definability on infinite algebras. LICS proceedings. 2016.
- B. Khoussainov and D. Turesky. Computability theoretic properties of algorithmically random structures. In preparation.

- The modern history is fascinating; starts with the works of Kolmogorov, Martin-Löf, Chaitin, Schnorr and Levin.
- The last two decades have witnessed significant advances in the area of algorithmic randomness on strings.
- Many notions of randomness, various techniques, and ideas have been studied.

Definition

String $\alpha \in \{0, 1\}^{\omega}$ is algorithmically random if no effective measure 0 set contains α .

A set $V \subseteq 2^{\omega}$ has *effective measure* 0 if *V* is contained in the limit of embedded sets $M_0 \supset M_1 \supset M_2 \supset \ldots$ such that

- Each M_i is an open set,
- Given *i* we can compute base open sets that form *M_i*,
- The measure of M_i is bounded by $1/2^i$.

The sequence $\{M_i\}_{i \in \omega}$ is called *Martin Löf (ML) test*.

So, the measure on the Cantor space plays the key role in introducing algorithmic randomness.

The question is the following:

What is an algorithmically random infinite algebraic structure?

To answer the question, we need to invent a meaningful measure in the classes of structures.

Expectations from algorithmically random structures

- **Continuum**: Random structures should be in abundance, the continuum. This is a property of a collective, the idea that goes back to Von Mises.
- **Unpredictability**: There should be no effective way to describe the isomorphism type of the structure.
- Lack of Axiomatization: No set of simple (e.g. universal) axioms define the structure.
- **Absoluteness**: Algorithmic randomness should be an isomorphism invariant property.

- **Converting into strings**: Why don't we code structures into strings and transform algorithmic randomness for strings into structures?
- **Computability**: Can a computable structure be algorithmically random?
- **Immunity**: ML-random strings possess *immunity property*: No algorithmically random string has a computable subsequence. Do algorithmically random structures have immunity like properties?
- Finite presentability: Can a finitely presented structure, e.g. group, be algorithmically random?

Let $G = (\omega; E)$ be a graph. Form the following string α_G :

 $\alpha_G(\mathbf{0})\alpha_G(\mathbf{1})\alpha_G(\mathbf{2})\ldots\in\mathbf{2}^{\omega},$

where $\alpha_G(i) = 1$ iff the *i*-th pair is an edge in *G*.

Definition

The graph *G* is string-random if the string α_G is ML-random.

On ω , for each pair $\{i, j\}$ put an edge between *i* and *j* at random. This determines an infinite graph.

Definition

Call the resulting graph random.

Theorem (Erdos and Spencer)

With probability 1 any two random graphs are isomorphic.

This theorem, as Erdos and Spencer write, "demolishes the theory of infinite random graphs".

Theorem

If G is a string-random, then G is isomorphic to the random graph. Hence,

- Any two string-random graphs are isomorphic.
- The first order theory of the graph is decidable.
- The string-random graph is axiomatised by extension axioms.
- Any countable infinite graph can be embedded into G.

All of the above defy our intuition that we postulated for algorithmically random infinite structures.

Direct limits

Definition

An embedded system of structures is a sequence

```
(\mathcal{A}_0, f_0), (\mathcal{A}_1, f_1), \ldots, (\mathcal{A}_i, f_i), \ldots
```

such that (1) each A_i is a finite structure, and (2) each f_i is a proper into embedding from A_i into A_{i+1} .

The sequence A_0, A_1, \ldots is *the base* of the system.

Each embedded system determines the limit structure.

Definition

An embedded system $\{(A_i, f_i)\}_{i \in \omega}$ is **strict** if its direct limit is isomorphic to the direct limit of any embedded system with the same base.

Let \mathcal{K} be a class of finite structures. A computable function $h : \mathcal{K} \to \omega$ is a **height function** if each of the following is true:

- We can compute the cardinality of $h^{-1}(i)$ for every *i*.
- ② Each A ∈ K of height *i* has a substructure A[*i* − 1] of height *i* − 1 such that all substructures of A of height ≤ *i* − 1 are contained in A[*i* − 1].
- So For all *A* ∈ *K* of height *i* and *C* ⊆ *A* \ *A*[*i* − 1], the height of the substructure *C* ∪ *A*[*i* − 1], where *C* ≠ Ø, is *i* in case the substructure belongs to *K*.

Properties of classes with height function

Lemma

For all $A, B \in K$, the structures A and B are isomorphic iff h(A) = h(B) and A[j] = B[j] for all $j \leq h(A)$.

Lemma

Every embedded system of structures from the class \mathcal{K} is strict.

Definition

The class *K* is a **branching class**, or *B*-class for short, if for all $A \in K$ of height *i* there exist distinct structures $B, C \in K$ such that h(B) = h(C) > h(A) and B[i] = C[i] = A.

Example 1. Trees of bounded degree d > 1. The height function is the height of the tree.

Example 2. Pointed connected graphs (G, \bar{p}) of bounded degree *d*. The height function is the max distance from \bar{p} to vertices of *G*.

Example 3. Relational structures whose Gaifman graph is a connected graph of a bounded degree *d*.

Example 4. Partially ordered sets $(P; \le, C, p)$, where *p* is the least element, C(x, y) is the cover relation, and each *x* in *P* has at most *d* covers.

Example 5. The class of δ -hyperbolic connected pointed graphs of bounded degree *d*.

Example 6. The class of binary rooted ordered trees.

Example 7. The class of *n*-generated universal partial algebras. The hight function is the max among the heights of the shortest terms representing the elements of the algebras.

Example 8. The class of (a, b)-sparse graphs. A connected pointed graph is (a, b)-sparce if every subgraph of *G* with *m* vertices has at most am + b edges.

Let *K* be a *B*-class. Define T(K) as follows:

- **1** The root is \emptyset . This is level -1.
- 2 The nodes of T(K) at level $n \ge 0$ are structures of height n.
- Solution Let \mathcal{B} be a structure of height *n*. Its successor is any structure \mathcal{C} of height n + 1 such that $\mathcal{B} = \mathcal{C}[n]$.

- Given any node x of the three T(K), we can effectively compute the structure \mathcal{B}_x associated with the node x.
- 2 Each x in $\mathcal{T}(K)$ has an immediate successor. We can compute the number of immediate successors of x.

Let K be a B-class. Set

 $K_{\omega} = \{A \mid A \text{ is the direct limit of structures from } K\}.$

Call this class K_{ω} a *B*-class.

Correspondence between K_{ω} and [T(K)]:

- Each path $\eta = \mathcal{B}_0, \mathcal{B}_1, \dots$ determines the limit structure $\mathcal{B}_\eta = \cup_i \mathcal{B}_i$ from the class \mathcal{K}_ω .
- **2** The mapping $\eta \to \mathcal{B}_{\eta}$ is a bijection from $[\mathcal{T}(K)]$ to K_{ω} .

Definition (Topology)

Let \mathcal{B} be a structure of height *n*. The cone of \mathcal{B} is:

 $Cone(\mathcal{B}) = \{\mathcal{A} \mid \mathcal{A} \in K_{\omega}, \text{ and } \mathcal{A}[n] = \mathcal{B} \text{ for all } n\}.$

Declare the cones Cone(B) to be the base open sets of the topology on K_{ω} . We refer to B as the base of the cone.

Definition (Measure)

- The measure of the cone based at the root is 1.
- Assume that the measure μ(Cone(B_x)) has been defined. Let e_x be the number of immediate successors of x. Then for any immediate successor y of x the measure of Cone(B_y) is

$$\mu(Cone(\mathcal{B}_{y})) = \frac{\mu(Cone(\mathcal{B}_{x}))}{e_{x}}.$$

Definition (Metric)

For $\mathcal{A}, \mathcal{B} \in \mathcal{K}_{\omega}$, let *n* be the maximal level at which $\mathcal{A}[n] = \mathcal{B}[n]$. The distance $d(\mathcal{A}, \mathcal{B})$ is then: $d(\mathcal{A}, \mathcal{B}) = \mu_m(Cone(\mathcal{A}[n]))$.

Lemma

The function d is a metric in the space K_{ω} .

Fact

- K_{ω} is compact.
- 2 The set K is countable and dense in K_{ω} .
- Finite unions of cones form clo-open sets in the topology.
- **9** The set of all μ -measurable sets is a σ -algebra.

Definition

A structure $A \in K_{\omega}$ is *ML-random* if it passes every ML-test.

Corollary (Randomness is a property of a collective)

The number of ML-random structures in K_{ω} is continuum.

Corollary

For all the examples of B-classes K we considered, the classes K_{ω} contains continuum ML-random structures.

All the definitions depend on constants \bar{c} that we fixed at the start. In particular, the trees $T(\mathcal{K})$ and hence *ML*-randomness depend on the constants.

Theorem (Absoluteness)

For all the examples of B-classes, ML-randomness is independent on the choice of constants.

ML randomness for structures, as we defined, depends on:

- The class K (the context).
- 2 The height function *h* (approximation).
- The measure μ or its refinements (measures).

Definition

An infinite structure A is *computable* if it is isomorphic to a structure with domain ω such that all atomic operations and relations of the structure are computable.

Definition

A computable structure \mathcal{A} from \mathcal{K}_{ω} is *strictly computable* if the size of the substructure $\mathcal{A}[i]$ can be computed for all $i \in \omega$.

The following are true:

- Every computable finitely generated algebra is strictly computable.
- A computable pointed graph G of bounded degree is strictly computable iff there is an algorithm that given v from G computes the number of vertices adjacent to v.
- A computable rooted tree *T* of bounded degree is strictly computable iff there is an algorithm that given a node *v* ∈ *T* computes the number of immediate successors of *v*.
- A computable *d*-bounded partial order with the least element is strictly computable iff there is an algorithm that for every *v* of the partial order computes all covers of *v*.

Theorem

If A is strictly computable then A is not ML-random.

Corollary

Let \mathcal{A} be either an infinite pointed graph or tree or partial order of bounded degree. If \mathcal{A} is computable and its \exists -diagram, that is the set

 $\{\phi(\bar{a}) \mid \bar{a} \in A \text{ and } A \models \phi(\bar{a}) \text{ and } \phi(\bar{x}) \text{ is an existential formula}\},\$

is decidable then A is not ML-random.

Theorem

Every B-class \mathcal{K}_{ω} contains ML-random structures computable in the halting set.

Thus, we have the following corollary:

Corollary

All examples of B-classes \mathcal{K}_{ω} that we have considered contain *ML*-random structures computable in the halting set.

Construction of A_{η} from η is computable in η . Hence, if η is computable then so is A_{η} .

How about the opposite:

How complex is that to compute η from \mathcal{A}_{η} ?

Answer:

To compute η , we need to compute $\mathcal{A}_{\eta}[i]$ for each *i*. Computing $\mathcal{A}_{\eta}[i]$ requires the jump of the open diagram of \mathcal{A}_{η} .

Bakh Khoussainov

Theorem (Computable structure theorem)

There exists a B-class S such that S_{ω} contains an ML-random yet a computable structure.

Proof (idea). A binary ordered tree \mathcal{B} belongs to \mathcal{S} if:

- All leaves of B are of the same height,
- If v in B has the right child then all nodes left of v on the v's level-order including v have both children,
- At each level *i* there is at most one node such that it is the left child of its parent that does not have a right child.

Lemma

If \mathcal{B} belongs to S and has height n then there are exactly two non-isomorphic extensions of \mathcal{B} of height n + 1 both in S. Hence, the tree T(S) is isomorphic to the infinite binary tree.

Lemma

For every $n \ge 0$, the set of all trees in S of height n form a chain of embedded structures.

We identify the tree $\{0,1\}^*$ with T(S) by the lemmas.

Lemma (Algebraic left-embedding lemma)

Let $x \leq y$, where \leq is the lexicographical order on binary strings. Then:

- If $|x| \leq |y|$ then A_x is embedded into A_y .
- 2 If |x| > |y| then A_x is embedded into A_{yz} for all z such that $|x| \le |yz|$

Consider Ω and take its left-c.e. limit $x_0 \leq x_1 \leq x_2 \leq \dots$ Because of the lemmas above, we have a computable sequence

$$A_{x_0} \subset A_{x_1} \subset A_{x_2} \subset \ldots$$

The limit of this sequence is A_{Ω} . Hence, A_{ω} is computable.

Let A be a universal finitely generated computable algebra. Then no *B*-class K_{ω} exists in which A is ML-random.

Definition

Let \mathcal{A} be a finitely generated universal algebra.

- Call A computably enumerable if the word problem for A is a computably enumerable set.
- Call A co-computably enumerable if the word problem for A is a co-computably enumerable set.

Elements of finitely presented algebras are presented by terms. Hence, computability of operations is granted vacuously. In the case of strings there are ML-random c.e. reals, e.g. the Ω number. Hence, natural questions arise:

- Do there there exist computably enumerable algorithmically random universal algebras?
- Ob there there exist co-c.e. algorithmically random universal algebras?

Theorem (with D. Turetsky)

There exists a branching class S_{ω} that contains co-computably enumerable ML-random universal algebra.

Proof (idea). Construct a class S of partial universal algebras such that the following properties hold:

For each *n* there are exactly 2ⁿ algebras of height *n* from S. So, the tree T(S) is just the full binary tree {0,1}*.

2 Let
$$x \leq y$$
 in $\{0, 1\}^*$.

- If |x| = |y| then A_x is a homomorphic image of A_y .
- If |x| > |y| then A_x is a homomorphic image of A_{yz} for all z such that |x| = |yz|

Take Ω and its left-c.e. approximation $x_0 \leq x_1 \leq x_2 \leq \ldots$ This corresponds to the sequence of partial algebras:

$$A_{x_0}, A_{x_1}, A_{x_2}, \ldots$$

Each A_{x_i} is a homomorphic image of $A_{x_{i+1}}$. Some equal elements in A_{x_i} are split to become non-equal elements in $A_{x_{i+1}}$. Non-equality is preserved.

The natural direct sub-sum of these algebras will be a total algebra in which equality is co-c.e. The direct sub-sum will be isomorphic to A_{Ω} .

Theorem (with D. Turetsky)

There exists a branching class S_{ω} that contains computably enumerable ML-random universal algebra.

Proof (idea). Consider $1 - \Omega$. This is right c.e. real. Consider the right-c.e. approximation $\ldots \leq x_2 \leq x_1 \leq x_1 \leq x_0$. This corresponds to the sequence of partial algebras:

$$A_{x_0}, A_{x_1}, A_{x_2}, \ldots$$

Each $A_{x_{i+1}}$ is a homomorphic image of A_{x_i} . Once two elements in A_{x_i} are equal, they stay equal. The limit of this sequence converges to $A_{1-\Omega}$ which is c.e. and ML-random.

Definition

A B-class *K* jumpless if for every path η through *T*(*K*), every isomorphic copy of A_{η} computes η .

Theorem (with D. Turetsky)

If K is jumpless, then every structure in K_{ω} has degree, and the degrees of ML-random structures are precisely the Turing degrees which contain random binary strings.

Definition

A *B*-class K is **left-algebraic** if there is a computable ordering on the elements of each level of T(K) such that for the induced lexicographic ordering \leq we have:

- For all $\eta \in [T(K)]$ and all $\eta_0 \leq \eta_1 \leq \eta_2 \leq \ldots$ with limit η , the sequence computes an isomorphic copy of A_{η} .
- Por all η ∈ [T(K)] and all isomorphic copies of A_η, the copy computes a sequence η₀ ≤ η₁ ≤ η₂ ≤ ... with limit η.

Theorem (with D. Turetsky)

Let A be an ML-random structure in a left-algebraic branching class K_{ω} such that A has a degree. Then the degree of A is either **0** or **0**'. Both degrees are realisable.

Proof (Idea). Consider Ω and $1 - \Omega$. The structure \mathcal{A}_{Ω} is computable and the structure $\mathcal{A}_{1-\Omega}$ computes the halting set. The rest requires forcing type of arguments.

Definition

A class of universal algebras is a *variety* if it is closed under sub-algebras, homomorphisms, and products.

A class of algebras is variety if and only if is axiomatised by a set E of universally quantified equations.

An equation is $p(\bar{x}) = q(\bar{x})$ where *p* and *q* are terms. The equation $p(\bar{x}) = q(\bar{x})$ is *non-trivial* if at least one of the terms contains a variable and $p \neq q$ syntactically.

If E contains at least one non-trivial equation then we call the variety of algebras satisfying E a *non-trivial variety*.

Theorem

The class of all infinite n-generated algebras that belong to a non-trivial variety has an effective measure zero. Hence, no finitely presented algebra of a non-trivial variety is ML-random.

Corollary

No finitely generated ML-random algebra exists that satisfies a nontrivial set of equations. Hence, no ML-random group, monoid, or lattice exist.

Corollary

A finitely axiomatised variety V has either an effective measure 0 or its measure is a rational number > 0. The latter case occurs iff the variety is axiomatised by a trivial set of equations.

Open questions

- Assume that a B-class K is neither strict nor left-algebraic. What degrees can be realised by ML-random structures?
- Is the first order theory of ML-random graph with bounded degree decidable?
- Are two ML-random graphs of the same bounded degree elementary equivalent?
- Onstruct B-classes of finitely generated groups.
- Are there computable ML-random graphs in the class of all connected graphs of bounded degree?
- **(**) Is the class of the subgroups of (Q; +) a branching class?