Towards a parameterised version of Toda's theorem

Catherine McCartin

Massey University, New Zealand

c.m.mccartin@massey.ac.nz

August 25, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define the class #P to be the class of all functions

$$f_M: \{0,1\}^* \to \mathbb{N}$$

such that M is a non-deterministic Turing machine and $f_M(x)$ gives the number of accepting paths of M on input x.

 $f \in \#P$ iff there is a set $A \in P$ and $k \ge 0$ such that $\forall x \in \{0,1\}^*$,

$$f(x) = |\{y \in \{0,1\}^{|x|^k} \mid x \# y \in A\}|$$

(日) (日) (日) (日) (日) (日) (日) (日)

View #P as a class of functions that give the cardinality of a set of *witnesses* to an existential formula.

Denote the set of all witnesses for x wrt $p : \mathbb{N} \to \mathbb{N}$ and $A \subseteq \Sigma^*$ by

$$W(p, A, x) \stackrel{\text{def}}{=} \{y \in \{0, 1\}^{p(|x|)} \mid x \# y \in A\}$$

Complexity classes defined by |W(p, A, x)|

$$L \in NP \stackrel{def}{\Longleftrightarrow} \exists A \in P, \ \exists c \geq 0, \ \forall x \ x \in L \Leftrightarrow |W(n^c, A, x)| > 0$$

 $L \in \Sigma_{k+1}^{p} \stackrel{\text{def}}{\Longleftrightarrow} \ \exists A \in \Pi_{k}^{p}, \ \exists c \geq 0, \ \forall x \ x \in L \Leftrightarrow |W(n^{c}, A, x)| > 0$

$$\begin{array}{l} L \in RP \stackrel{def}{\iff} \exists A \in P, \ \exists c \geq 0, \ \forall x \\ \\ x \in L \Rightarrow |W(n^c, A, x)| > \frac{3}{4} \cdot 2^{|x|^c} \\ \\ x \notin L \Rightarrow |W(n^c, A, x)| = 0 \end{array}$$

 $\begin{array}{l} L \in BPP \stackrel{def}{\iff} \exists A \in P, \ \exists c \geq 0, \ \forall x \\ \\ x \in L \Rightarrow |W(n^c, A, x)| > \frac{3}{4} \cdot 2^{|x|^c} \\ \\ x \notin L \Rightarrow |W(n^c, A, x)| \leq \frac{1}{4} \cdot 2^{|x|^c} \end{array}$

Complexity classes defined by |W(p, A, x)|

$$L \in \oplus P \stackrel{def}{\iff} \exists A \in P, \ \exists c \ge 0, \ \forall x \ x \in L \Leftrightarrow |W(n^c, A, x)| \ odd$$

$$L \in PP \stackrel{def}{\Longleftrightarrow} \exists A \in P, \ \exists c \geq 0, \ \forall x \ x \in L \Leftrightarrow |W(n^c, A, x)| \geq 2^{|x|^c - 1}$$

$$L \in \#P \stackrel{\text{def}}{\iff} \exists A \in P, \ \exists c \ge 0, \ \forall x \ L(x) = |W(n^c, A, x)|$$

<□ > < @ > < E > < E > E のQ @

Operators on complexity classes

Generalise to a set of operators $BP, R, \#, \Sigma^{p}, \Sigma^{log}, \Pi^{p}, \Pi^{log}$ on complexity classes.

$$R \cdot C \qquad R \cdot P = RP \\ BP \cdot C \qquad BP \cdot P = BPP \\ \oplus \cdot C \qquad \oplus \cdot P = \oplus P \\ \Sigma^{p} \cdot C \qquad \Sigma^{p} \cdot P = NP \\ \Pi^{p} \cdot C \qquad \Pi^{p} \cdot P = co - NP \end{cases}$$

$$L \in BP \cdot C \iff \exists A \in C, \ \exists k \ge 0, \ \forall x$$
$$x \in L \Rightarrow |W(n^k, A, x)| > \frac{3}{4} \cdot 2^{|x|^k}$$
$$x \notin L \Rightarrow |W(n^k, A, x)| \le \frac{1}{4} \cdot 2^{|x|^k}$$

 $P^{\#P}$ is the class of decision problems solvable in polynomial time with an oracle for some $f \in \#P$.

The polynomial time hierarchy is contained in $P^{\#P}$.

 $PH \subseteq P^{\#P}$ Toda (FOCS 1989)

Toda's theorem

$PH \subseteq BP \cdot \oplus P$

This part of the proof can be broken down into inclusions that establish basic algebraic properties of operators on complexity classes.

Let C be a complexity class closed downward under \leq_T^p . Then

1.
$$\Sigma^{p} \cdot \mathcal{C} \subseteq R \cdot \Sigma^{log} \cdot \oplus \cdot \mathcal{C}$$

2. $\Pi^{log} \cdot \oplus \cdot \mathcal{C} \subseteq \oplus \cdot \mathcal{C}$
3. $\oplus \cdot BP \cdot \mathcal{C} \subseteq BP \cdot \oplus \cdot \mathcal{C}$
4. $BP \cdot BP \cdot \mathcal{C} \subseteq BP \cdot \mathcal{C}$
5. $\oplus \cdot \oplus \cdot \mathcal{C} \subseteq \oplus \cdot \mathcal{C}$

6. $BP \cdot C$ and $\oplus \cdot C$ are closed downward under \leq^{p}_{T}

Toda's theorem

 $PH\subseteq BP\cdot\oplus P$

Induction on levels of the polynomial-time hierarchy:

 $\Sigma_0^p = P \subset BP \cdot \oplus P$ Suppose $\Sigma^{p}_{\mu} = P \subseteq BP \cdot \oplus P$ by 6, $BP \cdot \oplus P$ closed under complement, so $\Pi^p_{\scriptscriptstyle k} = P \subseteq BP \cdot \oplus P$ $\Sigma_{k\perp 1}^p = \Sigma^p \cdot \Pi_{\iota}^p$ $\subset \Sigma^p \cdot BP \cdot \oplus P$ $\subset R \cdot \Sigma^{log} \cdot \oplus \cdot BP \cdot \oplus P$ $\subseteq R \cdot \oplus \cdot BP \cdot \oplus P$ $\subseteq BP \cdot \oplus \cdot BP \cdot \oplus P$ $\subset BP \cdot BP \cdot \oplus \cdot \oplus P$ $\subset BP \cdot \oplus P$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $PH = \bigcup_k \Sigma_k^p \subseteq BP \cdot \oplus P$

Toda's theorem $BP \cdot \oplus P \subseteq P^{\#P}$

Let $L \in BPP \cdot \oplus P$. Then $\exists A \in \oplus P$ and $\exists k \ge 0$ such that $\forall x$

$$\begin{aligned} x \in L \Rightarrow |W(n^k, A, x)| &> \frac{3}{4} \cdot 2^{|x|^k} \\ x \notin L \Rightarrow |W(n^k, A, x)| &\leq \frac{1}{4} \cdot 2^{|x|^k} \end{aligned}$$

 $A \in \oplus P \Rightarrow \exists$ polynomial time NDTM st $x \# w \in A$ iff f(x # w) is odd where f(x # w) = number of accepting paths of M on input x # w. Modify M to get N that on input x # w has p(f(x # w)) accepting paths. Use a particular p such that :

$$z \text{ odd } \Rightarrow p(z) \equiv -1 \pmod{2^{n^k+1}}$$

 $z \text{ even } \Rightarrow p(z) = 0 \pmod{2^{n^k+1}}$

Toda's theorem

$BP \cdot \oplus P \subseteq P^{\#P}$

Determine membership in *L* using $P^{\#P}$ computation:

Use machine K that on input x of length n

- 1. generates all strings x # w with $|w| = n^k$ by branching, one path per string
- 2. for each branch, runs N on x # w

Number of accepting paths for K on input x:

$$\sum_{|w|=n^k} p(f(x \# w))$$

Modulo 2^{n^k+1} , this is

$$\sum_{\substack{|w|=n^k\\F(x\#w) \text{ odd}}} -1$$

Toda's theorem

$$\frac{\sum_{\substack{|w|=n^k\\f(x\#w) \text{ odd}}} -1$$

$$= 2^{n^{k}+1} - |\{w \mid |w| = n^{k} \land f(x \# w) \text{ odd} \} = 2^{n^{k}+1} - |\{w \mid |w| = n^{k} \land x \# w \in A\}| = 2^{n^{k}+1} - |W(n^{k}, A, x)|$$

$$egin{aligned} x \in L \Rightarrow rac{3}{4} \cdot 2^{n^k} \leq |W(n^k,A,x)| \leq 2^{n^k} \ \Rightarrow 2^{n^k} \leq 2^{n^k+1} - |W(n^k,A,x)| \leq rac{5}{4} \cdot 2^{n^k} \end{aligned}$$

$$\begin{aligned} x \notin L \Rightarrow 0 \leq |W(n^k, A, x)| \leq \frac{1}{4} \cdot 2^{n^k} \\ \Rightarrow \frac{7}{4} \cdot 2^{n^k} \leq 2^{n^k+1} - |W(n^k, A, x)| \leq 2^{n^k+1} \end{aligned}$$

Valiant -Vazirani

RP computation with an oracle for *USAT* can determine general *SAT* with arbitrarily small one-sided error.

$NP \subseteq RP^{USAT}$

 \exists a polynomial time probabilistic TM *M*, with oracle *USAT* st:

$$\psi$$
 satisfiable \Rightarrow PR(M accepts ψ) $\ge \frac{3}{4}$
 ψ unsatisfiable \Rightarrow PR(M accepts ψ) $= 0$

Alternatively, a determinisitic polynomial time TM *N*, with oracle *USAT* st for a string *w* of random bits, $|w| = p(|\psi|)$:

$$\psi$$
 satisfiable \Rightarrow $PR_w(N \text{ accepts } \psi \# w) \ge \frac{3}{4}$
 ψ unsatisfiable \Rightarrow $PR_w(N \text{ accepts } \psi \# w) = 0$

Valiant -Vazirani

$$NP \subseteq RP^{USAT}$$

Construct a random tower of linear subspaces

$$\{0\} = E_0 \subset E_1 \subset \cdots \subset E_n = \mathbb{GF}_2^n$$

 E_i has dimension *i*, all towers equally likely.

Choose a random basis x_1, \ldots, x_n of \mathbb{GF}_2^n , $E_i = \{x_1, \ldots, x_{n-i}\}^{\perp}$ $A^{\perp} \stackrel{def}{=} \{y | \forall x \in A \ x \cdot y = 0\}$

Lemma: Let S be a non-empty subset of \mathbb{GF}_2^n . Let $E_0 \subset \cdots \subset E_n$ be a random tower of subspaces of \mathbb{GF}_2^n as above. Then

$$Pr(\exists i \mid |S \cap E_i| = 1) \geq \frac{3}{4}$$

Valiant -Vazirani

$NP \subseteq RP^{USAT}$

Let *n* be the number of variables in ψ .

Machine *N* uses n^2 random bits (*w*) to construct random tower of linear subspaces $E_i \subseteq \mathbb{GF}_2^n$.

For each *i*, construct formula $\varphi_i = "(x_1, \ldots, x_n) \in E_i"$

N queries the oracle on each $\psi \wedge \varphi_i$. If we get a "yes" then accept.

Let S be the truth assignments satisfying ψ .

 $Pr(N \text{ accepts } \psi \# w) = Pr(\exists i \ \psi \land \varphi_i \in USAT)$

$$\geq \frac{3}{4}$$
 if $S \neq \emptyset$, 0 if $S = \emptyset$

Definition (Parameterized witness function) Let $w : \Sigma^* \times \mathcal{N} \to \mathcal{P}(\Gamma^*)$, and let $\langle \sigma, k \rangle \in \Sigma^* \times \mathcal{N}$. The elements of $w(\langle \sigma, k \rangle)$ are witnesses for $\langle \sigma, k \rangle$. Associate a parameterized language $L_w \subseteq \Sigma^* \times \mathcal{N}$ with w

$$L_{w} = \{ \langle \sigma, k \rangle \in \Sigma^{*} \times \mathcal{N} \mid w(\langle \sigma, k \rangle) \neq \emptyset \}.$$

 L_w is the set of problem instances that have witnesses.

Definition (Parameterized counting problem)

Let $w : \Sigma^* \times \mathcal{N} \to \mathcal{P}(\Gamma^*)$ be a parameterized witness function.

The corresponding *parameterized counting problem* can be considered as a function $f_w : \Sigma^* \times \mathcal{N} \to \mathcal{N}$ that, on input $\langle \sigma, k \rangle$, outputs $|w(\langle \sigma, k \rangle)|$.

Parameterised counting classes

Definition (Parameterized counting reduction)

Consider two (witness functions for) parameterized counting problems.

$$w: \Sigma^* imes \mathcal{N} o \mathcal{P}(\Gamma^*)$$

 $v: \Pi^* imes \mathcal{N} o \mathcal{P}(\Delta^*)$

A *parameterized counting reduction* from *w* to *v* consists of a parameterized transformation

$$\rho : \Sigma^* \times \mathcal{N} \to \Pi^* \times \mathcal{N}$$

and a function

$$\tau : \mathcal{N} \to \mathcal{N}$$

such that

$$|w(\langle \sigma, k \rangle)| = \tau(|v(\rho(\langle \sigma, k \rangle))|).$$

When such a reduction exists we say that w reduces to v.

Parameterized counting classes

#WEIGHTED WEFT t DEPTH h CIRCUIT SATISFIABILITY (WCS(t, h))

Input:	A weft t depth h decision circuit C.
Parameter:	A positive integer k.
Output:	The number of weight k satisfying assignments for C .

Let $w_{\mathcal{F}(t,h)} : \Sigma^* \times \mathcal{N} \to \mathcal{P}(\Gamma^*)$ be the standard parameterized witness function associated with this counting problem:

 $w_{\mathcal{F}(t,h)}(\langle C,k\rangle) = \{ \text{ weight } k \text{ satisfying assignments for } C \}.$

Definition (#W[1])

Define a parameterized counting problem, f_v , to be in #W[1] iff there is a parameterized counting reduction from v, the parameterized witness function for f_v , to $w_{\mathcal{F}(1,h)}$.

Parameterized counting classes

#WEIGHTED *t*-NORMALIZED SATISFIABILITY

Input:A t-normalized propositional formula X.Parameter:A positive integer k.Output:The number of weight k satisfying assignments for X.

For all $t \ge 1$, #WEIGHTED *t*-NORMALIZED SATISFIABILITY is complete for #W[t].

Definition (#W[t])

Define a parameterized counting problem, f_v , to be in #W[t] iff v reduces to standard parameterized witness function for #WEIGHTED t-NORMALIZED SATISFIABILITY.

Parameterized counting classes

#WEIGHTED CIRCUIT SATISFIABILITY

Input:	A decision circuit C.
Parameter:	A positive integer k.
Output:	The number of weight k satisfying assignments for C .

Definition (#W[P])

Define a parameterized counting problem, f_v , to be in #W[P] iff v reduces to standard parameterized witness function for #WEIGHTED CIRCUIT SATISFIABILITY.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Parameterized class operators

Definition (Parametric connection)

A parametric connection is a function $\alpha : (N \times N) \rightarrow (N \times N) : (n, k) \rightarrow (n', k')$, a polynomial q, and arbitrary functions $f, g : N \rightarrow N$ with n' = f(k)q(n) and k' = g(k).

 $\exists \cdot C$ stands for the class of parameterized languages A such that for some $B \in C$ there are nice parametric connections (n, k, n', k', n'', k'') giving for all (x, k),

$$(x,k) \in A \Leftrightarrow (\exists y \in \Sigma^{n'}) \ [wt(y) = k' \land (x \# y, k") \in B]$$

(n = |x|, n' = |y|, n'' = n + n' and wt(y) denotes the weight of y.)

Similarly, define "bounded weight" versions of \forall, \oplus, BPP

Parameterized analogues of PH

Definition (G[t])

G[t] (Uniform G[t]) is the class of parameterized languages $L \subseteq \Sigma^* \times \mathbb{N}$ for which there is a parameterized (uniform) family of weft t circuits $F = C_{n,k}$ such that for all x and k, with n = |x|, $\langle x, k \rangle \in L \Leftrightarrow C_{n,k}(x) = 1$

```
Uniform G[t] = FPT
```

```
Definition (N[t])
N[t] = \exists \cdot Uniform G[t]
```

```
\begin{array}{l} \text{Definition } \left(H[t]\right)\\ \Sigma_1[t] = W[t] = \langle \exists \cdot \textit{Uniform } G[t] \rangle\\ \Pi_1[t] = \langle \forall \cdot \textit{Uniform } G[t] \rangle\\ H[t] = \bigcup_{i=0}^{\infty} \Sigma_i[t] \cup \Pi_i[t] \end{array}
```

Parameterized analogues of Toda's theroem

$$N[t] \subseteq BP \cdot \oplus \cdot G[t] ?$$
(analogue of $NP \subseteq BP \cdot \oplus \cdot P$)

$H[t] \subseteq BP \cdot \oplus \cdot G[t] ?$

$\cup_{t\geq 1}W[t]\subseteq FPT^{\#W[1]}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

+ve results

A randomized (FPT, many-one) reduction from a parameterized language L to a parameterized language L' is a randomized procedure that transforms (x, k) into (x', k') subject to:

- 1. Running time is FPT.
- 2. There is a function f' and a constant c' such that, $\forall (x, k)$

 $(x,k) \in L \Rightarrow \Pr[(x',k') \in L'] \ge \frac{1}{f'(k)|x|^{c'}}$ $(x,k) \notin L \Rightarrow \Pr[(x',k') \in L'] = 0$

For all $t \ge 1$ there is an FPT many-one randomized reduction from W[t] to UNIQUE W[t].

(Downey, Fellows and Reagan 1996)

UNIQUE k-INDEPENDENT SET is hard for W[1] under randomized polynomial-time reductions.

k-INDEPENDENT SET WITH A UNIQUENESS PROMISE is hard for W[1] under randomized polynomial-time reductions.

(Müller 2008)

+ve results

\oplus MULTICOLOURED CLIQUES

Input:	A graph G and a colouring $c \ : \ V(G) ightarrow [k]$.
Parameter:	A positive integer k.
Question:	Is there an odd number of multicoloured cliques?
	(cliques of size exactly k , each colour used once).

There is a randomized FPT reduction from MULTICOLOURED CLIQUES to \oplus MULTICOLOURED CLIQUES with one-sided error at most $\frac{1}{2}$; errors may only occur on yes-instances.

(Bjorklund, Dell, Husfeldt 2016)

⊕ MULTICOLOURED CLIQUES

Let \mathbb{F} denote a family of sets, $\mathbb{F} \subseteq 2^U$.

A restriction is a function $\rho: U \to \{0, 1, *\}$.

The restricted family $\mathbb{F}|_{\rho}$ consists of all sets $F \in \mathbb{F}$ that satisfy $\rho(i) = 1 \Rightarrow i \in F$, $\rho(i) = 0 \Rightarrow i \notin F$

A random restriction is a distribution over restrictions ρ where $\rho(i)$ is randomly sampled for each *i* independently, subject to $Pr_{\rho}(\rho(i) = 0) = p_0$ and $Pr_{\rho}(\rho(i) = 1) = p_1$. Define $p_* = 1 - (p_0 + p_1)$.

We are interested in the event $\mathbb{F}|_{\rho}$ is odd, $\oplus \mathbb{F}|_{\rho}$.

Let each set $F \in \mathbb{F}$ have size at most k.

Claim: If $p_0 = p_* = rac{1}{2}$ and $p_1 = 0$, then $Pr_{
ho}(\oplus \mathbb{F}|_{
ho}) = 2^{-k}$

⊕ MULTICOLOURED CLIQUES

Let (G, kc) be an instance of multicoloured cliques.

Let $\mathbb{F} = \{ S \subseteq V(G) : S \text{ is a multicoloured clique } \}$

For each vertex independently, flip a coin and remove it.

If the input doesn't contain a multicoloured clique, the output doesn't either.

If the input does contain a multicoloured clique, then, with probability $\geq 2^{-k}$ the output contains an odd number of them.

Repeat the reduction $t = O(2^k)$ times to get G_1, \ldots, G_t .

OR-composition for \oplus MULTICOLOURED CLIQUES

Let G_1, \ldots, G_t and k be given as input, let k' = tk, with all k' colours distinct.

Add a fresh disjoint multicoloured clique of size k to each G_i to obtain $G_1^{+1}, \ldots, G_t^{+1}$

Compute the "clique sum" H of the t graphs by adding all edges between vertices from distinct graphs.

Output $G' = H^{+1}$, that is H with fresh disjoint multicoloured clique of size k' added.

 N_i = number of multicoloured cliques in G_i .

 N_G = number of multicoloured cliques in $G' = 1 + \prod_{i=1}^k (N_i + 1)$

 N_G is odd \Leftrightarrow at least one N_i is odd.

Reduction takes time 2^k poly(n), parameter of the output is $t \cdot k = f(k)$.

If G doesn't have a multicoloured clique, then, with probability 1, the output G' has an even number of multicoloured cliques.

If G has a multicoloured clique, then, with probability at most $(1-2^{-k})^t \leq \frac{1}{2}$, the output G' has an even number of multicoloured cliques.

(日) (同) (三) (三) (三) (○) (○)

Every known proof of Toda's theorem uses randomization in an essential way, and then amplification.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If we want to employ the usual parameterized restrictions on nondeterminism as restrictions on randomness, we are limited to $f(k) \cdot \log n$ many random bits.

(Downey, Fellows and Reagan) uses $kn \cdot log n$ random bits (Bjorklund, Dell, Husfeldt) uses $2^k \cdot n$ random bits

+ve result

 $(Q, k) \in W[P] - BPFPT \iff$ there is a probabilistic *FPT*-time bounded Turing machine *A* such that, for every run of *A* on *x*, *A* tosses at most $f(k) \cdot \log |x|$ coins and decides *Q* with two-sided error *E*.

If $E \leq \frac{1}{2} - |x|^{-c}$ then, via expander graphs, E can be improved to $|x|^{-g(k)}$.

(Müller 2008)