
Towards a parameterised version of Toda’s
theorem

Catherine McCartin

Massey University, New Zealand

c.m.mccartin@massey.ac.nz

August 25, 2017



#P

Define the class #P to be the class of all functions

fM : {0, 1}∗ → N

such that M is a non-deterministic Turing machine and fM(x)
gives the number of accepting paths of M on input x .

f ∈ #P iff there is a set A ∈ P and k ≥ 0 such that ∀x ∈ {0, 1}∗,

f (x) = |{y ∈ {0, 1}|x |k | x#y ∈ A}|



#P

View #P as a class of functions that give the cardinality of a set
of witnesses to an existential formula.

Denote the set of all witnesses for x wrt p : N→ N and A ⊆ Σ∗ by

W (p,A, x)
def
= {y ∈ {0, 1}p(|x |) | x#y ∈ A}



Complexity classes defined by |W (p,A, x)|

L ∈ NP
def⇐⇒ ∃A ∈ P, ∃c ≥ 0, ∀x x ∈ L⇔ |W (nc ,A, x)| > 0

L ∈ Σp
k+1

def⇐⇒ ∃A ∈ Πp
k , ∃c ≥ 0, ∀x x ∈ L⇔ |W (nc ,A, x)| > 0

L ∈ RP
def⇐⇒ ∃A ∈ P, ∃c ≥ 0, ∀x

x ∈ L⇒ |W (nc ,A, x)| > 3

4
· 2|x|

c

x /∈ L⇒ |W (nc ,A, x)| = 0

L ∈ BPP
def⇐⇒ ∃A ∈ P, ∃c ≥ 0, ∀x

x ∈ L⇒ |W (nc ,A, x)| > 3

4
· 2|x|

c

x /∈ L⇒ |W (nc ,A, x)| ≤ 1

4
· 2|x|

c



Complexity classes defined by |W (p,A, x)|

L ∈ ⊕P
def⇐⇒ ∃A ∈ P, ∃c ≥ 0, ∀x x ∈ L⇔ |W (nc ,A, x)| odd

L ∈ PP
def⇐⇒ ∃A ∈ P, ∃c ≥ 0, ∀x x ∈ L⇔ |W (nc ,A, x)| ≥ 2|x|

c−1

L ∈ #P
def⇐⇒ ∃A ∈ P, ∃c ≥ 0, ∀x L(x) = |W (nc ,A, x)|



Operators on complexity classes

Generalise to a set of operators BP,R,#,Σp,Σlog ,Πp,Πlog on
complexity classes.

R · C R · P = RP
BP · C BP · P = BPP
⊕ · C ⊕ ·P = ⊕P
Σp · C Σp · P = NP
Πp · C Πp · P = co − NP

L ∈ BP · C def⇐⇒ ∃A ∈ C, ∃k ≥ 0, ∀x

x ∈ L⇒ |W (nk ,A, x)| > 3
4 · 2

|x|k

x /∈ L⇒ |W (nk ,A, x)| ≤ 1
4 · 2

|x|k



Toda’s theorem

P#P is the class of decision problems solvable in polynomial time
with an oracle for some f ∈ #P.

The polynomial time hierarchy is contained in P#P .

PH ⊆ P#P

Toda (FOCS 1989)



Toda’s theorem

PH ⊆ BP · ⊕P
This part of the proof can be broken down into inclusions that
establish basic algebraic properties of operators on complexity
classes.

Let C be a complexity class closed downward under ≤p
T . Then

1. Σp · C ⊆ R · Σlog · ⊕ · C
2. Πlog · ⊕ · C ⊆ ⊕ · C
3. ⊕ · BP · C ⊆ BP · ⊕ · C
4. BP · BP · C ⊆ BP · C
5. ⊕ · ⊕ · C ⊆ ⊕ · C
6. BP · C and ⊕ · C are closed downward under ≤p

T



Toda’s theorem

PH ⊆ BP · ⊕P
Induction on levels of the polynomial-time hierarchy:

Σp
0 = P ⊆ BP · ⊕P

Suppose Σp
k = P ⊆ BP · ⊕P

by 6, BP · ⊕P closed under complement, so Πp
k = P ⊆ BP · ⊕P

Σp
k+1 = Σp · Πp

k

⊆ Σp · BP · ⊕P
⊆ R · Σlog · ⊕ · BP · ⊕P
⊆ R · ⊕ · BP · ⊕P
⊆ BP · ⊕ · BP · ⊕P
⊆ BP · BP · ⊕ · ⊕P
⊆ BP · ⊕P

PH =
⋃

k Σp
k ⊆ BP · ⊕P



Toda’s theorem

BP · ⊕P ⊆ P#P

Let L ∈ BPP · ⊕P. Then ∃A ∈ ⊕P and ∃k ≥ 0 such that ∀x

x ∈ L⇒ |W (nk ,A, x)| > 3

4
· 2|x|

k

x /∈ L⇒ |W (nk ,A, x)| ≤ 1

4
· 2|x|

k

A ∈ ⊕P ⇒ ∃ polynomial time NDTM st x#w ∈ A iff f (x#w) is odd
where f (x#w) = number of accepting paths of M on input x#w .

Modify M to get N that on input x#w has p(f (x#w)) accepting paths.

Use a particular p such that :

z odd ⇒ p(z) ≡ −1 (mod 2nk+1)

z even ⇒ p(z) = 0 (mod 2nk+1)



Toda’s theorem

BP · ⊕P ⊆ P#P

Determine membership in L using P#P computation:

Use machine K that on input x of length n

1. generates all strings x#w with |w | = nk by branching, one path per
string

2. for each branch, runs N on x#w

Number of accepting paths for K on input x :∑
|w |=nk

p(f (x#w))

Modulo 2nk+1, this is ∑
|w |=nk

f (x#w) odd

−1



Toda’s theorem

∑
|w |=nk

f (x#w) odd

−1

≡ 2nk+1 − |{w | |w | = nk ∧ f (x#w) odd}|
≡ 2nk+1 − |{w | |w | = nk ∧ x#w ∈ A}|
≡ 2nk+1 − |W (nk ,A, x)|

x ∈ L⇒ 3
4 · 2

nk ≤ |W (nk ,A, x)| ≤ 2nk

⇒ 2nk ≤ 2nk+1 − |W (nk ,A, x)| ≤ 5
4 · 2

nk

x /∈ L⇒ 0 ≤ |W (nk ,A, x)| ≤ 1
4 · 2

nk

⇒ 7
4 · 2

nk ≤ 2nk+1 − |W (nk ,A, x)| ≤ 2nk+1



Valiant -Vazirani
RP computation with an oracle for USAT can determine general SAT

with arbitrarily small one-sided error.

NP ⊆ RPUSAT

∃ a polynomial time probabilistic TM M, with oracle USAT st:

ψ satisfiable ⇒ PR(M accepts ψ) ≥ 3

4

ψ unsatisfiable ⇒ PR(M accepts ψ) = 0

Alternatively, a determinisitic polynomial time TM N, with oracle USAT
st for a string w of random bits, |w | = p(|ψ|):

ψ satisfiable ⇒ PRw (N accepts ψ#w) ≥ 3

4

ψ unsatisfiable ⇒ PRw (N accepts ψ#w) = 0



Valiant -Vazirani

NP ⊆ RPUSAT

Construct a random tower of linear subspaces

{0} = E0 ⊂ E1 ⊂ · · · ⊂ En = GFn
2

Ei has dimension i , all towers equally likely.

Choose a random basis x1, . . . , xn of GFn
2, Ei = {x1, . . . , xn−i}⊥

A⊥
def
= {y |∀x ∈ A x · y = 0}

Lemma: Let S be a non-empty subset of GFn
2.

Let E0 ⊂ · · · ⊂ En be a random tower of subspaces of GFn
2 as above.

Then

Pr(∃i | |S ∩ Ei | = 1) ≥ 3

4



Valiant -Vazirani

NP ⊆ RPUSAT

Let n be the number of variables in ψ.

Machine N uses n2 random bits (w) to construct random tower of linear
subspaces Ei ⊆ GFn

2.

For each i , construct formula ϕi = “(x1, . . . , xn) ∈ Ei”

N queries the oracle on each ψ ∧ ϕi . If we get a ”yes” then accept.

Let S be the truth assignments satisfying ψ.

Pr(N accepts ψ#w) = Pr(∃i ψ ∧ ϕi ∈ USAT )

≥ 3

4
if S 6= ∅, 0 if S = ∅



Parameterized counting classes

Definition (Parameterized witness function)

Let w : Σ∗ ×N → P(Γ∗), and let 〈σ, k〉 ∈ Σ∗ ×N .

The elements of w(〈σ, k〉) are witnesses for 〈σ, k〉.

Associate a parameterized language Lw ⊆ Σ∗ ×N with w

Lw = { 〈σ, k〉 ∈ Σ∗ ×N | w(〈σ, k〉) 6= ∅ } .

Lw is the set of problem instances that have witnesses.



Parameterized counting classes

Definition (Parameterized counting problem)

Let w : Σ∗ ×N → P(Γ∗) be a parameterized witness function.

The corresponding parameterized counting problem can be considered as
a function fw : Σ∗ ×N → N that, on input 〈σ, k〉, outputs |w(〈σ, k〉)|.



Parameterised counting classes

Definition (Parameterized counting reduction)

Consider two (witness functions for) parameterized counting problems.

w : Σ∗ ×N → P(Γ∗)

v : Π∗ ×N → P(∆∗)

A parameterized counting reduction from w to v consists of a
parameterized transformation

ρ : Σ∗ ×N → Π∗ ×N

and a function
τ : N → N

such that
|w(〈σ, k〉)| = τ(|v(ρ(〈σ, k〉))|).

When such a reduction exists we say that w reduces to v .



Parameterized counting classes

#WEIGHTED WEFT t DEPTH h CIRCUIT SATISFIABILITY
(WCS(t, h))

Input: A weft t depth h decision circuit C .
Parameter: A positive integer k .
Output: The number of weight k satisfying assignments for C .

Let wF(t,h) : Σ∗ ×N → P(Γ∗) be the standard parameterized witness
function associated with this counting problem:

wF(t,h)(〈C , k〉) = { weight k satisfying assignments for C } .

Definition (#W [1])
Define a parameterized counting problem, fv , to be in #W [1] iff there is
a parameterized counting reduction from v , the parameterized witness
function for fv , to wF(1,h).



Parameterized counting classes

#WEIGHTED t-NORMALIZED SATISFIABILITY

Input: A t-normalized propositional formula X .
Parameter: A positive integer k .
Output: The number of weight k satisfying assignments for X .

For all t ≥ 1, #WEIGHTED t-NORMALIZED SATISFIABILITY is
complete for #W [t].

Definition (#W [t])
Define a parameterized counting problem, fv , to be in #W [t] iff v

reduces to standard parameterized witness function for
#WEIGHTED t-NORMALIZED SATISFIABILITY.



Parameterized counting classes

#WEIGHTED CIRCUIT SATISFIABILITY

Input: A decision circuit C .
Parameter: A positive integer k .
Output: The number of weight k satisfying assignments for C .

Definition (#W [P])
Define a parameterized counting problem, fv , to be in #W [P] iff v

reduces to standard parameterized witness function for
#WEIGHTED CIRCUIT SATISFIABILITY.



Parameterized class operators

Definition (Parametric connection)
A parametric connection is a function
α : (N × N)→ (N × N) : (n, k)→ (n′, k ′), a polynomial q,
and arbitrary functions f , g : N → N with n′ = f (k)q(n) and k ′ = g(k).

∃ · C stands for the class of parameterized languages A such that for
some B ∈ C there are nice parametric connections (n, k, n′, k ′, n”, k”)
giving for all (x , k),

(x , k) ∈ A⇔ (∃y ∈ Σn′) [wt(y) = k ′ ∧ (x#y , k”) ∈ B]

(n = |x |, n′ = |y |, n” = n + n′ and wt(y) denotes the weight of y .)

Similarly, define “bounded weight” versions of ∀, ⊕, BPP



Parameterized analogues of PH

Definition (G [t])
G [t] (Uniform G [t]) is the class of parameterized languages L ⊆ Σ∗ × N

for which there is a parameterized (uniform) family of weft t circuits
F = Cn,k such that for all x and k , with n = |x |,
〈x , k〉 ∈ L⇔ Cn,k(x) = 1

Uniform G [t] = FPT

Definition (N[t])
N[t] = ∃ · Uniform G [t]

Definition (H[t])
Σ1[t] = W [t] = 〈∃ · Uniform G [t]〉

Π1[t] = 〈∀ · Uniform G [t]〉

H[t] =
∞⋃
i=0

Σi [t] ∪ Πi [t]



Parameterized analogues of Toda’s theroem

N[t] ⊆ BP · ⊕ · G [t] ?

(analogue of NP ⊆ BP · ⊕ · P)

H[t] ⊆ BP · ⊕ · G [t] ?

∪t≥1W [t] ⊆ FPT#W [1] ?



+ve results

A randomized (FPT, many-one) reduction from a parameterized
language L to a parameterized language L′ is a randomized
procedure that transforms (x , k) into (x ′, k ′) subject to:

1. Running time is FPT.

2. There is a function f ′ and a constant c ′ such that, ∀ (x , k)

(x , k) ∈ L⇒ Pr [(x ′, k ′) ∈ L′] ≥ 1
f ′(k)|x |c′

(x , k) /∈ L⇒ Pr [(x ′, k ′) ∈ L′] = 0

For all t ≥ 1 there is an FPT many-one randomized reduction from
W [t] to UNIQUE W [t].

(Downey, Fellows and Reagan 1996)



+ve results

UNIQUE k-INDEPENDENT SET is hard for W [1] under
randomized polynomial-time reductions.

k-INDEPENDENT SET WITH A UNIQUENESS PROMISE is hard
for W [1] under randomized polynomial-time reductions.

(Müller 2008)



+ve results

⊕ MULTICOLOURED CLIQUES

Input: A graph G and a colouring c : V (G )→ [k].
Parameter: A positive integer k .
Question: Is there an odd number of multicoloured cliques?

(cliques of size exactly k , each colour used once).

There is a randomized FPT reduction from MULTICOLOURED
CLIQUES to ⊕ MULTICOLOURED CLIQUES with one-sided error
at most 1

2 ; errors may only occur on yes-instances.

(B̈jorklund, Dell, Husfeldt 2016)



⊕ MULTICOLOURED CLIQUES

Let F denote a family of sets, F ⊆ 2U .

A restriction is a function ρ : U → {0, 1, ∗}.

The restricted family F|ρ consists of all sets F ∈ F that satisfy
ρ(i) = 1⇒ i ∈ F , ρ(i) = 0⇒ i /∈ F

A random restriction is a distribution over restrictions ρ where ρ(i) is
randomly sampled for each i independently, subject to
Prρ(ρ(i) = 0) = p0 and Prρ(ρ(i) = 1) = p1. Define p∗ = 1− (p0 + p1).

We are interested in the event F|ρ is odd, ⊕F|ρ.

Let each set F ∈ F have size at most k .

Claim: If p0 = p∗ = 1
2 and p1 = 0, then Prρ(⊕F|ρ) = 2−k



⊕ MULTICOLOURED CLIQUES

Let (G , kc) be an instance of multicoloured cliques.

Let F = {S ⊆ V (G ) : S is a multicoloured clique }

For each vertex independently, flip a coin and remove it.

If the input doesn’t contain a multicoloured clique, the output doesn’t
either.

If the input does contain a multicoloured clique, then, with probability
≥ 2−k the output contains an odd number of them.

Repeat the reduction t = O(2k) times to get G1, . . . ,Gt .



OR-composition for ⊕ MULTICOLOURED CLIQUES

Let G1, . . . ,Gt and k be given as input, let k ′ = tk , with all k ′ colours
distinct.

Add a fresh disjoint multicoloured clique of size k to each Gi to obtain
G+1
1 , . . . ,G+1

t

Compute the “clique sum” H of the t graphs by adding all edges between
vertices from distinct graphs.

Output G ′ = H+1, that is H with fresh disjoint multicoloured clique of
size k ′ added.

Ni = number of multicoloured cliques in Gi .

NG = number of multicoloured cliques in G ′ = 1 + Πk
i=1(Ni + 1)

NG is odd ⇔ at least one Ni is odd.



⊕ MULTICOLOURED CLIQUES

Reduction takes time 2k poly(n), parameter of the output is t · k = f (k).

If G doesn’t have a multicoloured clique, then, with probability 1, the
output G ′ has an even number of multicoloured cliques.

If G has a multicoloured clique, then, with probability at most
(1− 2−k)t ≤ 1

2 , the output G ′ has an even number of multicoloured
cliques.



The main problem

Every known proof of Toda’s theorem uses randomization in an essential
way, and then amplification.

If we want to employ the usual parameterized restrictions on
nondeterminism as restrictions on randomness, we are limited to
f (k) · log n many random bits.

(Downey, Fellows and Reagan) uses kn · log n random bits

(B̈jorklund, Dell, Husfeldt) uses 2k · n random bits



+ve result

(Q, k) ∈W [P]−BPFPT ⇐⇒ there is a probabilistic FPT -time bounded
Turing machine A such that, for every run of A on x , A tosses at most
f (k) · log |x | coins and decides Q with two-sided error E .

If E ≤ 1
2 − |x |

−c then, via expander graphs, E can be improved to

|x |−g(k).

(Müller 2008)


