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Finitely Generated Substructures

Definition (R. Fraisse)
The age of a structure A is the family of finite substructures
of A (up to isomorphism).

Example
The age of Q, <) is the set of finite linear orders.

Example
The age of P(N),∪,∩,c ) is the set of finite Boolean algebras.



Properties of Ages

If K is the age of a structure D, then K satisfies:

1. Hereditary Property (HP): If A ∈ K , then any finitely
generated substructure of A is in K .

2. Joint Embedding Property (JEP): If A,B ∈ K , then
there is C ∈ K such that A,B both embed in C.



Fraisse Limits

Definition (R. Fraisse)
A structure is ultrahomogeneous if any isomorphism between
finitely generated substructures extends to an automorphism
of the whole structure.

Fraisse defined an amalgamation property (AP) and proved.

Theorem (Fraisse)
If K is an age with the AP, then there exists a countable
ultrahomogeneous A with age K . A is the Fraisse limit of K .

Example

1. (Q, <), the countable dense linear order, is the Fraisse
Limit of the finite linear orders.

2. The countable atomless boolean algebra is the limit of
the finite Boolean algebras



Extension Property

The key to an ultrahomogeneous structure is the following:

Given an isomorphism H between two finitely generated
substructures < a1, . . . , ak > and < b1, . . . , bk >, and an
element a, there exists an element b and an extension of H
mapping < a1, . . . , ak , a > to < b1, . . . , bk , b >.

This can also be applied to mappings between two isomorphic
ultrahomogeneous structures.

The classic example is the dense linear ordering without end
points (Q, <)



Other Countable Ultrahomogeneous Structures

The Random graph is the limit of the finite graphs.

Equivalence Structures with every orbit of the same size.

Injection Structures (A, f ) with no orbits of type ω.



Weakly Ultrahomogeneous Structures

Definition
A structure A is weakly ultrahomogeneous if there exists a
finite set {a1, a2, . . . , an} ⊆ A such that for all tuples ~x , ~y from
A with 〈~a, ~x〉 ∼= 〈~a, ~y〉 where each ai is fixed, this isomorphism
of substructures extends to an automorphism of A. Call such
a set {a1, a2, . . . , an} an exceptional set of A.

Alternatively, A is weakly ultrahomogeneous if there is a finite
set a1, . . . , an such that (A, a1, . . . , an) is ultrahomogeneous in
the extended language with constants for the ai .



Effective Categoricity

Definition

I A computable structure A is ∆0
α categorical if every

computable structure isomorphic to A is ∆0
α isomorphic

to A; A is computably categorical if every computable
structure isomorphic to A is computably isomorphic to A.

I An arbitrary structure A is relatively ∆0
α categorical if

for any structure B isomorphic to A, there is an
isomorphism which is ∆0

α relative to both A and B.



Main Computability Theorem

Theorem
Every computable weakly ultrahomogeneous structure is
∆0

2-categorical.

Sketch: Checking if two finitely generated substructures are
isomorphic is Π0

1. Then a back-and-forth construction using
oracle 0′ builds an isomorphism between given structures.



Locally Finite Structures

A is locally finite if every finite set generates a finite
substructure.

Corollary
Any relational, or more generally, any locally finite, computable
weakly ultrahomogeneous structure is computably categorical.

The converse is false; a single Z-orbit is computably
categorical.



Classification of Linear Orders

Theorem
For a countable linear order A, the following are equivalent:

1. A is weakly ultrahomogeneous.

2. A has finitely many successivities.

3. A = L0 + Q + L1 + Q + . . . + Q + Ln where the Li are
finite chains, L0, Ln are possibly empty and |Li | ≥ 2 for
1 ≤ i ≤ n − 1.

Theorem
Every weakly ultrahomogeneous linear order has a computable
copy.



Effective Categoricity

Theorem (Remmel 1981)
A computable linear ordering is computably categorical iff it
has finitely many successivities.

Theorem
A computable linear order is weakly ultrahomogeneous iff it is
computably categorical.



Complexity of Being Weakly Ultrahomogeneous

I Ae = (ω,<e) where φe is the e’th partial recursive
function, when φe is the characteristic function of a l.o.

I LIN = {e : Ae is a linear ordering}
I UHL = {e : Ae is an ultrahomogeneous linear order}
I WUL = {e ∈ LIN : Ae is weakly ultrahomogeneous }

Theorem

(a) LIN and UHL are Π0
2 complete.

(b) WUL is Σ0
3 complete.

In fact, UHL and WUL are complete relative to LIN .



Injection structures and Characters

An injection structure A = (A, f ) consists of a set with a
1-to-1 function f .

The orbit of a is {x : (∃n)f (n)(x) = a ∨ f (n)(a) = x}.

Orbits may have type ω, type Z, or finite type k .

The character K of A is
{(n, k) : A has at least n orbits of type k}

The character of a computable injection structure is a c.e. set.



Classification of Injection Structures

Proposition
Let A be an injection structure.

(a) A is ultrahomogeneous iff it has no ω-orbits.

(b) A is weakly ultrahomogeneous iff it has finitely many
ω-orbits.



Effective Categoricity

By results of Cenzer, Harizanov, and Remmel

I A computable injection structure is computably
categorical iff it has finitely many infinite orbits

I Such a structure is ∆0
2-categorical iff it has finitely many

ω-orbits or finitely many Z-orbits.

I So for computable injection structures, computable
categoricity implies weak ultrahomogeneity which implies
∆0

2-categoricity.

I Neither implication can be reversed as witnessed by
computable structures consisting of only infinitely many
Z-orbits, and of only infinitely many ω-orbits, respectively.



Structures with No Computable Copy

Let K be an arbitrary character and let m, n ∈ ω:

1. There is an ultrahomogeneous injection structure A with
character K and an arbitrary finite number of orbits of
type Z, which is relatively computably categorical.

2. There is a weakly ultrahomogeneous structure A with
character K having m orbits of type Z and n of type ω,
which is relatively computably categorical.

3. There is an ultrahomogeneous injection structure B with
character K and with an infinite number of orbits of type
Z. Furthermore, A is relatively ∆0

2 categorical.

4. There is a weakly ultrahomogeneous structure B with
character K , infinitely many orbits of type Z and n orbits
of type ω, which is relatively ∆0

2 categorical.



Index Sets for Injection Structures

I Ae = (ω, φe) where φe when φe is an injection.

I INJ = {e : Ae is an injection structure}
I UHI = {e ∈ INJ : Ae is ultrahomogeneous}
I WUI = {e ∈ INJ : Ae is weakly ultrahomogeneous}

Theorem

(a) INJ and UHI are Π0
2 complete.

(b) WUI is Σ0
3 complete.

In fact, UHI and WUI are complete relative to INJ .



Classification of Equivalence Structures

Theorem
For a countable equivalence structure A, A is weakly
ultrahomogeneous iff all but finitely many equivalence classes
of A are of the same size

Then by Cenzer, Harizanov, Calvert, Morozov (2005)

Corollary
A computable equivalence structure is weakly
ultrahomogeneous iff it is computably categorical



Index Sets for Equivalence Structures

I Ae = (ω,Re) when φe is the characteristic function of an
equivalence relation Re

I EQ = {e : Ae is an equivalence structure}
I UHQ = {e ∈ EQ : Ae is ultrahomogeneous}
I WUQ = {e ∈ INJ : Ae is weakly ultrahomogeneous}

Theorem

(a) EQ and UHQ are Π0
2 complete.

(b) WUQ is Σ0
3 complete.

In fact, UHQ and WUQ are complete relative to EQ.



Trees

Here a tree T is a subset of ω<ω which is closed under prefixes.

As a structure, T comes with a root ε (the empty string), a
partial ordering (≺, extension) and also
a predecessor function f , where f (σ_i) = σ, and f (ε) = ε.

For a ∈ T , let T (a) = {x : x ≺ a}, the tree below a

Let T [a] = {x : a_x ∈ T}, the tree above a.

(T ,≺) is a p.o. set such that each T (a) is well-ordered by ≺.



Height and Rank

The height htT (a) is the order type of T (a).

The height ht(T ) = sup{htt(a) : a ∈ T}
ht(T ) is always ≤ ω.

The rank rkT (x) is defined by recursion as

rkT (x) = sup{rkT (y) + 1 : y ∈ T [x ]}

Then rk(T ) = rkT (ε).

rk(T ) can be any countable ordinal



Categoricity of Trees under ≺

Theorem (R. Miller)
If a computable (T ,≺) is computably categorical, then T has
finite height.

Lempp,McCoy,Miller,Solomon characterized the computably
categorical trees of finite height under ≺.



Weakly Ultrahomogeneous Trees under ≺

Proposition

1. (T ,≺) is ultrahomogeneous iff rk(T ) ≤ 1

2. If (T ,≺) is weakly ultrahomogeneous, then T has finite
height.

3. (T ,≺) is weakly ultrahomogeneous iff T has finitely
many elements of rank ≥ 1.

Thus every weakly ultrahomogeneous tree (T ,≺) has a
computable copy.

Every weakly u.h. computable tree (T ,≺) is computably
categorical, since trees are locally finite.



Trees with Predecessor

Let T have p.o. ≺ and predecessor function f .

Proposition
Let T have p.o. ≺ and predecessor function f .

1. If (T ,≺) is (weakly) u.h., then (T , f ) is (weakly) u.h.

2. If (T ,≺) is comp. cat., then (T , f ) is comp. cat.

The converse results do not hold.
(Take T with a single infinite path.)

Trees with predecessor are still locally finite, so any weakly
u.h. tree must be relatively computably categorical.



Ultrahomogeneous Trees (T , f )

Theorem
(T , f ) is ultrahomogeneous iff any two nodes of the same
height have an equal number of successors.

Thus there are continuum many ultrahomogeneous trees.



Weakly Ultrahomogeneous Trees (T , f )

Definition
Let T be a tree with subtree S . TS [a] consists of nodes x
such that either x � a or there is a successor b of a not in S
such that b � x .

Example
Let T = ω<ω and S = {x : x(0) > 1}.
Then TS [ε] = {ε} ∪ {x : x(0) ≤ 1}.

Theorem
(T , f ) is weakly ultrahomogeneous iff there is a finite subtree
S of T such that TS [x ] is u.h. for all x ∈ S .



Weakly Ultrahomogeneous Trees of Height ≤ 2

Proposition
A tree (T , f ) of height ≤ 2 is weakly ultrahomogeneous iff all
but finitely many nodes of height 1 have an equal number of
successors.



Computably Categorical Trees not Weakly UH.

Example
Let T have infinitely many nodes of height 1 with exactly 2
successors and infinitely many with exactly 3 successors

Let each node of a pair of successors have exactly 4 successors
and each node of a triple have exactly 1 successor.

This tree is computably categorical but not weakly uh in either
presentation.



n-Equivalence Structures

Definition
An n-equivalence structure is A = (A,E1, . . . ,En) where each
Ei is an equivalence relation on A. A is nested if
i < j ⇒ xEjy → xEiy , i.e Ej ⊆ Ei as subsets of A× A.

Proposition
Let A be a n-equivalence structure, with 1 ≤ n ≤ ω. If A is
ultrahomogeneous, then for 1 ≤ i ≤ n, (A,Ei) is
ultrahomogeneous.



Example of Comp. Cat. but not WUH structure

Example
Let E1 have equivalence classes {0, 1, 2}, {3, 4, 5}, . . .

Let E2 have equivalence classes {0, 1}, {2, 3}, {4, 5}, . . .

{1} and {3} are isomorphic substructures, but this cannot be
extended since card({0, 1, 2} ∩ {0, 1}) = 2 but
card({3, 4, 5} ∩ {2, 3}) = 1.



Trees and Equivalence Structures

Definition
For any n-equivalence structure A = (A,E1, . . . ,En), let
E0 = A× A, let En+1 be equality, and define the tree TA as
follows. The universe of TA is the set
{[a]i : a ∈ A, i = 1, . . . , n} and the partial ordering is
inclusion. This means that for each a and i ≤ n, [a]i is the
predecessor of [a]i+1.

A representation of TA can be computed from A so that the
map taking a to [a] is also computable from A.
This is due to Leah Marshall (Ph.D. thesis)



Categoricity of Trees and Equivalence Structures

Theorem (Marshall)
Let A be a computable n-equivalence structure and TA its
corresponding tree of finite height. Then the following are
equivalent:

1. A is computably categorical.

2. A is relatively computably categorical.

3. (TA,≺) is computably categorical.

4. (TA,≺) is relatively computably categorical



Homogeneous Trees and Equivalence Structures

Theorem
Let A = (A,E1, . . . ,En) be a nested n-equivalence structure
and let E0 = A× A and En+1 be equality. Then the following
are equivalent.

1. A is ultrahomogeneous.

2. For each i ≤ n there exists ki such that every Ei class is
partitioned into ki many Ei+1 classes.

3. TA is ultrahomogeneous in the predecessor representation.

Corollary
If A = (A,E1, . . . ,En) is a nested ultrahomogeneous
equivalence structure such that all equivalence classes are
finite, then A is ultrahomogeneous if and only if each (A,Ei)
is ultrahomogeneous.



Weakly Ultrahomogeneous Structures

Theorem
Let A = (A,E1, . . . ,En) be a nested n-equivalence structure.
Then A is weakly ultrahomogeneous iff TA is weakly
ultrahomogeneous in the predecessor representation.

There exist computably categorical nested 2-equivalence
structures which are not weakly ultrahomogeneous.

Example
Let A = (A,E1,E2) where E2 has infinitely many classes of
size 2 such that infinitely many E2-classes are split into
E1-classes of size 1 and infinitely many E2-classes contain a
single E1-class of size 2.



Abelian p-Groups

Groups of the form

G = ⊕i<ωZ (pni )⊕⊕αZ (p∞)

for some α ≤ ω.
The character of such a group G is

χ(A) = {(n, k) : card({i : ni = n}) ≥ k}.

G has bounded character if for some finite b and all
(n, k) ∈ χ(G), n ≤ b



Computably Categorical p-Groups

Theorem (Goncharov, Smith)
A computable Abelian p-group G is computably categorical if
and only if either

1. G ≈ ⊕αZ (p∞)⊕F , where α ≤ ω, or

2. G ≈ ⊕rZ (p∞)⊕⊕ωZ (pm)⊕F , where F is a finite
Abelian p-group and r ,m ∈ ω.

p-groups are locally finite,
so only these could be weakly ultrahomogeneous



Ultrahomogeneous p-Groups

Ultrahomogeneous Abelian p-groups are either divisible,
that is, of the form ⊕αZ (p∞) for some α ≤ ω,

or homocyclic, that is, of the form ⊕ωZ (pn)), for some fixed n.
(See Cherlin and Felgner 1991)

Thus every countable ultrahomogeneous Abelian p-group has
a computable copy

Even the finite group Z (2)⊕ Z (4) is not ultrahomogeneous

The key here is that (1, 0) and (0, 2) both have order two
but only (0, 2) is divisible



Some non-WUH p-Groups

THEOREM: For any m < n, ⊕ωZ (pn)⊕ Z(pm) is not weakly
ultrahomogeneous.

PROOF: Let {a1, . . . , ak} be a finite exceptional set. Let a be
an element of order pn−1 in some component not in the
support of any ai and let b ∈ Z (pm) have order pm.

Then a and a + b are both of order pn−1 the map taking a to
a + b and each ai to ai is an isomorphism.

But this can not be extended to an automorphism of G, since
a is divisible, whereas a + b is not divisible.



More non-WUH p-groups

Theorem
For any finite m > 0, Z (p∞)⊕ Z (pm) is not weakly
ultrahomogeneous.

Lemma
For any prime p and any m, n, r with 2m + r < n, there is an
isomorphism φ between two subgroups of Z (pn)⊕ Z (pm)
which fixes every element of order ≤ pm+r (hence fixes all
elements of 0⊕ Z (pm) and also < pm+1 > ⊕0), but which
cannot be extended to an automorphism.



Characterization of WUH

Theorem
A countable Abelian p-group G is weakly ultrahomogenous if
and only if it has one of the following forms:

1. G = ⊕αZ (p∞) for some α ≤ ω.

2. G = ⊕i<ωZ (pn)⊕F , where n is finite and F is a finite
product of cylic groups each having order ≥ n.

In the second case, an exceptional set may be given to contain
a generator for each factor of F .



Boolean Algebras

Proposition
For the language (≤, 0, 1) and a Boolean algebra B,

1. B is ultrahomogeneous if and only if B is finite with at
most 4 elements.

2. B is weakly ultrahomogeneous if and only if B is finite.

Theorem
For the language (∧,∨,¬, 0, 1) and a Boolean algebra B,

1. B is ultrahomogeneous iff B is dense

2. B is weakly ultrahomogeneous iff B has finitely many
atoms, which is iff B is computably categorical.



Current and Future Work

Classification of weakly ultrahomogeneous structures, such as

Torsion-free Groups

Trees of transfinite height
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