Lowness notions in the C.E. Sets

Peter Cholak

September, 2017

Workshop on Classic Computability Theory Singapore

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The End

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Thanks!

Happy Birthday Rod!

Main New Result

Theorem

Let \mathbf{e} be any Turing degree such that \mathbf{e} is computably enumerable in $\mathbf{0}'$. Then

• There is a (noncompuable) c.e. set C such that $C' \equiv_T \mathbf{e}$ (Sack Jump Inversion).

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• If A is the Dekker deficiency set of C then \overline{A} is semilow₂.

Dekker deficiency set

Let *f* be the computable 1 - 1 function whose range is *C* (given to us by the above construction). The Dekker deficiency set is

$$A = \{s : (\exists t > s)[f(t) < f(s)]\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lemma

A is c.e., of degree C, and hsimple (so \overline{A} is hyperimmune).

Deficiency sets and hhsimple

Theorem (Shoenfield 1976)

If a deficiency set A has a hhsimple superset H then A is low_2 .

Corollary

*There is a nonhigh nonlow*₂ *c.e. set* A *such that* A *does not have a maximal superset and* \overline{A} *is semilow*₂*.*

Definition

M is maximal iff, for all *e*, either $W_e \subseteq^* M$ or $M \cup W_e \subseteq^* \omega$.

Sets with maximal supersets

Theorem (Lachlan 1968)

If A (is infinite c.e.) and low_2 then A has a maximal superset, M.

- Since *A* is nonhigh, *A* has a true stage enumeration. An enumeration {*A_s*|*s* ∈ ω} such that for infinite many *s*, *a_s* = *a^s_s*, where *A_s* = {*a^s₀* < *a^s₁*...} and *A_s* = {*a₀* < *a₁*...}. So, at true stage, *a^s_s* = *a^s*. (Access to *A*.)
- Since A is low₂, the set of indexes *e* such that
 {*x*|*x* ∈ W_{*e*,*s*}, *x* ∉ A_{*s*}, and *s* is a true stage} is infinite is
 computable in 0". (Information.)

An imperfect stream of balls outside of A

Using **0**^{*t*} we can ask if $\{x | x \in W_s, x \notin M_s, \text{ and } s \text{ is a true stage}\}\$ is infinite. If yes, we are guaranteed for all *k* there will be stage *s* such that there at least *k* balls *x* where $x \in W_s, x \notin M_s$ and *s* is a true stage so these *x* are not in *A*. But we have no way to bound how long it will take for the (k + 1)th ball to stabilize.

Using this imperfect stream

Infinitely often when we have verification that the set $\{x | x \in W_s, x \notin M_s, \text{ and } s \text{ is a true stage}\}$ is infinite, we can dump the balls out in *W* into *M*.

We can safety take exactly one action on this stream. We cannot take half and put them into M_1 and the other half into M_2 and hope both these c.e. sets are disjoint and infinite outside *A*. We cannot divide this imperfect stream into two imperfect streams.

・ロト・(四)・(日)・(日)・(日)・(日)

Soare's Result

Definition

The outside of *A* is denoted $\mathcal{L}(A)$ which is the structure $\{W_e \cup A | e \in \omega\}$ under inclusion. \mathcal{E} is the structure $\{W_e | e \in \omega\}$ under inclusion.

Note that if $A = \emptyset$ then $\mathcal{L}(A) = \mathcal{E}$.

Theorem (Soare)

If A is low then $\mathcal{L}(A)$ and \mathcal{E} are isomorphic.

Question

For which A are $\mathcal{L}(A)$ and \mathcal{E} are isomorphic? It was conjectured that A can be any low₂ set.

This question is about lowness notions. If *A* realizes one of our lowness notions then we want that $\mathcal{L}(A)$ and \mathcal{E} are isomorphic. Since maximal set exists, *A* must have a maximal superset.

Main New Result, again

Corollary

*There is a nonhigh nonlow*₂ *c.e. set* A *such that* $\mathcal{L}(A)$ *is not isomorphic to* \mathcal{E} *and* \overline{A} *is semilow*₂*.*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Such an *A* has a true stages enumeration.

(Soare's) Information lowness or Semilow₂

We want infinitely many balls outside of *A*.

Definition *B* is *semilow*₂ iff $\{e|W_e \cap B \text{ is infinite}\} \leq_T \mathbf{0}''$. If *A* is low₂ then \overline{A} is semilow₂. Outside of low, low₂ and nonhigh are our lowness notions are not properties of Turing degrees.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Soare's) access to \overline{A}

Definition

 \overline{A} is semilow iff $\{e|W_e \cap \overline{A} \neq \emptyset\} \leq_T \mathbf{0}'$.

This a $\Sigma_1^{\overline{A}}$ question. If A is low then this question is Δ_2^0 . Use semilowness of \overline{A} and the limit lemma to uniformly split ω (or any W_e we know is infinite outside A) into the disjoint union of *finite* sets F_i such that, for all $i, F_i \cap \overline{A}$ is nonempty. At stage s if our approximation of 0' says that the set $(\omega - \bigsqcup_{i < e} F_e) \cap \overline{A}$ is nonempty but $F_e \cap \overline{A}$ is empty, put the element x of ω which enters at stage s into F_e (for the least such e), otherwise x goes into F_s .

The F_i provide finite access to the outside of A. We can put half into M_1 and the other half into M_2 . We can split an infinite stream of balls outside A into 2.

For our imperfect streams we have no finite access nor can we split streams.

Semilow

Theorem (Soare) If \overline{A} is semilow then $\mathcal{L}(A)$ and \mathcal{E} are (effectively) isomorphic.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Semilow_{1.5}

▲□▶▲□▶▲□▶▲□▶ □ のQで

Definition (Maass)

B is *semilow*_{1.5} iff $\{e|W_e \cap B \text{ is infinite}\} \leq_m \{e|W_e \text{ is infinite}\} = INF.$

Stronger than semilow₂, weaker than semilow.

Theorem (Maass)

If \overline{A} *is semilow*_{1.5} *then* $\mathcal{L}(A)$ *and* \mathcal{E} *are isomorphic.*

OSP

Definition

Lets assume that *W* is infinite outside of *A*. A *sieve* for *W* over *A* is an uniform collection of pairwise disjoint c.e. sets, $\{F_i | i \in \omega\}$, such that their union is *W* and, for all $i, F_i \cap \overline{A}$ is finite but nonempty.

A sieve witnesses that *A* is not hhsimple.

Lemma

A has osp iff, for all e, a sieve for W_e over A can be found uniformly.

Lemma (Maass)

If \overline{A} *is semilow*_{1.5} *then* A *has osp.*

All streams of balls outside *A* can be split into 2 such streams uniformly when *A* has osp.

End of the line

Theorem (Classic Cholak)

If A has osp and \overline{A} is semilow₂ then $\mathcal{L}(A)$ and \mathcal{E} are isomorphic.

Corollary (Main New Result)

There is an A *with a true stages enumerations,* \overline{A} *is semilow*₂ *and* $\mathcal{L}(A)$ *is not isomorphic to* \mathcal{E} *.*

True stages cannot replace osp.

The low₂ question

There are low_2 sets without osp.

Question

If A *is* low_2 *are* $\mathcal{L}(A)$ *and* \mathcal{E} *are isomorphic?*

Likely false. Is there a definable property, *P* such that $P(\emptyset)$ holds but fails for \overline{A} ? A definable version of the failure to split a stream into two.

Perhaps true? The modern automorphism method needs the finite access and the ability to split a stream into 2. So forced to use Soare's old effective automorphism method and chip sets.

Question

Do all low₂ sets have atomless hhsimple superset?