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Effective dimension

Lutz defines effective dimension as a generalization of the
classical notion of fractal dimension

This gives very robust concepts, they can be defined using

measure theory
gambling
information theory

Resource-bounded versions are natural and useful
quantitative tools

Effectivization of Hausdorff dimension gives a partial
randomness concept



This mini course

0. Introduction of effective dimension

1. Resource-bounded Hausdorff dimension for Complexity Classes

2. Compression and dimension for low resource bounds. Very
effective construction of a normal sequence

3. Looking back at fractal geometry, other metric spaces

Warning: references mostly at the end of each lecture



Dimension in fractal geometry

Hausdorff dimension is defined in every metric space X

Every set A ⊆ X is associated a dimension s ∈ [0,∞)

It is a powerful quantitative tool:

“Probabilistic” method
dim(A) > 0 implies A 6= ∅; dim(Ac) < dim(X) implies A 6= ∅
Abundance proofs (dim(A) > 0 is far stronger than A 6= ∅)
New hypothesis (Assume dim(A) > 0 and prove results that
did not seem to follow from weaker hypothesis)

In Euclidean space, this concept coincides with our intuition
that smooth curves have dimension 1 and smooth surfaces
have dimension 2, but from its introduction in 1918 Hausdorff
noted that many sets have noninteger dimension, what he
called “fractional dimension”

In the 1980s Tricot and Sullivan independently developed a
dual of Hausdorff dimension called packing dimension



Algorithmic randomness

Can we generate randomness?

Can we quantify randomness?

What can we compute using randomness?



Definitions of algorithmic randomness: three approaches

the measure theory approach: Abundance/tipicality. Random
sequences should not have effectively rare properties (von
Mises, 1919, finally Martin-Löf 1966)

the gambler’s approach: Unpredictability. A betting strategy
can exploit rare patterns. Random sequences should be
unpredictable. (Solomonoff, 1961, Scnhorr, 1975, Levin 1970)

the information theory approach: Uncompressibility. Random
sequences should not be compressible (i.e., easily describable)
(Kolmogorov, Levin, Chaitin 1960-1970’s)



Partial randomness: Effective dimension

Effectivization of Hausdorff dimension gives a partial
randomness concept

Martin-Löf random sequences have effective dimension 1

Every sequence (and set of sequences) has an effective
dimension between 0 and 1 (end of nonmeasurability)

Robust concept: can be defined in terms of gambling and
Kolmogorov complexity/compressibility ratio

Effective fractal dimension is a measure of information
content providing the typicalness and predictability intuitions



Computational Complexity: resource-bounds on
randomness

Lutz resource-bounded measure and randomness: it can be
adapted to each Complexity Class to have a meaningful/useful
concept of effective measure/randomness

Very low resource-bounds still give meaningful concepts

Normality corresponds to constant memory randomness (or
finite-state randomness)

In some interesting cases it is definable using both prediction
and compression (pspace, FS)

It inherits non measurability issues from Martin-Löf approach



Computational Complexity: resource-bounded dimension

Lutz resource-bounded dimension: it can be adapted to each
Complexity Class to have a meaningful/useful concept of
effective dimension

Very low resource-bounds still give meaningful concepts

Normality corresponds to constant memory dimension 1 (or
maximal finite-state dimension)

In most interesting cases it is definable using both prediction
and compression

Every set in assigned an effective dimension



Let us move to definitions ...



Our notation for Cantor space

For Σ a finite alphabet, Σ∗ is the set of finite sequences over
Σ ({0, 1}∗)
{0, 1}∞ is the set of infinite binary sequences

For x ∈ {0, 1}∞, x � n the the length n finite prefix of x

In Computational Complexity we will identify a
problem/language A ⊆ {0, 1}∗ with its characteristic (infinite)
sequence χA ∈ {0, 1}∞

Otherwise we may be interested in the real number in [0, 1]
represented by each x ∈ {0, 1}∞ (the number with binary
representation 0.x) the choice of alphabet can be relevant



Lutz gambling characterization of dimension in Cantor
space

For s ∈ [0,∞), an s-supergale is a function
d : {0, 1}∗ → [0,∞) such that w ∈ {0, 1}∗

d(w) ≥ d(w0) + d(w1)

2s

The success set of an s-supergale d is

S∞[d] =

{
x ∈ {0, 1}∞

∣∣∣∣lim sup
n

d(x � n) =∞
}

Theorem

For every A ⊆ {0, 1}∞,

dimH(A) = inf {s |there is an s-supergale d such that A ⊆ S∞[d]}



Variants

Use lim inf in the success definition:
S∞str[d] = {x ∈ {0, 1}∞ | lim infn d(x � n) =∞} to
characterize packing dimension

Use martingale growth rates in the place of gales

gales or supergales



Constructive dimension in Cantor space

The constructive dimension of A is

cdim(A) = inf

{
s

∣∣∣∣ there is a constructive s-supergale d
such that A ⊆ S∞[d]

}

Constructive means lower semi-computable, that is d is
constructive if there is an exactly computable function
d̂ : Σ∗ × N→ Q with the following two properties.

For all w ∈ Σ∗ and t ∈ N, d̂(w, t) ≤ d̂(w, t+ 1) < d(w).

For all w ∈ Σ∗, limt→∞ d̂(w, t) = d.



This mini course

0. Introduction of effective dimension

1. Resource-bounded Hausdorff dimension for Complexity
Classes

2. Compression and dimension for low resource bounds. Very
effective construction of a normal sequence

3. Looking back at fractal geometry, other metric spaces



Resource-bounded dimensions

Let ∆ be a class of functions (e.g., polynomial time computable,
polynomial space computable)
The ∆-dimension of A is

dim∆(A) = inf

{
s

∣∣∣∣ there is an s-supergale d ∈ ∆
such that A ⊆ S∞[d]

}
Choosing different ∆ we restrict gales to different classes of
computable strategies

With gales computable by a finite automata we get dimFS

dimp corresponds to computable in polynomial time

dimpspace means polynomial space computable gales

Each of this effective dimensions is “the right one” for a set of
sequences (complexity class)



Complexity classes

Each r-b dimension is the right one for a complexity class

E = DTIME(2O(n)), we have dimp(E) = 1

EXP = DTIME(2n
O(1)

), p2 is 2polylog time computable, we
have dimp2

(EXP) = 1

ESPACE = DSPACE(2O(n)), we have
dimpspace(ESPACE) = 1

EXPSPACE = DSPACE(2n
O(1)

), p2space is 2polylog space
computable, we have dimp2space(EXPSPACE) = 1

dimFS(Q) = 1

Sometimes we denote dimp(X ∩E) as “dimension in E of X”, etc.



Some properties or resource-bounded dimension

dim∆(X) is defined for every set X

X ⊆ Y implies dim∆(X) ≤ dim∆(Y )

dim∆(∪iXi) = supi dim∆(Xi) for “suitable” effective unions

where dim∆ is any of the effective dimensions



Uses of effective dimension in complexity

Abundance proofs

Probabilistic method

New hypothesis, new concepts



A taste of r.b. dimension: Abundance proofs

The class of sets that (polynomial-time) reduce to a nondense
set has p-dimension 0 in Exponential time (E)

E has p-dimension 1

Most sets in Exponential time do not reduce to a
nondense set



Abundance result in detail

How dense are hard sets for exponential time?

The most common notions of polynomial time reductions are
many-one ≤p

m and Turing ≤p
T

In between ≤p
m and ≤p

T is a wide variety of polynomial-time
reductions of different strengths

Reductions are often used to prove hardness for a complexity
class, we will look at E and EXP

DENSE =
{
L
∣∣∣∃ε ∀̇n|L≤n| > 2n

ε
}

All known hard problems for E and EXP are dense

Is every hard se dense?



Density of hard sets

Known:

(Watanabe 1987) Every hard set for E under the ≤p
log−tt

reductions is dense

(Lutz Mayordomo 1994) Every hard set for E under the
≤p
nα−tt (α < 1/2) reductions is dense

(Fu 1995, Lutz Zhao 2000) Every hard set for E under the
≤p
nα−T (α < 1/2) reductions is dense. Every hard set for EXP

under the ≤p
nα−T (α < 1) reductions is dense

Curious contrast E, EXP ...



Density of hard sets: abundance result

(Hitchcock 2005, Harkins Hitchcock 2011) improved all
previous results by showing the following result

Theorem

The p-dimension of sets that reduce to nondense sets (under
≤p
nα−T (α < 1) reduction) is 0

Their proof is quite involved, including:
the online mistake-bound model of learning
reduction to learnable concepts
the set of reducible to learnable concepts has p-dimension 0
sets that reduce to nondense are reducible to learnable classes
(monotone disjunctions with few literals)

Abundance result (dimp(E) = 1) Most sets in E do not
reduce to nondense sets

Existence result (probabilistic method) There is a set in E that
does not ≤p

nα−T-reduce (α < 1) to nondense sets

Consequence: All ≤p
nα−T-hard sets for E are dense



A taste of effective dimension: Probabilistic method

dimp(absly − normal) = 1 (The set of absolutely normal
numbers have polynomial-time dimension 1)

A real number α is normal in base b (Borel 1909) if the base b
representation of α for every finite sequence w of base b digits
the asymptotic, empirical frequency of w in the base-b
expansion of α is b|w|

Absolutely-normal number means normal in every base

The result implies an efficient way of constructing an
absolutely normal real number (constructive probabilistic
method)

I will get back to this in my next lecture



A taste of effective dimension: new hypothesis

It is not known whether all NP-hard sets are dense

If dimp(NP) > 0 then all ≤p
nα−T-hard sets for NP are dense



A taste of effective dimension: new hypothesis

MAX3SAT is the problem of computing the number of
satisfied clauses in a 3SAT formula

If dimp(NP ) > 0 then MAX3SAT is hard to approximate
(effective approximation algorithms have performance ration
less than 7/8 on a dense set of instances)



A taste of effective dimension: new hypothesis

BPP is the class of problems solvable in bounded error
probabilistic polynomial time

Zero-One law: dimp2
(BPP) = 0 or BPP = EXP



Resource-bounded dimension: changing the scale

Let g : N× [0,∞)→ [0,∞) be a scale function (a family of
gauge functions).
Usual Hausdorff dimension corresponds to the scale
g(m, s) = sm

For s ∈ [0,∞), an g-s-supergale is a function
d : {0, 1}∗ → [0,∞) such that w ∈ {0, 1}∗

d(w) ≥ d(w0) + d(w1)

2g(|w|+1,s)−g(|w|,s)

The success set of an g-s-supergale d is

S∞[d] =

{
x ∈ {0, 1}∞

∣∣∣∣lim sup
n

d(x � n) =∞
}

Theorem

For every A ⊆ {0, 1}∞,

dimg
H(A) = inf {s |there is a g-s-supergale d such that A ⊆ S∞[d]}



Resource-bounded dimension: changing the scale

Related to the classical concept of exact or general dimension

We consider different scales g for which dimg
p(E) = 1,

dimg
pspace(ESPACE) = 1

For certain scales g, g′ it holds that that

dimg
pspace(SIZE(2αn)) = α

dimg′
pspace(SIZE(2n

α
)) = α



A taste of effective dimension: small span theorems

Small span theorems: given a reduction, either the upper or
the lower span is small

For a language A and a reduction r, the upper spam is

P−1
r (A) = {B |A ≤p

r B }

For a language A and a reduction r, the lower spam is

Pr(A) = {B |B ≤p
r A}

Theorem

For every A in E, either

dimg
p(Pm(A)) = 0

or
dimg

p(P−1
m (A)) = 0



Open questions on resource-bounded dimension

What is the p-dimension of NP?

Is it possible that 0 < dimp(NP) < 1 ?



Open questions: Partially complete problems

A problem X is complete for a class C if every Z ∈ C can be
reduced to X

A problem X is partially complete for a class C if the set of
Z ∈ C that can be reduced to X has nonzero dimension in C.

OPEN:

Examples of natural partially complete problems
Is Graph Isomorphism partially complete for EXP?
Are partially complete the same for E and EXP?



Open questions: Finding sources for BPP

In certain ways positive dimension can substitute Martin-Löf
randomness

It was known that for each Martin-Lf random x, BPP ⊆ Px

(in fact for much lower resource-bounded randomness)

Can I have PA = BPP when dimp(A) > 0 ?
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Next lecture

0. Introduction of effective dimension

1. Resource-bounded Hausdorff dimension for Complexity Classes

2. Compression and dimension for low resource bounds.
Very effective construction of a normal sequence

3. Looking back at fractal geometry, other metric spaces
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