
Effective fractal dimension theory: exploring the
extreme cases (II)

Elvira Mayordomo

Universidad de Zaragoza, Iowa State University

August 24th 2017

Left out Monday

Open problems:

Partially complete problems
BPP sources

References

Today

0. Introduction of effective dimension

1. Resource-bounded Hausdorff dimension for Complexity Classes

2. Compression and dimension for low resource bounds.
Very effective construction of a normal sequence

3. Looking back at fractal geometry, other metric spaces

Compression characterizations of effective measure

Constructive Hausdorff dimension can be entirely
defined using Kolmogorov complexity

Theorem

For every A ⊆ {0, 1}∞, cdim(A) = infx∈A
K(x�n)
n .

For a finite string w, K(w) is the length of the shortest description
from which w can be computably recoverered

Space-bounded Kolmogorov complexity characterizations

KSf (w) = min {|p| |U(p) = w in space f(|w|)}

Theorem

For every A ⊆ {0, 1}∞,

dimpspace(A) = infq polynomial infx∈A
KSq(x�n)

n .

What about time?

Time-bounded Kolmogorov complexity is hard to work with
due to invertibility issues

p-dimension (predictability) can be characterized in terms of a
class of polynomial time reversible compressors: compressors
that do not start from scratch

I will leave out the technical definition, but for instance a
compressor C for which C(w) and C(wu) have a common
prefix of length at least |C(w)| −O(log(|w|)) does not start
from scratch

Theorem

p-dimension is exactly the best compression rate achievable
through polynomial-time compressors that do not start from
scratch

Pushdown dimension

We consider BPD the set of pushdown machines that work with a
bounded number of λ-transitions per input symbol

Theorem

BPD-dimension is exactly the best compression rate achievable
through BPD-compressors

Still open for general PD-computation

Finite state dimension

We considered the case of Finite-State computation

dimFS(A) = inf {s | there is a Finite State s-gale that succeeds on A}

Finite state compression

The input can be recovered given the output and the final state

Finite state dimension characterization

Theorem

Finite-state dimension is exactly the best compression rate
achievable through finite-state compressors, that is,

dimFS(x) = inf
C FS−comp

lim inf
n

|C(x � n|
n

FS-compressors and Lempel-Ziv algorithm

Lempel-Ziv algorithm subsumes FS-compressors:

ρLZ(x) = lim inf lim inf
n

|LZ(x � n|
n

Theorem

For every x ∈ {0, 1}∞

ρLZ(x) ≤ dimFS(x)

Lempel-Ziv algorthm is universal for FS
dimension/compression

It is known that there are sequences for which
ρLZ(x) < dimFS(x)

Comparison among different levels

Theorem

PD-compression is incomparable with the Lempel-Ziv compression
algorithm:

There are sequences for which PD-compression is better than
LZ.

There are sequences for which Lempel-Ziv compression is
better than PD.

There is a FS-random sequence that is not PD-random (note:
FS-random is equivalent to FS-dimension 1)

There is a sequence such that dimPD(x) < dimFS(x) < 1

Open question

Is PD-dimension 1 different from FS-dimension 1?

Can PD-dimension be characterized in terms of compression?

Open questions

There are characterizations of effective fractal dimension in
terms of Kolmogorov complexity/compressibility at the most
and least restricted computation levels

They happen for completely different reasons

Understanding what happens at intermediate levels can have
useful applications for learning/compression

Understanding what happens with FS-dimension/randomness
may be useful for number theory

References for compression and dimension

E. Mayordomo. A Kolmogorov complexity characterization of
constructive Hausdorff dimension. Information Processing
Letters, 84(1):1-3, 2002.

M. López-Valdés and E. Mayordomo. Dimension is
compression. In Proceedings of the 30th International
Symposium on Mathematical Foundations of Computer
Science, pages 676-685. Springer-Verlag, 2005.

P. Albert, E. Mayordomo, and P. Moser. Bounded Pushdown
dimension vs Lempel Ziv information density. Computability
and Complexity pp. 95-114, Essays Dedicated to Rodney G.
Downey on the Occasion of His 60th Birthday (Day, A.,
Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A.,
Rosamond, F. (Eds.)) Lecture Notes in Computer Science
book series (LNCS, volume 10010), 2017.

References for compression and dimension

J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo.
Finite-state dimension. Theoretical Computer Science,
310(1-3):1-33, 2004.

D. Doty and J. Nichols. Pushdown dimension. Theoretical
Computer Science, 381(1-3):105-123, 2007.

W. Merkle, J. Reimann. On selection functions that do not
preserve normality. Theory of Computing Systems,
39(5):685697, 2006.

Very effective construction of an absolutely normal
sequence

At the lowest resource-bounded level, FS, dimension meets
number theory

Sequences with FS-dimension 1 are exactly Borel normal
sequences

FS-dimension is not closed under base change

Can we use a constructive probabilistic method to construct
an absolutely normal sequence?

Normal numbers

Borel, 1909:

A real number α is normal in base b (b ≥ 2) if, for every finite
sequence w of base-b digits,

lim
n

Nα(w, n)

n
=

1

b|w|

the asymptotic, empirical frequency of w in the base-b
expansion of α is b−|w|.

α is absolutely normal if it is normal in every base b ≥ 2.

Theorem (Cassels 1959, Schmidt 1960)

There exist a number that is normal in base 2 but not in base 3.

Examples of normal numbers

Champernowne’s sequence

0.123456 . . .

Copeland-Erdös sequence

0.235711 . . .

Pretty far from natural

Absolutely Normal numbers

Theorem (Borel)

Almost every real number (i.e., every real number outside a set of
Lebesgue measure 0) is absolutely normal.

Computer analyses of the expansions of π, e,
√

2, ln 2, and
other irrational numbers that arise in common mathematical
practice suggest that these numbers are absolutely normal.

No such “natural” example of a real number has been proven
to be normal in any base, let alone absolutely normal.

The conjectures that every algebraic irrational is
absolutely normal and that π is absolutely normal are
especially well known open problems.

In cryptographic applications constants such as π and
√

2 are
used and expected to be “somehow random” (nothing up my
sleeve numbers)

Computing absolutely normal numbers

We are interested in the complexity of explicitly computing
an absolutely normal real number

Sierpinski and Lebesgue gave explicit constructions of
absolutely normal numbers in 1917 (intricate limiting
processes, no complexity or insight into the nature of the
numbers constructed)

Turing (1936, unpublished) gave a constructive proof that
almost all real numbers are absolutely normal and then derived
constructions of absolutely normal numbers from this proof.

Turing vision

We believed that Schmidt (1960) was the first to construct
absolutely normal numbers

But the most surprising part was Turing’s idea of effective
measure and its application as an effective probabilistic
method

As analysed by Figueira, Becher and Picci (2007) Turing’s
unpublished note shows is that the set of non-normal numbers
has computable measure 0

The formalization of effective measure and randomness did
not come until the sixties: Martin-Löf (paper 1966),
Von-Mises, Solomonoff (1960), Kolmogorov, ...

We now know that normality is a type of randomness

Computing absolutely normal numbers

(Becher, Heiber, and Slaman 2013, simultaneous work from
other authors) Algorithm that computes an absolutely normal
number in polynomial time.

Specifically, they compute the binary expansion of an
absolutely normal number x, with the nth bit of x appearing
after O(n2polylog(n)) steps.

Here we present a new algorithm that computes an absolutely
normal in nearly linear time. Our algorithm computes the
binary expansion of an absolutely normal number x, with the
nth bit of x appearing after O(npolylog(n)) steps.

Note: The term “nearly linear time” was introduced by Gurevich
and Shelah (1989). While linear time computability is very
model-dependent, nearly linear time is very robust.

Gales and martingales in base b

Σb = {0, . . . , b− 1} the base b alphabet

Σ∗b are finite sequences, Σ∞b infinite sequences

For s ∈ [0,∞), an s-gale is a function Σ∗b → [0..∞) such that
for w ∈ Σ∗b

d(w) =
d(w0) + d(w1)

bs

A martingale is a function d : Σ∗b → [0..∞) with the fairness
property, for every finite sequence w,

d(w) =

∑
i∈Σb

d(wi)

b

The success set of an s-gale d is

S∞[d] =

{
x ∈ Σ∞b

∣∣∣∣lim sup
n

d(x � n) =∞
}

Notice that if d is an s-gale then d′(w) = b(1−s)|w|d(w) is
a martingale

Finite-state randomness

Definition

x is FS random is no finite automata computable martingale
succeeds on x

Notice that if dimFS(x) < 1 then x is not FS-random

Normality and Finite-state randomness

If x is the base b representation of a non-normal number, w is
a finite string that is “unbalanced” in x, for instace i.o. w
appears more often than it should, a finite automata can bet
a bit more than its fair share and make infinite money ...

Clearly FS random sequences are representations of base b
normal numbers

Even better FS-random = normal –Schnorr and Stimm
(1972)

Finite-State dimension

Schnorr and Stimm (1972) implicitly defined finite-state
martingales and proved that every sequence S ∈ Σ∞b obeys this
dichotomy:

1 If S is b-normal, then no finite-state base-b martingale
succeeds on S. (In fact, every finite-state base-b martingale
decays exponentially on S.)

2 If S is not b-normal, then some finite-state base-b martingale
succeeds exponentially on S.

Using dimension terminology

1 If S is b-normal, then S is FS-random.

2 If S is not b-normal, then dimFS(S) < 1.

Therefore FS-dimension 1 = normal

Remember ...

Objective Compute a (provably) absolutely normal number
x ∈ (0, 1) fast.

Absolutely normal number means that is normal in every base

We need to construct a single real number that is b-normal for
every base b

We will use Lempel-Ziv algorithm that is universal for
FS-compressors in a single base

Lempel-Ziv martingales

Feder (1991) implicitly defined the base-b Lempel-Ziv
martingale dLZ(b) and proved that it is at least as successful on
every sequence as every finite-state martingale.
∴ if S ∈ Σ∞b is not normal, then dimdLZ(b)

(S) < 1.
∴ x ∈ (0, 1) is absolutely normal if none of the martingales dLZ(b)

succeed exponentially on the base-b expansion of x.
Moreover, dLZ(b) has a fast and beautiful theory.
Celebrated Lempel-Ziv compression algorithm and martingale can
be both computed very efficiently (time very close to linear)

Lempel-Ziv martingales

How dLZ(b) works:
Parse w ∈ Σ∗b into distinct phrases, using a growing tree whose
leaves are all of the previous phrases.
At each step, bet on the next digit in proportion to the number of
leaves below each of the b options.

Base change notation

For a real x, seqb(x) ∈ Σ∞b is the base-b representation of x

For a sequence S ∈ Σ∞b , realb(S) ∈ [0, 1] is the real number
represented by S

How to construct an absolutely normal number

For each base b, we need to construct x such that
b-Lempel-Ziv martingale does not succeed on x

We need to construct a single real number that is b-normal for
every base b

It suffices to translate b-Lempel-Ziv martingale into base 2
(very efficiently)

We need a martingale d : Σ∗2 → [0,∞) that succeeds on base
2 representations of the numbers for which b-Lempel-Ziv
martingale succeeds

For this translation to be possible (and efficient) the
martingale must be quite well behaving ...

How to construct an absolutely normal number

1 Transform b-Lempel-Ziv martingale into a better behaving and
still efficient martingale that still succeeds on not b-normal
sequences

2 Efficiently change base for the resulting martingale

3 Efficiently combine all resulting martingales into one

4 Diagonalize resulting martingale

Savings Accounts, strong success

The value of Lempel-Ziv martingale dLZ(b) on a certain
infinite string S can fluctuate a lot

This makes base change more complicated (and time
consuming)

We use the notion of “savings account” here, we are looking
at an alternative martingale that keeps money aside for the
bad times to come

The strong success set of an s-supergale d is

S∞str[d] =
{
x ∈ {0, 1}∞

∣∣∣lim
n
d(x � n) =∞

}

Savings Accounts, strong success

We construct a new martingale d′b that is a conservative
version of dLZ(b)

d′b strongly succeeds at least on non-b-normal sequences

{S |dimLZ(S) < 1} ⊆ S∞str[d′b]

d′b can be computed in nearly linear time

If S 6∈ S∞str[d′b] then S is b-normal

Base Change

We want an absolutely normal real number x, that is, the
base b representation seqb(x) is not in S∞[d′b]

For this we convert d′b into a base-2 martingale d
(2)
b

succeeding on the base-2 representations of the reals with
base-b representation in S∞str[d

′
b]

Again, d
(2)
b succeeds on seq2(realb(S

∞
str[d

′
b])

realb(S
∞
str[d

′
b]) ⊆ real2(S∞str[d

(2)
b])

We use Carathéodory construction to define measures

Computing in nearly linear time is also delicate

In fact our computation d̂
(2)
b approximates slowly d

(2)
b

|d̂(2)
b (y)− d(2)

b (y)| ≤ 1

|y|3

Absolutely Normal Numbers

From previous steps we have a family of martingales (d
(2)
b)b so

that d
(2)
b succeeds on base-2 representations of

non-b-normal sequences

For each b we have a nearly linear time computation d̂
(2)
b

We want to construct S 6∈ S∞[d
(2)
b] for every b

Nearly linear time makes it painful to construct a martingale d

for the union of S∞[d
(2)
b]

Then we diagonalize over d to construct S

Martingale diagonalization

For a martingale d, how to construct x such that d martingale
does not succeed on x (with time similar to the computation
time for d)?

Recursive construction, if we have the prefix x � n choose the
next symbol i such that

d(x � ni)

is the minimum over all possible symbols

By the fairness condition of a martingale

d(w) =

∑
i∈Σb

d(wi)

b

d does not succeed on the resulting x

Time is n · t(n) if d is computable in time t(n)

Time bounds ...

All the steps were performed in nearly linear time on a
common time bound independent of base b

Many technical details were simplified in this presentation ...
please read paper

Base invariance

Normality corresponds exactly to the lowest level of
algorithmic randomness, Finite-State randomness

Finite-State randomness and Finite-State dimension are not
closed under base change

p-dimension and p-randomness are closed under base change

What about intermediate levels, PD, LZ, nearly linear time?

Conclusions

Lots of remaining questions,

can we substitute “suspected” absolute normal numbers by
proven absolutely normal numbers in Cryptography?
“biased-normality”? (based on FS-dimension)
Tight complexity for the operation of base change
The algorithm of Becher, Heiber, and Slaman’s has nearly
quadratic time but (apparently) a much lower discrepancy.
Can we improve our discrepancy while maintaining nearly
linear time?

References for construction of absolutely normal numbers

J. H. Lutz and E. Mayordomo, Computing absolutely normal
numbers in nearly linear time, submitted. (arxiv 1611.05911)

V. Becher, P.A. Heiber, and T. Slaman, A polynomial-time
algorithm for computing absolutely normal numbers,
Information and Computation 232: 1–9, 2013.

C. Aistleitner, V. Becher, A.-M. Scheerer, and T. Slaman, On
the construction of absolutely normal numbers, 2017, to
appear in Acta Arithmetica. (arXiv 1707.02628)

V. Becher, S.Figueira, and R. Picchi, Turing’s unpublished
algorithm for normal numbers, Theoretical Computer Science
377: 126-138, 2007.

Next lecture

0. Introduction of effective dimension

1. Resource-bounded Hausdorff dimension for Complexity Classes

2. Compression and dimension for low resource bounds. Very
effective construction of a normal sequence

3. Looking back at fractal geometry, other metric spaces

	Compression and dimension for low resource bounds
	Very effective construction of a normal sequence

