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Normal numbers

Borel, 1909:

@ A real number « is normal in base b (b > 2) if, for every finite
sequence w of base-b digits,

Na(w, 1
lim 7@} n) =

n n o plwl

the asymptotic, empirical frequency of w in the base-b
expansion of « is b~ vl

@ « is absolutely normal if it is normal in every base b > 2.



Computing absolutely normal numbers

o (Becher, Heiber, and Slaman 2013, simultaneous work from
other authors) Algorithm that computes an absolutely normal
number in polynomial time.

@ Specifically, they compute the binary expansion of an
absolutely normal number x, with the nth bit of x appearing
after O(n*polylog(n)) steps.

@ Here we present a new algorithm that computes an absolutely
normal in nearly linear time. Our algorithm computes the
binary expansion of an absolutely normal number x, with the
nth bit of = appearing after O(npolylog(n)) steps.

Note: The term “nearly linear time" was introduced by Gurevich
and Shelah (1989). While linear time computability is very
model-dependent, nearly linear time is very robust.




Gales and martingales in base b

e X, ={0,...,b— 1} the base b alphabet
e Y; are finite sequences, ¥;° infinite sequences
@ For s € [0,00), an s-gale is a function ¥} — [0..00) such that

for w € X
ZieEb d(U}i)
bS
o A martingale is a function d : 3} — [0..00) with the fairness
property, for every finite sequence w,

Ziezb d(wi)
b

d(w) =

d(w) =
@ The success set of an s-gale d is

S[d] = {az € o°

limsupd(z [ n) = oo}
Notice that if d is an s-gale then d'(w) = b =9)I¥Id(w) is
a martingale



Finite-state randomness

Definition
z is FS random if no finite automata computable martingale

succeeds on x

Notice that if dimpg(z) < 1 then z is not FS-random



Normality and Finite-state randomness

@ If x is the base b representation of a non-normal number, w is
a finite string that is “unbalanced” in z, for instance i.0. w
appears more often than it should, then
a finite automata can bet a bit more than its fair share and
make infinite money ...

@ Clearly FS random sequences are representations of base b
normal numbers

@ Even better FS-random = normal =Schnorr and Stimm
(1972)



Finite-State dimension

Schnorr and Stimm (1972) implicitly defined finite-state
martingales and proved that every sequence S € X7 obeys this
dichotomy:

@ If S is b-normal, then no finite-state base-b martingale
succeeds on S. (In fact, every finite-state base-b martingale
decays exponentially on S.)

@ If S is not b-normal, then some finite-state base-b martingale
succeeds exponentially on S.

Using dimension terminology

@ If S is b-normal, then S is FS-random.
@ If S is not b-normal, then dimpg(5) < 1.

Therefore FS-dimension 1 = normal



Remember ...

@ Objective Compute a (provably) absolutely normal number
€ (0,1) fast.
@ Absolutely normal number means that is normal in every base
@ We need to construct a single real number that is b-normal for
every base b
o We will use Lempel-Ziv algorithm that is universal for
FS-compressors in a single base



Lempel-Ziv martingales

Feder (1991) implicitly defined the base-b Lempel-Ziv
martingale dy ;) and proved that it is at least as successful on
every sequence as every finite-state martingale.

- if S € Xj is not normal, then dimg, ,, (S) < 1.

. x € (0,1) is absolutely normal if none of the martingales dy )
succeed exponentially on the base-b expansion of z.

Moreover, dyz) has a fast and beautiful theory.

Celebrated Lempel-Ziv compression algorithm and martingale can
be both computed very efficiently (time very close to linear)



Lempel-Ziv martingales

How dyz;) works:

Parse w € X7 into distinct phrases, using a growing tree whose
leaves are all of the previous phrases.

At each step, bet on the next digit in proportion to the number of
leaves below each of the b options.



Base change notation

e For a real z, seq,(x) € 3p° is the base-b representation of x

e For a sequence S € ¥°, realy(S) € [0,1] is the real number
represented by S



How to construct an absolutely normal number

@ For each base b, we need to construct = such that
b-Lempel-Ziv martingale does not succeed on x

@ We need to construct a single real number that is b-normal for
every base b

@ It suffices to translate b-Lempel-Ziv martingale into base 2
(very efficiently)

@ We need a martingale d : ¥5 — [0, 00) that succeeds on base
2 representations of the numbers for which b-Lempel-Ziv
martingale succeeds

e For this translation to be possible (and efficient) the
martingale must be quite well behaving ...



How to construct an absolutely normal number

© 00

Transform b-Lempel-Ziv martingale into a better behaving and
still efficient martingale that still succeeds on not b-normal
sequences

Efficiently change base for the resulting martingale
Efficiently combine all resulting martingales into one

Diagonalize resulting martingale



Savings Accounts, strong success

@ The value of Lempel-Ziv martingale drz) on a certain
infinite string .S can fluctuate a lot

@ This makes base change more complicated (and time
consuming)

@ We use the notion of “savings account” here, we are looking
at an alternative martingale that keeps money aside for the
bad times to come

The strong success set of an s-supergale d is

oo (] = {x € {0,13 limd(z [ n) = oo}



Savings Accounts, strong success

@ We construct a new martingale dj that is a conservative
version of dyz)

@ d; strongly succeeds at least on non-b-normal sequences
{S]dim.z(S) <1} C S [dy]

@ dj can be computed in nearly linear time

o If S ¢ S[d)] then S is b-normal

str



Base Change

@ We want an absolutely normal real number z, that is, the
base b representation seqy(x) is not in S™[d;]

For this we convert dj into a base-2 martingale dl()z)
succeeding on the base-2 representations of the reals with
base-b representation in S3[d]]

Again, dl(f) succeeds on seqy(real, (S5 [d])

realy (S0[d)]) € realy(SS[diP)])

S

We use Carathéodory construction to define measures

Computing in nearly linear time is also delicate

—_—

(2)

In fact our computation d,

(2)

approximates slowly d;

4P (y) — 4P ()] < e



Absolutely Normal Numbers

(2)

@ From previous steps we have a family of martingales (d;”), so

that dl(f) succeeds on base-2 representations of
non-b-normal sequences

—

@ For each b we have a nearly linear time computation dl(f)

We want to construct S ¢ Soo[dl()z)] for every b

Nearly linear time makes it painful to construct a martingale d
for the union of S‘X’[d,()z)]

@ Then we diagonalize over d to construct S



Martingale diagonalization

@ For a martingale d, how to construct x such that d martingale
does not succeed on = (with time similar to the computation
time for d)?

@ Recursive construction, if we have the prefix x | n choose the
next symbol ¢ such that

d(x | ni)

is the minimum over all possible symbols

@ By the fairness condition of a martingale

- d(wi
i) = Zeem )

d does not succeed on the resulting x

e Timeis n-t(n) if d is computable in time #(n)



Time bounds ...

@ All the steps were performed in nearly linear time on a
common time bound independent of base b

@ Many technical details were simplified in this presentation ...

please read paper



Base invariance

@ Normality corresponds exactly to the lowest level of
algorithmic randomness, Finite-State randomness

@ Finite-State randomness and Finite-State dimension are not
closed under base change

@ p-dimension and p-randomness are closed under base change

@ What about intermediate levels, PD, LZ, nearly linear time?



Conclusions

@ Lots of remaining questions,

e can we substitute “suspected” absolute normal numbers by
proven absolutely normal numbers in Cryptography?

o "biased-normality” ? (based on FS-dimension)

o Tight complexity for the operation of base change

e The algorithm of Becher, Heiber, and Slaman’s has nearly
quadratic time but (apparently) a much lower discrepancy.
Can we improve our discrepancy while maintaining nearly
linear time?
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Hausdorff definition of dimension

Hausdorff, 1919: Rigorous formulation of dimension.

od



Hausdorff definition of dimension

Let p be a metric on a set X.

@ The diameter of aset A C X is
diam(A) = sup {p(z,y) |z,y € A}.

@ For AC X and § > 0, a d-cover of A is a collection U such
that for all U € U, diam(U) < ¢ and

AQUU.

veu

e For s >0,
Hg(A) = infy/ is a §-cover of A ZUGI/I diam(U)S

o HS(A) = lims_o HE(A)

H?(A) = the s-dimensional Hausdorff measure of A



Hausdorff definition of dimension

Hg (A) = infy is a §-cover ZUGZ/{ dl&m(U)s
H*(A) = lims_,0 Hj(A)

Definition (Fractal Dimension)
Let p be a metric on X, and let A C X.

o (Hausdorff 1919) The Hausdorff dimension of A is
dimp(A) = inf {s|H*(A) =0}.

H*(X)

oo




Characteristics of effective dimension in Cantor and
Euclidean spaces

@ It is non necessarily zero and meaningful on singletons

@ It coincides with Hausdorff dimension in many interesting
cases

@ It can be characterized in terms of Kolmogorov complexity



Individual points

Definition
Let z € £ (z € R™).

@ The dimension of z is dim(z) = cdim({z}).

Absolute Stability of Constructive Dimension

Theorem
For all A C ¥ (ACR),
cdim(A) = sup,¢ 4 dim(z).

(Contrast with countable stability of classical dimension.)

.. Constructive dimension is investigated in terms of individual
points.



Correspondence principle

A correspondence principle for an effective dimension is a theorem
stating that, on sufficiently simple sets, the effective dimension

coincides with its classical counterpart. (Terminology stolen from
N. Bohr by Lutz.)

Correspondence Principle for Constructive Dimension

Theorem ( Hitchcock 2002 )

If X C X js any union (not necessarily effective) of computably
closed (i.e., T1Y) sets then cdim(X) = dimy (X).




Kolmogorov complexity characterization for Euclidean
space

What is the information content of z € R™?
Definition
Let x € R™, let r € N. The Kolmogorov complexity of = at

precision 1 is

K, (2) = inf {K(q) | € Q,Jg— 2| <277 }.

with K, (z) = oo if not such w exists.

Theorem

Let x € R™,
K, ()

cdim(x) = lim inf




Effective dimension in Euclidean space

Goals:

@ Pointwise analysis of dimensions
o Calculation of dimensions

@ Extensions of computable analysis



Results so far

Effective dimension in Euclidean space has analyzed the dimension
of points in

@ self-similar fractals,

@ random self-similar
fractals,

@ lines in R2
For each of them we can

@ know the dimension spectra of the points in the set

e find a maximal dimension point (closest to a random point in
the set)



Why should effective dimension be interesting in fractal geometry?



Point to set principle

Theorem (Lutz, Lutz 2017)

For every E C {0,1}> (E CR™),
dim(E) = mingc{o,1}+ cdim®(E).

@ This theorem allows us to prove classical dimension
results using Kolmogorov complexity



We now get results in classical fractal geometry ...

@ N. Lutz shows that a known intersection formula for Borel
sets holds for arbitrary sets, and it significantly simplifies the
proof of a known product formula. So for arbitrary
E,F CR™, for almost every z € R™,

dimp(E N (F + z)) = max{0, dimy (E x F) —m}

@ N. Lutz and D. Stull get an improved lower bound on the
(classical) Hausdorff dimension of generalized sets of
Furstenberg type.

@ Lutz and Lutz give a simpler proof of the two-dimensional
case of the Kakeya conjecture.



General spaces

o Effective dimension was first defined on the Cantor space (set
of infinite binary sequences)

@ At very low resource-bounds alphabet matters (Finite-State
compressors/gamblers), so we use infinite sequences over an
arbitrary finite alphabet

@ Hausdorff dimension is well studied over Euclidean space,
effective dimension has meaningful geometric results too

@ Can we effectivize dimension in other metric spaces retaining
the robustness properties?



General spaces

@ In many interesting cases, a gambling characterization of
classical Hausdorff dimension is proven, allowing effectivization

@ We have the same strong properties: pointwise dimension,
Kolmogorov Complexity characterization, ...

@ We also have a point to set principle: classical dimension can
be characterized in terms of oracle effective dimension



Interesting examples

@ the set of polynomials with real coefficients and bounded
degree, together with the metric d(f,g) = ||f — 9|lco-

@ The space of compact subsets of [0,1] with the Hausdorff
distance.
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Rod's request on dim,(NP) > 0 implies hard sets are dense

Theorem
If dim,(NP) > 0 then all <P, ..-hard sets for NP are dense J




Based on ...

Theorem
(Hitchcock 2005, Harkins Hitchcock 2011) Let aw < 1, then

dimp (Ppa_p(DENSE?) = 0




|deas about the proof

@ Allender et al. (92) prove that
P1_(DENSE®) C P4(DENSE®) (more or less)

@ This leads to
P,.«_7(DENSE®) C DTIME(2"),(DENSE®)

@ the set of reducible to learnable concepts has p-dimension 0

@ sets that disjunctively reduce to nondense are reducible to
learnable classes (monotone disjunctions with few literals)
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