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Today

0. Introduction of effective dimension

1. Resource-bounded Hausdorff dimension for Complexity Classes

2. Compression and dimension for low resource bounds. Very
effective construction of a normal sequence

3. Looking back at fractal geometry, other metric spaces



Normal numbers

Borel, 1909:

A real number α is normal in base b (b ≥ 2) if, for every finite
sequence w of base-b digits,

lim
n

Nα(w, n)

n
=

1

b|w|

the asymptotic, empirical frequency of w in the base-b
expansion of α is b−|w|.

α is absolutely normal if it is normal in every base b ≥ 2.



Computing absolutely normal numbers

(Becher, Heiber, and Slaman 2013, simultaneous work from
other authors) Algorithm that computes an absolutely normal
number in polynomial time.

Specifically, they compute the binary expansion of an
absolutely normal number x, with the nth bit of x appearing
after O(n2polylog(n)) steps.

Here we present a new algorithm that computes an absolutely
normal in nearly linear time. Our algorithm computes the
binary expansion of an absolutely normal number x, with the
nth bit of x appearing after O(npolylog(n)) steps.

Note: The term “nearly linear time” was introduced by Gurevich
and Shelah (1989). While linear time computability is very
model-dependent, nearly linear time is very robust.



Gales and martingales in base b

Σb = {0, . . . , b− 1} the base b alphabet

Σ∗b are finite sequences, Σ∞b infinite sequences

For s ∈ [0,∞), an s-gale is a function Σ∗b → [0..∞) such that
for w ∈ Σ∗b

d(w) =

∑
i∈Σb

d(wi)

bs

A martingale is a function d : Σ∗b → [0..∞) with the fairness
property, for every finite sequence w,

d(w) =

∑
i∈Σb

d(wi)

b

The success set of an s-gale d is

S∞[d] =

{
x ∈ Σ∞b

∣∣∣∣lim sup
n

d(x � n) =∞
}

Notice that if d is an s-gale then d′(w) = b(1−s)|w|d(w) is
a martingale



Finite-state randomness

Definition

x is FS random if no finite automata computable martingale
succeeds on x

Notice that if dimFS(x) < 1 then x is not FS-random



Normality and Finite-state randomness

If x is the base b representation of a non-normal number, w is
a finite string that is “unbalanced” in x, for instance i.o. w
appears more often than it should, then
a finite automata can bet a bit more than its fair share and
make infinite money ...

Clearly FS random sequences are representations of base b
normal numbers

Even better FS-random = normal –Schnorr and Stimm
(1972)



Finite-State dimension

Schnorr and Stimm (1972) implicitly defined finite-state
martingales and proved that every sequence S ∈ Σ∞b obeys this
dichotomy:

1 If S is b-normal, then no finite-state base-b martingale
succeeds on S. (In fact, every finite-state base-b martingale
decays exponentially on S.)

2 If S is not b-normal, then some finite-state base-b martingale
succeeds exponentially on S.

Using dimension terminology

1 If S is b-normal, then S is FS-random.

2 If S is not b-normal, then dimFS(S) < 1.

Therefore FS-dimension 1 = normal



Remember ...

Objective Compute a (provably) absolutely normal number
x ∈ (0, 1) fast.

Absolutely normal number means that is normal in every base

We need to construct a single real number that is b-normal for
every base b

We will use Lempel-Ziv algorithm that is universal for
FS-compressors in a single base



Lempel-Ziv martingales

Feder (1991) implicitly defined the base-b Lempel-Ziv
martingale dLZ(b) and proved that it is at least as successful on
every sequence as every finite-state martingale.
∴ if S ∈ Σ∞b is not normal, then dimdLZ(b)

(S) < 1.
∴ x ∈ (0, 1) is absolutely normal if none of the martingales dLZ(b)

succeed exponentially on the base-b expansion of x.
Moreover, dLZ(b) has a fast and beautiful theory.
Celebrated Lempel-Ziv compression algorithm and martingale can
be both computed very efficiently (time very close to linear)



Lempel-Ziv martingales

How dLZ(b) works:
Parse w ∈ Σ∗b into distinct phrases, using a growing tree whose
leaves are all of the previous phrases.
At each step, bet on the next digit in proportion to the number of
leaves below each of the b options.



Base change notation

For a real x, seqb(x) ∈ Σ∞b is the base-b representation of x

For a sequence S ∈ Σ∞b , realb(S) ∈ [0, 1] is the real number
represented by S



How to construct an absolutely normal number

For each base b, we need to construct x such that
b-Lempel-Ziv martingale does not succeed on x

We need to construct a single real number that is b-normal for
every base b

It suffices to translate b-Lempel-Ziv martingale into base 2
(very efficiently)

We need a martingale d : Σ∗2 → [0,∞) that succeeds on base
2 representations of the numbers for which b-Lempel-Ziv
martingale succeeds

For this translation to be possible (and efficient) the
martingale must be quite well behaving ...



How to construct an absolutely normal number

1 Transform b-Lempel-Ziv martingale into a better behaving and
still efficient martingale that still succeeds on not b-normal
sequences

2 Efficiently change base for the resulting martingale

3 Efficiently combine all resulting martingales into one

4 Diagonalize resulting martingale



Savings Accounts, strong success

The value of Lempel-Ziv martingale dLZ(b) on a certain
infinite string S can fluctuate a lot

This makes base change more complicated (and time
consuming)

We use the notion of “savings account” here, we are looking
at an alternative martingale that keeps money aside for the
bad times to come

The strong success set of an s-supergale d is

S∞str[d] =
{
x ∈ {0, 1}∞

∣∣∣lim
n
d(x � n) =∞

}



Savings Accounts, strong success

We construct a new martingale d′b that is a conservative
version of dLZ(b)

d′b strongly succeeds at least on non-b-normal sequences

{S |dimLZ(S) < 1} ⊆ S∞str[d′b]

d′b can be computed in nearly linear time

If S 6∈ S∞str[d′b] then S is b-normal



Base Change

We want an absolutely normal real number x, that is, the
base b representation seqb(x) is not in S∞[d′b]

For this we convert d′b into a base-2 martingale d
(2)
b

succeeding on the base-2 representations of the reals with
base-b representation in S∞str[d

′
b]

Again, d
(2)
b succeeds on seq2(realb(S

∞
str[d

′
b])

realb(S
∞
str[d

′
b]) ⊆ real2(S∞str[d

(2)
b ])

We use Carathéodory construction to define measures

Computing in nearly linear time is also delicate

In fact our computation d̂
(2)
b approximates slowly d

(2)
b

|d̂(2)
b (y)− d(2)

b (y)| ≤ 1

|y|3



Absolutely Normal Numbers

From previous steps we have a family of martingales (d
(2)
b )b so

that d
(2)
b succeeds on base-2 representations of

non-b-normal sequences

For each b we have a nearly linear time computation d̂
(2)
b

We want to construct S 6∈ S∞[d
(2)
b ] for every b

Nearly linear time makes it painful to construct a martingale d

for the union of S∞[d
(2)
b ]

Then we diagonalize over d to construct S



Martingale diagonalization

For a martingale d, how to construct x such that d martingale
does not succeed on x (with time similar to the computation
time for d)?

Recursive construction, if we have the prefix x � n choose the
next symbol i such that

d(x � ni)

is the minimum over all possible symbols

By the fairness condition of a martingale

d(w) =

∑
i∈Σb

d(wi)

b

d does not succeed on the resulting x

Time is n · t(n) if d is computable in time t(n)



Time bounds ...

All the steps were performed in nearly linear time on a
common time bound independent of base b

Many technical details were simplified in this presentation ...
please read paper



Base invariance

Normality corresponds exactly to the lowest level of
algorithmic randomness, Finite-State randomness

Finite-State randomness and Finite-State dimension are not
closed under base change

p-dimension and p-randomness are closed under base change

What about intermediate levels, PD, LZ, nearly linear time?



Conclusions

Lots of remaining questions,

can we substitute “suspected” absolute normal numbers by
proven absolutely normal numbers in Cryptography?
“biased-normality”? (based on FS-dimension)
Tight complexity for the operation of base change
The algorithm of Becher, Heiber, and Slaman’s has nearly
quadratic time but (apparently) a much lower discrepancy.
Can we improve our discrepancy while maintaining nearly
linear time?
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Hausdorff definition of dimension

Hausdorff, 1919: Rigorous formulation of dimension.



Hausdorff definition of dimension

Let ρ be a metric on a set X.

The diameter of a set A ⊆ X is

diam(A) = sup {ρ(x, y) |x, y ∈ A} .

For A ⊆ X and δ > 0, a δ-cover of A is a collection U such
that for all U ∈ U , diam(U) ≤ δ and

A ⊆
⋃
U∈U

U.

For s ≥ 0,
Hs
δ (A) = infU is a δ-cover of A

∑
U∈U diam(U)s

Hs(A) = limδ→0H
s
δ (A)

Hs(A) = the s-dimensional Hausdorff measure of A



Hausdorff definition of dimension

Hs
δ (A) = infU is a δ-cover

∑
U∈U diam(U)s

Hs(A) = limδ→0H
s
δ (A)

Definition (Fractal Dimension)

Let ρ be a metric on X, and let A ⊆ X.

(Hausdorff 1919) The Hausdorff dimension of A is
dimH(A) = inf {s |Hs(A) = 0} .



Characteristics of effective dimension in Cantor and
Euclidean spaces

It is non necessarily zero and meaningful on singletons

It coincides with Hausdorff dimension in many interesting
cases

It can be characterized in terms of Kolmogorov complexity



Individual points

Definition

Let x ∈ Σ∞ (x ∈ Rm).

The dimension of x is dim(x) = cdim({x}).

Absolute Stability of Constructive Dimension

Theorem

For all A ⊆ Σ∞ (A ⊆ R),
cdim(A) = supx∈A dim(x).

(Contrast with countable stability of classical dimension.)

∴ Constructive dimension is investigated in terms of individual
points.



Correspondence principle

A correspondence principle for an effective dimension is a theorem
stating that, on sufficiently simple sets, the effective dimension
coincides with its classical counterpart. (Terminology stolen from
N. Bohr by Lutz.)

Correspondence Principle for Constructive Dimension

Theorem ( Hitchcock 2002 )

If X ⊆ Σ∞ is any union (not necessarily effective) of computably
closed (i.e., Π0

1) sets then cdim(X) = dimH(X).



Kolmogorov complexity characterization for Euclidean
space

What is the information content of x ∈ Rm?

Definition

Let x ∈ Rm, let r ∈ N. The Kolmogorov complexity of x at
precision r is

Kr(x) = inf
{

K(q)
∣∣q ∈ Q, |q − x| ≤ 2−r

}
.

with Kr(x) =∞ if not such w exists.

Theorem

Let x ∈ Rm,

cdim(x) = lim inf
r

Kr(x)

r
.



Effective dimension in Euclidean space

Goals:

Pointwise analysis of dimensions

Calculation of dimensions

Extensions of computable analysis



Results so far

Effective dimension in Euclidean space has analyzed the dimension
of points in

self-similar fractals,

random self-similar
fractals,

lines in R2

For each of them we can

know the dimension spectra of the points in the set

find a maximal dimension point (closest to a random point in
the set)



Why should effective dimension be interesting in fractal geometry?



Point to set principle

Theorem (Lutz, Lutz 2017)

For every E ⊆ {0, 1}∞ (E ⊆ Rm),
dim(E) = minB⊆{0,1}∗ cdimB(E).

This theorem allows us to prove classical dimension
results using Kolmogorov complexity



We now get results in classical fractal geometry ...

N. Lutz shows that a known intersection formula for Borel
sets holds for arbitrary sets, and it significantly simplifies the
proof of a known product formula. So for arbitrary
E,F ⊆ Rm, for almost every z ∈ Rm,

dimH(E ∩ (F + z)) = max{0, dimH(E × F )−m}

N. Lutz and D. Stull get an improved lower bound on the
(classical) Hausdorff dimension of generalized sets of
Furstenberg type.

Lutz and Lutz give a simpler proof of the two-dimensional
case of the Kakeya conjecture.



General spaces

Effective dimension was first defined on the Cantor space (set
of infinite binary sequences)

At very low resource-bounds alphabet matters (Finite-State
compressors/gamblers), so we use infinite sequences over an
arbitrary finite alphabet

Hausdorff dimension is well studied over Euclidean space,
effective dimension has meaningful geometric results too

Can we effectivize dimension in other metric spaces retaining
the robustness properties?



General spaces

In many interesting cases, a gambling characterization of
classical Hausdorff dimension is proven, allowing effectivization

We have the same strong properties: pointwise dimension,
Kolmogorov Complexity characterization, ...

We also have a point to set principle: classical dimension can
be characterized in terms of oracle effective dimension



Interesting examples

the set of polynomials with real coefficients and bounded
degree, together with the metric d(f, g) = ‖f − g‖∞.

The space of compact subsets of [0,1] with the Hausdorff
distance.
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Rod’s request on dimp(NP) > 0 implies hard sets are dense

Theorem

If dimp(NP) > 0 then all ≤p
nα−T-hard sets for NP are dense



Based on ...

Theorem

(Hitchcock 2005, Harkins Hitchcock 2011) Let α < 1, then

dimp(Pnα−T(DENSEc) = 0



Ideas about the proof

Allender et al. (92) prove that
P1−tt(DENSEc) ⊆ Pd(DENSEc) (more or less)

This leads to

Pnα−T(DENSEc) ⊆ DTIME(2n
δ
)d(DENSEc)

the set of reducible to learnable concepts has p-dimension 0

sets that disjunctively reduce to nondense are reducible to
learnable classes (monotone disjunctions with few literals)



We covered

0. Introduction of effective dimension

1. Resource-bounded Hausdorff dimension for Complexity Classes

2. Compression and dimension for low resource bounds. Very
effective construction of a normal sequence

3. Looking back at fractal geometry, other metric spaces


	Very effective construction of a normal sequence
	Looking back at fractal geometry, other metric spaces

