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Wehner’s family

Theorem (Wehner, 1999).The family

W = {{n} ⊕ F : F is finite & F 6= Wn}

is (uniformly) c.e. in a degree x if and only if x > 0.

Corollary. There is a countable algebraic structure A s.t. A has
an x-computable structure if and only if x > 0.
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Jump inversions

Theorem (Goncharov, Harizanov, Knight,McCoy, Miller,
Solomon, 2005). There is a (strong) jump inversion in the class
of structures, i.e. functor F s.t.

A has an x′-comp. copy ⇐⇒ F (A) has an x-comp. copy.

Corollary. For every n ∈ ω there is a countable algebraic
structure A s.t. A has an x-computable structure if and only if
x(n) > 0(n).

Proof. Let B has an x-computable copy iff x > 0(n). Then
A = F n(B).
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Iterated jump inversions

Theorem (Goncharov, Harizanov, Knight,McCoy, Miller,
Solomon, 2005). There are iterated jump inversions for
successive computable ordinals α, i.e. functors F (α) s.t.

A has an x(α)-comp. copy ⇐⇒ F (α)(A) has an x-comp. copy.

Corollary. For every successive α ∈ ωCK
1 there is a countable

algebraic structure A s.t. A has an x-computable structure if
and only if x(α) > 0(α).

Proof. Let B has an x-computable copy iff x > 0(α). Then
A = F (α)(B).
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Jump inversion for families

Question. Are there jump inversion functors for families? Are
there families which are uniformly x-c.e. if and only if
x(α) > 0(α)?

Answer: Only for α = 0 and α = 1 (K., Faizrahmanov, 2015).
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The family enumerable in non-low1 degrees

Theorem. (Andrews, Cai,K,Lempp, Miller, Montalban, 2016).
Let ∅′ ≡T δ ∈ ωω such that the set

C = {σ ∈ ω<ω | σ 6⊆ δ}

is c.e. Then the family

V = {{n} ⊕ (C ∪ F ) | F is finite and F 6= W δ
n}

is x-c.e. iff x 6≤ 0′.
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The case α = 2

Theorem. (Faizrahmanov, K.) There is no family F which is
x-c.e. iff x′′ > 0′′.

Proof. Let X be a low3 c.e. set which is not low2.
Then the index set {e : ΦX

e is non-low2} is (ΠX
5 = Π5)-complete.

But if F is X -c.e. then the index set {e : F is ΦX
e -c.e.} is

ΣX
5 = Σ5.
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Generalizations of families for jump inversions

Definition. A 0-family is any subset of ω.

An n-family, 0 < n < ω, is a countable set of m-families, m < n.
An n-family U is x-c.e. if the m-families V ∈ U , m < n, are
uniformly x-c.e.

Observation. Every n-family U can be coded into a structure GU
such that U is x-c.e. iff GU has a x-computable copy.
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Jump inversion for n-families

An n-family U is x′-c.e. iff the (n + 1)-family

E(U) =

{
{ω} ∪ {{x} : x ∈ A}, if n = 0 and U = A ⊆ ω,
{E(V) : V ∈ U}, if n > 0,

is x-c.e.
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Double jump inversion for n-families

An n-family U is x′′-c.e. iff the (n + 1)-family

D(U) =

{
{all finite sets} ∪ {{x} : x ∈ A}, if n = 0 and U = A ⊆ ω,
{D(V) : V ∈ U}, if n > 0,

is x-c.e.

Theorem (Faizrahmanov, K., 2015) For every n ∈ ω there are
(n + 1)-families Un and Vn such that

Un is x-c.e. ⇐⇒ x(2n) > 0(2n)

and
Vn is x-c.e. ⇐⇒ x(2n+1) > 0(2n+1).
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Generalized families for infinitely iterated jump inversions

Definition. A 0-family is any subset of ω.
An α-family, 0 < α < ωCK

1 , is a countable set of β-families,
β < α.
An α-family U is x-c.e. if the β-families V ∈ U , β < α, are
uniformly x-c.e.

Observation. Every α-family U can be coded into a structure GU
such that U is x-c.e. iff GU has a x-computable copy.
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The (ω + 1)-jump inversion

Let Eω(A) be the (ω + 1)-family containing all ω-families in the
form

{En(L(n)) : n ∈ ω},

where L : ω → 2ω is any function such that L(n) is finite for
every n and beginning some n we have

L(n) = L(n + 1) ⊆ A.

Theorem. (Faizrahmanov, K., 2016) A set A is x(ω+1)-c.e. iff the
(ω + 1)-family Eω+1(A) is x-c.e.
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The non-lowω and non-lowω+1 degrees

Corollary (Faizrahmanov, K., 2016). There is an (ω + 2)-family
U such that

U is x-c.e. ⇐⇒ x(ω+1) > 0(ω+1).

Theorem (Faizrahmanov, K., 2016). There is an (ω + 1)-family
U such that

U is x-c.e. ⇐⇒ x(ω) > 0(ω).

Corollary. There is an algebraic structure A such that

A has an x-comp. copy ⇐⇒ x(ω) > 0(ω).
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No ω-jump inversions for structures

Corollary. There is an algebraic structure A such that

A has an x-comp. copy ⇐⇒ x(ω) > 0(ω).

Theorem. (Kach, K., Montalban, Soskov, 2012, unpublished).
There is no algebraic structure A such that

A has an x-comp. copy ⇐⇒ x(ω) ≥ a

if a > 0(ω).
Theorem. (Soskov, 2013). There is a structure B such that for
no algebraic structure A such that

(∃x)[y = x(ω) & A has an x-comp. copy]
⇐⇒ y ≥ 0(ω) & B has an y-comp. copy.
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α-jump inversion

Theorem. (Faizrahmanov, K., 2016) For a set A and successive
α < ωCK

1 one can define an α-family Eα(A) such that A is
x(α)-c.e. iff Eα(A) is x-c.e.

Corollary (Faizrahmanov, K., 2016). For a successive α < ωCK
1

there is an (α + 1)-family U such that

U is x-c.e. ⇐⇒ x(α) > 0(α).

Theorem (Faizrahmanov, K., 2016). For a limit α < ωCK
1 there

is an (α + 1)-family U such that

U is x-c.e. ⇐⇒ x(α) > 0(α).

Corollary. For every α < ωCK
1 there is an algebraic structure A

such that

A has an x-comp. copy ⇐⇒ x(α) > 0(α).
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Corollary. For every α < ωCK
1 there is an algebraic structure A

such that

A has an x-comp. copy ⇐⇒ x(α) > 0(α).
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Least jump inversions

I A ≤Σ B means that A is Σc
1-interpretable in B<ω.

I A(α) = (A, all Σc
α-predicates).

I A countable structure B is a least α-jump inversion for a
countable structure A if

A ≤Σ X (α) ⇐⇒ B ≤Σ X

for every countable structure X .
I (Example). The family of all inifinite c.e. sets is a least

jump inversion for 0′′, but the family of all total
computable funtions is not.
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Existence of least jump inversions

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every
successive α < ωCK

1 and every countable structure A there is a
least jump inversion A(−α).

By the definition A ≤Σ B implies A(−α) ≤Σ B(−α). By the
construction (A⊕ B)(−α) ≤Σ A(−α) ⊕ B(−α). Thus,

Corollary. (A⊕ B)(−α) ≡Σ A(−α) ⊕ B(−α).
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Least jump inversion for generalized families

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For a set
A the family E(A) = {ω} ∪ {{x} : x ∈ A} is the least jump
inversion for A. Thus, the least jump inversion for an β-family is
an (1 + β)-family.

Remark. For a set A the family
D(A) = {all finite sets} ∪ {{x} : x ∈ A} is not the least double
jump inversion for A. Moreover, the 2-family E(E(A)) is not
Σ-equivalent to a 1-family.

Theorem. For a set A and successive α < ωCK
1 the α-family

Eα(A) is the least α-jump inversion for A. Thus, the least
α-jump inversion for an β-family is an (α + β)-family.
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