Computability and model-theoretic aspects of families of sets and its generalizations

Kalimullin I.Sh.

Kazan Federal University e-mail:ikalimul@gmail.com

Aspects of Computation, Singapore, 2017 in celebration of the research work of Professor Rod Downey

Kalimullin I.Sh. Computability and model-theoretic aspects of families

Wehner's family

Theorem (Wehner, 1999). The family

$$\mathcal{W} = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n\}$$

is (uniformly) c.e. in a degree \boldsymbol{x} if and only if $\boldsymbol{x} > \boldsymbol{0}.$

A B F A B F

Wehner's family

Theorem (Wehner, 1999). The family

$$\mathcal{W} = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n\}$$

is (uniformly) c.e. in a degree \mathbf{x} if and only if $\mathbf{x} > \mathbf{0}$.

Corollary. There is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an **x**-computable structure if and only if **x** > **0**.

A B F A B F

Theorem (Goncharov, Harizanov, Knight,McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor F s.t.

 \mathcal{A} has an \mathbf{x}' -comp. copy $\iff \mathcal{F}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor F s.t.

 \mathcal{A} has an \mathbf{x}' -comp. copy $\iff \mathcal{F}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

Corollary. For every $n \in \omega$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an **x**-computable structure if and only if $\mathbf{x}^{(n)} > \mathbf{0}^{(n)}$.

イロト イポト イヨト イヨト 二日

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor F s.t.

 \mathcal{A} has an \mathbf{x}' -comp. copy $\iff \mathcal{F}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

Corollary. For every $n \in \omega$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an **x**-computable structure if and only if $\mathbf{x}^{(n)} > \mathbf{0}^{(n)}$.

Proof. Let \mathcal{B} has an **x**-computable copy iff $\mathbf{x} > \mathbf{0}^{(n)}$.

イロト イポト イヨト イヨト 二日

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There is a (strong) jump inversion in the class of structures, i.e. functor F s.t.

 \mathcal{A} has an \mathbf{x}' -comp. copy $\iff \mathcal{F}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

Corollary. For every $n \in \omega$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an **x**-computable structure if and only if $\mathbf{x}^{(n)} > \mathbf{0}^{(n)}$.

Proof. Let \mathcal{B} has an **x**-computable copy iff $\mathbf{x} > \mathbf{0}^{(n)}$. Then $\mathcal{A} = F^n(\mathcal{B})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Theorem (Goncharov, Harizanov, Knight,McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals α , i.e. functors $\mathcal{F}^{(\alpha)}$ s.t.

 \mathcal{A} has an $\mathbf{x}^{(\alpha)}$ -comp. copy $\iff \mathcal{F}^{(\alpha)}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

Theorem (Goncharov, Harizanov, Knight,McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals α , i.e. functors $F^{(\alpha)}$ s.t.

$$\mathcal{A}$$
 has an $\mathbf{x}^{(\alpha)}$ -comp. copy $\iff \mathcal{F}^{(\alpha)}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

Corollary. For every successive $\alpha \in \omega_1^{CK}$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an **x**-computable structure if and only if $\mathbf{x}^{(\alpha)} > \mathbf{0}^{(\alpha)}$.

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals α , i.e. functors $F^{(\alpha)}$ s.t.

$$\mathcal{A}$$
 has an $\mathbf{x}^{(\alpha)}$ -comp. copy $\iff \mathcal{F}^{(\alpha)}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

Corollary. For every successive $\alpha \in \omega_1^{CK}$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an **x**-computable structure if and only if $\mathbf{x}^{(\alpha)} > \mathbf{0}^{(\alpha)}$.

Proof. Let \mathcal{B} has an **x**-computable copy iff $\mathbf{x} > \mathbf{0}^{(\alpha)}$.

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005). There are iterated jump inversions for successive computable ordinals α , i.e. functors $F^{(\alpha)}$ s.t.

$$\mathcal{A}$$
 has an $\mathbf{x}^{(\alpha)}$ -comp. copy $\iff \mathcal{F}^{(\alpha)}(\mathcal{A})$ has an \mathbf{x} -comp. copy.

Corollary. For every successive $\alpha \in \omega_1^{CK}$ there is a countable algebraic structure \mathcal{A} s.t. \mathcal{A} has an **x**-computable structure if and only if $\mathbf{x}^{(\alpha)} > \mathbf{0}^{(\alpha)}$.

Proof. Let \mathcal{B} has an **x**-computable copy iff $\mathbf{x} > \mathbf{0}^{(\alpha)}$. Then $\mathcal{A} = \mathcal{F}^{(\alpha)}(\mathcal{B})$.

Jump inversion for families

Question. Are there jump inversion functors for families? Are there families which are uniformly *x*-c.e. if and only if $\mathbf{x}^{(\alpha)} > \mathbf{0}^{(\alpha)}$?

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Jump inversion for families

Question. Are there jump inversion functors for families? Are there families which are uniformly *x*-c.e. if and only if $\mathbf{x}^{(\alpha)} > \mathbf{0}^{(\alpha)}$?

Answer: Only for $\alpha = 0$ and $\alpha = 1$ (K., Faizrahmanov, 2015).

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The family enumerable in non-low $_1$ degrees

Theorem. (Andrews, Cai,K,Lempp, Miller, Montalban, 2016). Let $\emptyset' \equiv_T \delta \in \omega^{\omega}$ such that the set

$$\boldsymbol{C} = \{ \boldsymbol{\sigma} \in \boldsymbol{\omega}^{<\omega} \mid \boldsymbol{\sigma} \not\subseteq \boldsymbol{\delta} \}$$

is c.e. Then the family

 $\mathcal{V} = \{\{n\} \oplus (\mathcal{C} \cup \mathcal{F}) \mid \mathcal{F} \text{ is finite and } \mathcal{F} \neq \mathcal{W}_n^\delta\}$

is *x*-c.e. iff $\mathbf{x} \leq \mathbf{0}'$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The family enumerable in non-low 1 degrees

Theorem (K., Faizrahmanov, 2015). Let $\emptyset' \equiv_{\mathcal{T}} \delta \in \omega^{\omega}$ such that the set

$$\boldsymbol{C} = \{ \boldsymbol{\sigma} \in \boldsymbol{\omega}^{<\omega} \mid \boldsymbol{\sigma} \not\subseteq \boldsymbol{\delta} \}$$

is c.e. Then the family

 $\mathcal{V} = \{\{n\} \oplus (\mathcal{C} \cup \mathcal{F}) \mid \mathcal{F} \text{ is cofinite and } \overline{\mathcal{F}} \neq W_n^\delta\}$

is *x*-c.e. iff x' > 0'.

The case $\alpha = 2$

Theorem. (Faizrahmanov, K.) There is no family \mathcal{F} which is **x**-c.e. iff $\mathbf{x}'' > \mathbf{0}''$.

< ロ > (同 > (回 > (回 >))

э

The case $\alpha = 2$

Theorem. (Faizrahmanov, K.) There is no family \mathcal{F} which is **x**-c.e. iff $\mathbf{x}'' > \mathbf{0}''$.

Proof. Let X be a low₃ c.e. set which is not low₂.

(日) (四) (日) (日)

э

The case $\alpha = 2$

Theorem. (Faizrahmanov, K.) There is no family \mathcal{F} which is **x**-c.e. iff $\mathbf{x}'' > \mathbf{0}''$.

Proof. Let X be a low₃ c.e. set which is not low₂. Then the index set $\{e : \Phi_e^X \text{ is non-low}_2\}$ is $(\Pi_5^X = \Pi_5)$ -complete.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The case $\alpha = 2$

Theorem. (Faizrahmanov, K.) There is no family \mathcal{F} which is **x**-c.e. iff $\mathbf{x}'' > \mathbf{0}''$.

Proof. Let X be a low₃ c.e. set which is not low₂. Then the index set $\{e : \Phi_e^X \text{ is non-low}_2\}$ is $(\Pi_5^X = \Pi_5)$ -complete. But if \mathcal{F} is X-c.e. then the index set $\{e : \mathcal{F} \text{ is } \Phi_e^X\text{-c.e.}\}$ is $\Sigma_5^X = \Sigma_5$.

Generalizations of families for jump inversions

Definition. A **0**-family is any subset of ω .

Kalimullin I.Sh. Computability and model-theoretic aspects of families

3 × 4 3 ×

Generalizations of families for jump inversions

Definition. A 0-family is any subset of ω . An *n*-family, $0 < n < \omega$, is a countable set of *m*-families, m < n.

Generalizations of families for jump inversions

Definition. A **0**-family is any subset of ω . An *n*-family, $0 < n < \omega$, is a countable set of *m*-families, m < n. An *n*-family \mathcal{U} is **x**-c.e. if the *m*-families $\mathcal{V} \in \mathcal{U}$, m < n, are uniformly **x**-c.e.

Generalizations of families for jump inversions

Definition. A **0**-family is any subset of ω . An *n*-family, $0 < n < \omega$, is a countable set of *m*-families, m < n. An *n*-family \mathcal{U} is **x**-c.e. if the *m*-families $\mathcal{V} \in \mathcal{U}$, m < n, are uniformly **x**-c.e.

Generalizations of families for jump inversions

Definition. A **0**-family is any subset of ω . An *n*-family, $0 < n < \omega$, is a countable set of *m*-families, m < n. An *n*-family \mathcal{U} is **x**-c.e. if the *m*-families $\mathcal{V} \in \mathcal{U}$, m < n, are uniformly **x**-c.e.

Observation. Every *n*-family \mathcal{U} can be coded into a structure $\mathcal{G}_{\mathcal{U}}$ such that \mathcal{U} is **x**-c.e. iff $\mathcal{G}_{\mathcal{U}}$ has a **x**-computable copy.

Jump inversion for *n*-families

An *n*-family \mathcal{U} is **x**'-c.e. iff the (n + 1)-family

$$\mathcal{E}(\mathcal{U}) = \begin{cases} \{\omega\} \cup \{\{x\} : x \in A\}, & \text{if } n = 0 \text{ and } \mathcal{U} = A \subseteq \omega, \\ \{\mathcal{E}(\mathcal{V}) : \mathcal{V} \in \mathcal{U}\}, & \text{if } n > 0, \end{cases}$$

is **x**-c.e.

Double jump inversion for n-families

An *n*-family \mathcal{U} is \mathbf{x}'' -c.e. iff the (n + 1)-family

$$\mathcal{D}(\mathcal{U}) = \begin{cases} \{\text{all finite sets}\} \cup \{\overline{\{x\}} : x \in A\}, & \text{if } n = 0 \text{ and } \mathcal{U} = A \subseteq \omega, \\ \{\mathcal{D}(\mathcal{V}) : \mathcal{V} \in \mathcal{U}\}, & \text{if } n > 0, \end{cases}$$

is **x**-c.e.

Double jump inversion for n-families

An *n*-family \mathcal{U} is \mathbf{x}'' -c.e. iff the (n + 1)-family

$$\mathcal{D}(\mathcal{U}) = egin{cases} \{ ext{all finite sets} \} \cup \{ \overline{\{x\}} : x \in A \}, & ext{if } n = 0 ext{ and } \mathcal{U} = A \subseteq \omega, \ \{ \mathcal{D}(\mathcal{V}) : \mathcal{V} \in \mathcal{U} \}, & ext{if } n > 0, \end{cases}$$

is **x**-c.e.

Theorem (Faizrahmanov, K., 2015) For every $n \in \omega$ there are (n + 1)-families \mathcal{U}_n and \mathcal{V}_n such that

$$\mathcal{U}_n \text{ is } \mathbf{x}\text{-c.e.} \iff \mathbf{x}^{(2n)} > \mathbf{0}^{(2n)}$$

and

$$\mathcal{V}_n \text{ is } \mathbf{x}\text{-c.e.} \iff \mathbf{x}^{(2n+1)} > \mathbf{0}^{(2n+1)}.$$

.

Generalized families for infinitely iterated jump inversions

Definition. A 0-family is any subset of ω . An α -family, $0 < \alpha < \omega_1^{CK}$, is a countable set of β -families, $\beta < \alpha$. An α -family \mathcal{U} is **x**-c.e. if the β -families $\mathcal{V} \in \mathcal{U}, \beta < \alpha$, are uniformly **x**-c.e.

Generalized families for infinitely iterated jump inversions

Definition. A 0-family is any subset of ω . An α -family, $0 < \alpha < \omega_1^{CK}$, is a countable set of β -families, $\beta < \alpha$. An α -family \mathcal{U} is **x**-c.e. if the β -families $\mathcal{V} \in \mathcal{U}, \beta < \alpha$, are uniformly **x**-c.e.

Generalized families for infinitely iterated jump inversions

Definition. A 0-family is any subset of ω . An α -family, $0 < \alpha < \omega_1^{CK}$, is a countable set of β -families, $\beta < \alpha$. An α -family \mathcal{U} is **x**-c.e. if the β -families $\mathcal{V} \in \mathcal{U}, \beta < \alpha$, are uniformly **x**-c.e.

Observation. Every α -family \mathcal{U} can be coded into a structure $\mathcal{G}_{\mathcal{U}}$ such that \mathcal{U} is **x**-c.e. iff $\mathcal{G}_{\mathcal{U}}$ has a **x**-computable copy.

The $(\omega + 1)$ -jump inversion

Let $\mathcal{E}^{\omega}(A)$ be the $(\omega + 1)$ -family containing all ω -families in the form

 $\{\mathcal{E}^n(L(n)):n\in\omega\},\$

where $L: \omega \to 2^{\omega}$ is any function such that L(n) is finite for every n and beginning some n we have

$$L(n) = L(n+1) \subseteq A.$$

Theorem. (Faizrahmanov, K., 2016) A set \boldsymbol{A} is $\boldsymbol{x}^{(\omega+1)}$ -c.e. iff the $(\omega + 1)$ -family $\mathcal{E}^{\omega+1}(\boldsymbol{A})$ is \boldsymbol{x} -c.e.

The non-low ω and non-low $\omega_{\pm 1}$ degrees

Corollary (Faizrahmanov, K., 2016). There is an $(\omega + 2)$ -family \mathcal{U} such that

$$\mathcal{U} \text{ is } \mathbf{x}\text{-c.e.} \iff \mathbf{x}^{(\omega+1)} > \mathbf{0}^{(\omega+1)}.$$

The non-low ω and non-low $\omega_{\pm 1}$ degrees

Corollary (Faizrahmanov, K., 2016). There is an $(\omega + 2)$ -family \mathcal{U} such that

$$\mathcal{U} \text{ is } \mathbf{x}\text{-c.e.} \iff \mathbf{x}^{(\omega+1)} > \mathbf{0}^{(\omega+1)}.$$

Theorem (Faizrahmanov, K., 2016). There is an $(\omega + 1)$ -family \mathcal{U} such that

$$\mathcal{U} ext{ is } \mathbf{x} ext{-c.e.} \iff \mathbf{x}^{(\omega)} > \mathbf{0}^{(\omega)}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The non-low ω and non-low $\omega_{\pm 1}$ degrees

Corollary (Faizrahmanov, K., 2016). There is an $(\omega + 2)$ -family \mathcal{U} such that

$$\mathcal{U} \text{ is } \mathbf{x}\text{-c.e.} \iff \mathbf{x}^{(\omega+1)} > \mathbf{0}^{(\omega+1)}.$$

Theorem (Faizrahmanov, K., 2016). There is an $(\omega + 1)$ -family \mathcal{U} such that

$$\mathcal{U} ext{ is } \mathbf{x} ext{-c.e.} \iff \mathbf{x}^{(\omega)} > \mathbf{0}^{(\omega)}.$$

Corollary. There is an algebraic structure \mathcal{A} such that

$$\mathcal{A}$$
 has an **x**-comp. copy $\iff \mathbf{x}^{(\omega)} > \mathbf{0}^{(\omega)}$.

No ω -jump inversions for structures

Kalimullin I.Sh. Computability and model-theoretic aspects of families

A B F A B F

No ω -jump inversions for structures

Corollary. There is an algebraic structure \mathcal{A} such that

$$\mathcal{A}$$
 has an **x**-comp. copy $\iff \mathbf{x}^{(\omega)} > \mathbf{0}^{(\omega)}$.

No ω -jump inversions for structures

Corollary. There is an algebraic structure ${\mathcal A}$ such that

$$\mathcal{A}$$
 has an **x**-comp. copy $\iff \mathbf{x}^{(\omega)} > \mathbf{0}^{(\omega)}$.

Theorem. (Kach, K., Montalban, Soskov, 2012, unpublished). There is no algebraic structure \mathcal{A} such that

$$\mathcal{A}$$
 has an **x**-comp. copy $\iff \mathbf{x}^{(\omega)} \ge \mathbf{a}$

if $\mathbf{a} > \mathbf{0}^{(\omega)}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

No ω -jump inversions for structures

Corollary. There is an algebraic structure ${\mathcal A}$ such that

$$\mathcal{A}$$
 has an **x**-comp. copy $\iff \mathbf{x}^{(\omega)} > \mathbf{0}^{(\omega)}$.

Theorem. (Kach, K., Montalban, Soskov, 2012, unpublished). There is no algebraic structure \mathcal{A} such that

$$\mathcal A$$
 has an **x**-comp. copy $\iff \mathbf x^{(\omega)} \ge \mathbf a$

if $\mathbf{a} > \mathbf{0}^{(\omega)}$.

Theorem. (Soskov, 2013). There is a structure \mathcal{B} such that for no algebraic structure \mathcal{A} such that

$$(\exists \mathbf{x}) [\mathbf{y} = \mathbf{x}^{(\omega)} \& \mathcal{A} \text{ has an } \mathbf{x} \text{-comp. copy}] \\ \iff \mathbf{y} \ge \mathbf{0}^{(\omega)} \& \mathcal{B} \text{ has an } \mathbf{y} \text{-comp. copy.}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem. (Faizrahmanov, K., 2016) For a set A and successive $\alpha < \omega_1^{CK}$ one can define an α -family $E^{\alpha}(A)$ such that A is $\mathbf{x}^{(\alpha)}$ -c.e. iff $\mathcal{E}^{\alpha}(A)$ is \mathbf{x} -c.e.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem. (Faizrahmanov, K., 2016) For a set A and successive $\alpha < \omega_1^{CK}$ one can define an α -family $E^{\alpha}(A)$ such that A is $\mathbf{x}^{(\alpha)}$ -c.e. iff $\mathcal{E}^{\alpha}(A)$ is \mathbf{x} -c.e.

Corollary (Faizrahmanov, K., 2016). For a successive $\alpha < \omega_1^{CK}$ there is an $(\alpha + 1)$ -family \mathcal{U} such that

$$\mathcal{U}$$
 is **x**-c.e. \iff **x**^(α) > **0**^(α).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem. (Faizrahmanov, K., 2016) For a set A and successive $\alpha < \omega_1^{CK}$ one can define an α -family $E^{\alpha}(A)$ such that A is $\mathbf{x}^{(\alpha)}$ -c.e. iff $\mathcal{E}^{\alpha}(A)$ is \mathbf{x} -c.e.

Corollary (Faizrahmanov, K., 2016). For a successive $\alpha < \omega_1^{CK}$ there is an $(\alpha + 1)$ -family \mathcal{U} such that

$$\mathcal{U}$$
 is **x**-c.e. \iff **x**^(α) > **0**^(α).

Theorem (Faizrahmanov, K., 2016). For a limit $\alpha < \omega_1^{CK}$ there is an $(\alpha + 1)$ -family \mathcal{U} such that

$$\mathcal{U}$$
 is **x**-c.e. \iff **x**^(α) > **0**^(α).

・得下 ・ヨト ・ヨトー

Theorem. (Faizrahmanov, K., 2016) For a set A and successive $\alpha < \omega_1^{CK}$ one can define an α -family $E^{\alpha}(A)$ such that A is $\mathbf{x}^{(\alpha)}$ -c.e. iff $\mathcal{E}^{\alpha}(A)$ is \mathbf{x} -c.e.

Corollary (Faizrahmanov, K., 2016). For a successive $\alpha < \omega_1^{CK}$ there is an $(\alpha + 1)$ -family \mathcal{U} such that

$$\mathcal{U}$$
 is **x**-c.e. \iff **x**^(α) > **0**^(α).

Theorem (Faizrahmanov, K., 2016). For a limit $\alpha < \omega_1^{CK}$ there is an $(\alpha + 1)$ -family \mathcal{U} such that

$$\mathcal{U}$$
 is **x**-c.e. \iff $\mathbf{x}^{(\alpha)} > \mathbf{0}^{(\alpha)}$.

Corollary. For every $\alpha < \omega_1^{CK}$ there is an algebraic structure $\mathcal A$ such that

 \mathcal{A} has an **x**-comp. copy \iff **x**^(α) > **0**^(α).

Least jump inversions

Kalimullin I.Sh. Computability and model-theoretic aspects of families

▲圖▶ ▲ 国▶ ▲ 国▶

Least jump inversions

• $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ means that \mathcal{A} is Σ_1^c -interpretable in $\mathcal{B}^{<\omega}$.

Kalimullin I.Sh. Computability and model-theoretic aspects of families

Least jump inversions

A ≤_Σ B means that A is Σ^c₁-interpretable in B^{<ω}.
A^(α) = (A, all Σ^c_α-predicates).

▲御▶ ★ 国▶ ★ 国▶

Least jump inversions

- $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ means that \mathcal{A} is Σ_1^c -interpretable in $\mathcal{B}^{<\omega}$.
- $\mathcal{A}^{(\alpha)} = (\mathcal{A}, \text{all } \Sigma^{c}_{\alpha} \text{-predicates}).$
- ► A countable structure \mathcal{B} is a least α -jump inversion for a countable structure \mathcal{A} if

$$\mathcal{A} \leq_{\Sigma} \mathcal{X}^{(\alpha)} \iff \mathcal{B} \leq_{\Sigma} \mathcal{X}$$

for every countable structure \mathcal{X} .

- 김 씨는 김 씨는 김 씨는 그는 것이 가지?

Least jump inversions

- $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ means that \mathcal{A} is Σ_1^c -interpretable in $\mathcal{B}^{<\omega}$.
- $\mathcal{A}^{(\alpha)} = (\mathcal{A}, \text{all } \Sigma^{c}_{\alpha} \text{-predicates}).$
- ► A countable structure \mathcal{B} is a least α -jump inversion for a countable structure \mathcal{A} if

$$\mathcal{A} \leq_{\Sigma} \mathcal{X}^{(\alpha)} \iff \mathcal{B} \leq_{\Sigma} \mathcal{X}$$

for every countable structure \mathcal{X} .

► (Example). The family of all inifinite c.e. sets is a least jump inversion for **0**", but the family of all total computable functions is not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure \mathcal{A} there is a least jump inversion $\mathcal{A}^{(-\alpha)}$.

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure \mathcal{A} there is a least jump inversion $\mathcal{A}^{(-\alpha)}$.

By the definition $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ implies $\mathcal{A}^{(-\alpha)} \leq_{\Sigma} \mathcal{B}^{(-\alpha)}$.

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure \mathcal{A} there is a least jump inversion $\mathcal{A}^{(-\alpha)}$.

By the definition $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ implies $\mathcal{A}^{(-\alpha)} \leq_{\Sigma} \mathcal{B}^{(-\alpha)}$. By the construction $(\mathcal{A} \oplus \mathcal{B})^{(-\alpha)} \leq_{\Sigma} \mathcal{A}^{(-\alpha)} \oplus \mathcal{B}^{(-\alpha)}$.

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure \mathcal{A} there is a least jump inversion $\mathcal{A}^{(-\alpha)}$.

By the definition $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ implies $\mathcal{A}^{(-\alpha)} \leq_{\Sigma} \mathcal{B}^{(-\alpha)}$. By the construction $(\mathcal{A} \oplus \mathcal{B})^{(-\alpha)} \leq_{\Sigma} \mathcal{A}^{(-\alpha)} \oplus \mathcal{B}^{(-\alpha)}$. Thus,

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For every successive $\alpha < \omega_1^{CK}$ and every countable structure \mathcal{A} there is a least jump inversion $\mathcal{A}^{(-\alpha)}$.

By the definition $\mathcal{A} \leq_{\Sigma} \mathcal{B}$ implies $\mathcal{A}^{(-\alpha)} \leq_{\Sigma} \mathcal{B}^{(-\alpha)}$. By the construction $(\mathcal{A} \oplus \mathcal{B})^{(-\alpha)} \leq_{\Sigma} \mathcal{A}^{(-\alpha)} \oplus \mathcal{B}^{(-\alpha)}$. Thus,

Corollary. $(\mathcal{A} \oplus \mathcal{B})^{(-\alpha)} \equiv_{\Sigma} \mathcal{A}^{(-\alpha)} \oplus \mathcal{B}^{(-\alpha)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Least jump inversion for generalized families

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For a set A the family $\mathcal{E}(A) = \{\omega\} \cup \{\{x\} : x \in A\}$ is the least jump inversion for A. Thus, the least jump inversion for an β -family is an $(1 + \beta)$ -family.

Least jump inversion for generalized families

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For a set A the family $\mathcal{E}(A) = \{\omega\} \cup \{\{x\} : x \in A\}$ is the least jump inversion for A. Thus, the least jump inversion for an β -family is an $(1 + \beta)$ -family.

Remark. For a set A the family $\mathcal{D}(A) = \{\text{all finite sets}\} \cup \{\overline{\{x\}} : x \in A\}$ is not the least double jump inversion for A. Moreover, the 2-family $\mathcal{E}(\mathcal{E}(A))$ is not Σ -equivalent to a 1-family.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Least jump inversion for generalized families

Theorem (Faizrahmanov, K., Montalban, Puzarenko). For a set A the family $\mathcal{E}(A) = \{\omega\} \cup \{\{x\} : x \in A\}$ is the least jump inversion for A. Thus, the least jump inversion for an β -family is an $(1 + \beta)$ -family.

Remark. For a set A the family $\mathcal{D}(A) = \{\text{all finite sets}\} \cup \{\overline{\{x\}} : x \in A\}$ is not the least double jump inversion for A. Moreover, the 2-family $\mathcal{E}(\mathcal{E}(A))$ is not Σ -equivalent to a 1-family.

Theorem. For a set A and successive $\alpha < \omega_1^{CK}$ the α -family $E^{\alpha}(A)$ is the least α -jump inversion for A. Thus, the least α -jump inversion for an β -family is an $(\alpha + \beta)$ -family.