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A Quick Overview on 
MAF Algorithms and 



Definitions 
 X-Tree (X-forest)  
 A tree (forest) T for which there is a one-to-one  
 mapping from the leaves of T to a symbol set X.  

 Agreement forest  
 An agreement forest of two X-trees is an    
 X-forest that is a subgraph of both the X-trees.  

 The Maximum Agreement Forest (MAF) Problem 
 Find a maximum agreement forest (maf) for two 
 given X-trees 



Background 

4 

Phylogenetic tree 
leaves are labeled 
with extant species 

internal nodes 
correspond to 
speciation events 

if rooted, the  
root represents  
the ancestor of  
all the species  

www.bio.Miami.edu 



 Different experiments may result in 
different phylogenetic trees 
Morphology 
Molecular biology 

Background 



 Different experiments may result in 
different phylogenetic trees 
Morphology 
Molecular biology 

 Distance metrics have been proposed 
to facilitate the comparison of different 
phylogenetic trees for their similarity: 

     Robinson-Foulds, Nearest Neighbor     
     Interchange (NNI), TBR, SPR, … 

Background 



Subtree-Prune-and-Regraft (SPR) 

http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/ 



Tree-Bisection-and-Reconnection (TBR)  

http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/ 



 The Maximum Agreement Forest (MAF) Problem 
 Find a maximum agreement forest (maf) for two given 
 X-trees 

Background 

 SPR distance corresponds to the order of an MAF 
 in rooted trees [Bordewich 2005] 
 TBR distance corresponds to the order of an MAF 
 in unrooted trees [Allen 2000] 
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 The Maximum Agreement Forest (MAF) Problem 
 Find a maximum agreement forest (maf) for two given 
 X-trees 

Background 

 SPR distance corresponds to the order of an MAF 
 in rooted trees [Bordewich 2005] 
 TBR distance corresponds to the order of an MAF 
 in unrooted trees [Allen 2000] 

 The MAF problem can be equivalently defined as to 
 remove the minimum number of edges to make the two 
 X-trees isomorphic (thus, a minimization problem, 
 instead of a maximization problem).  

 
 The problem of constructing an MAF for two binary X-

trees is NP-hard [Allen and Steel 2001], and MAX SNP-
hard [Bordewich et al. 2008] 

 



 Most existing algorithms work by progressively  
 removing edges from the X-trees to eventually   
 make the trees isomorphic. Thus, we are actually  
 working on two X-forests, instead of two X-trees.  
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 The MAF Problem Revised 
 Remove the minimum number of edges from two 
 given X-forests to make them isomorphic. 



 Most existing algorithms work by progressively  
 removing edges from the X-trees to eventually   
 make the trees isomorphic. Thus, we are actually  
 working on two X-forests, instead of two X-trees.  

Background 

 The MAF Problem Revised 
 Remove the minimum number of edges from two 
 given X-forests to make them isomorphic. 

 The MAF Problem Further Revised (parameterized) 
 For two given X-forests, can we remove k edges 
 from one of the X-forests to make it a subgraph of 
 the other X-forest.  



 Isomorphism of X-forests 
 The definition is up to a “forced contraction” 
 operation that removes unlabeled leaves and 
 contracts degree-2 vertices. 

 
 Forest-structured set 
 An X-forest can be regarded as the set X plus 
 a structure enforced by the forest. The   
 structure restricts the ways of splitting the set 
 X. This view is more formal and sometimes  
 more convenient when discussing operations 
 on X-forests.  
 

Background 



Parameterized Algorithms 

For two unrooted binary trees: 
 Fixed parameter tractable [Allen-Steel 2001] 
 Time O(4kk5 + nO(1)) [Hallett-McCartin 2007] 
 O*(4kk)-time algorithm [Whidden-Zeh 2009] 
 O*(3k)-time algorithm [JC-Fan-Sze 2015] 

 
 



Parameterized Algorithms 

For two rooted binary trees: 
 Time O(4kk4 + n3) [Bordewich et al. 2008] 
 O*(2.42k)-time algorithm [Whidden et al. 2013] 
 O*(2.344k)-time algorithm [Z. Chen-Fan-Wang 

2013] 

For two unrooted binary trees: 
 Fixed parameter tractable [Allen-Steel 2001] 
 Time O(4kk5 + nO(1)) [Hallett-McCartin 2007] 
 O*(4kk)-time algorithm [Whidden-Zeh 2009] 
 O*(3k)-time algorithm [JC-Fan-Sze 2015] 

 
 



Call for work 

 “We should also look at the case where T1 and T2 
are not necessarily binary unrooted trees.” 

 [Hallett-McCartin, Theory of Computing Systems 41,                  
  pp. 539-550, 2007] 

 “The most important open problem is extending our 
approach to computing MAFs and MAAFs for 
multifurcating trees and for more than two trees.” 

    [Whidden-Beiko-Zeh, SIAM J. Comput. 42(4),           
pp. 1431-1466, 2013] 



Call for work 

 “We should also look at the case where T1 and T2 
are not necessarily binary unrooted trees.” 

 [Hallett-McCartin, Theory of Computing Systems 41,                  
  pp. 539-550, 2007] 

 “The most important open problem is extending our 
approach to computing MAFs and MAAFs for 
multifurcating trees and for more than two trees.” 

    [Whidden-Beiko-Zeh, SIAM J. Comput. 42(4),           
pp. 1431-1466, 2013] 

Parameterized algorithms for   
 two general X-trees 
 Multiple binary X-trees 
 Multiple general X-trees 

 

 
 



Remark. It makes perfect sense to consider MAF for 
non-binary trees and for more than two trees: 

 Ambiguities in which the order of more than 2 branches 
cannot be reliably resolved by phylogenetic tree 
construction algorithms (soft multifurcations) 

 Truly multifurcations (hard multifurcations) 
 NCBI Taxonomy (an important source of species trees): 

more than half of its branches being multifurcating 
 MAF on multifurcating trees also corresponds to SPR and 

TBR distances on the trees 
 Phylogenetic tree for the same collection of species may be 

constructed using more than two methods, each producing 
a different tree.  

Call for work 



Two General X-trees (quick overview) 

Given a pair of general X-forests (F1, F2), and 
an integer k, remove at most k edges in the 
larger-order X-forest so that it becomes a 
subgraph of F1 and F2. 



Two General X-trees (quick overview) 

Given a pair of general X-forests (F1, F2), and 
an integer k, remove at most k edges in the 
larger-order X-forest so that it becomes a 
subgraph of F1 and F2. 

General Idea (for most proposed algorithms): 
Repeat: 
1. Identify structure inconsistency in F1 and F2;  
2. Pick a collection B of edges in F1 (and in F2), and 

make sure one of the edges in B must be deleted in 
order to remove the inconsistency; 

3. Branch on removing each of the edges in the 
collection B.   
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Branching based on global inconsistency 
quartet on four labels a, b, c, d 
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Observation. 
If there are four labels a, b, c, d for which the quartets in F1 
and F2 are different, then one of the edges in the quartet in 
F1 is not in any MAF of F1 and F2.  
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[Shi-Wang-Yang-Feng-Li-JC 2016] An O*(4k)-time algorithm 
for the MAF problem on two unrooted multifurcating trees. 
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quartet on four labels a, b, c, d 
 

Observation. 
If there are four labels a, b, c, d for which the quartets in F1 
and F2 are different, then one of the edges in the quartet in 
F1 is not in any MAF of F1 and F2.  
  

[Shi-Wang-Yang-Feng-Li-JC 2016] An O*(4k)-time algorithm 
for the MAF problem on two unrooted multifurcating trees. 

Two General X-trees (quick overview) 

Remark. Hallett-McCartin initiated this method for MAF on 
two unrooted binary trees. [Hallett-McCartin 2007] 



Branching based on local inconsistency 
Review the process on binary trees 
1. Pick a sibling pair a and b in F2; 
2. If a and b are also siblings in F1: shrink them; 
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Branching based on local inconsistency 
Review the process on binary trees 
1. Pick a sibling pair a and b in F2; 
2. If a and b are also siblings in F1: shrink them; 
3. If a and b are in different trees in F1, branch on making either 

a or b as a single-vertex tree; 
4. Otherwise, branch on removing the edge incident to a, 

removing the edge incident to b, and removing all edges 
incident to the path connecting a and b. 
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Branching based on local inconsistency 
On multifurcating trees 
1. Pick a sibling pair a and b in F2; 
2. If a and b are also siblings in F1: shrink them; 
3. If a and b are in different trees in F1, branch on making either 

a or b as a single-vertex tree; 
4. Otherwise, branch on removing the edge incident to a, 

removing the edge incident to b, and removing all edges 
incident to the path connecting a and b. 
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Branching based on local inconsistency 
Thus, for general X-forest, we need new 
techniques to analyze the sibling structures.  
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We introduced a concept of BSS (basic sibling set), and 
apply branch-and-search based on BSS. For an 
inconsistency structure in BSS, we can identify at most 3 
edges in an X-forest in which one must be removed. 
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Branching based on local inconsistency 
Thus, for general X-forest, we need new 
techniques to analyze the sibling structures.  

Two General X-trees (quick overview) 

We introduced a concept of BSS (basic sibling set), and 
apply branch-and-search based on BSS. For an 
inconsistency structure in BSS, we can identify at most 3 
edges in an X-forest in which one must be removed. 

This gives an O*(3k)-time parameterized algorithm for 
two unrooted multifurcating trees [JC-Fan-Sze 2013]: 

[Whidden-Beiko-Zeh 2016] developed an algorithm  
of time O*(2.42k) for two rooted multifurcating 
trees, assuming soft multifurcations 



This looks rather straightforward. 
 

a b c d e f 

Therefore, we need a very careful formulation of 
the problem (forest-structured sets are useful), 
and operations are only on “essential” edges. 

What is difficult/tricky? 
Not all edges are essential 
 

Two General X-trees (quick overview) 



MAF on Multiple Trees: 
Given a collection C = {T1, T2, …, Th} of X-trees 
over the same label-set X, and a parameter k, is 
there an agreement forest of order at most k for 
the collection? 

Multiple X-trees 



MAF on Multiple Forests: 
Given a collection C = {F1, F2, …, Fh} of X-forests 
over the same label-set X, and a parameter k, is 
there an agreement forest whose order is at most k 
larger than the largest forest order in the collection? 

Multiple X-trees 



What is difficult on multiple trees? 

Multiple X-trees 



 Consider an instance C = {F1, F2, …, Fh} 
 Increase the order of an AF may require to delete many 

edges in C (thus many branches); 
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 Consider an instance C = {F1, F2, …, Fh} 
 Increase the order of an AF may require to delete many 

edges in C (thus many branches); 
 Branching on a forest of small order “wastes” time 

(without increase the order of an AF). 
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Multiple X-trees 
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Observation. A MAF for the collection C is an 
agreement forest for F1 and F2 

MAF on Multiple Forests: 
Given a collection C = {F1, F2, …, Fh} of X-forests 
over the same label-set X, and a parameter k, is 
there an agreement forest whose order is at most k 
larger than the largest forest order in the collection? 

Basic idea. Examine all agreement forests for 
F1 and F2, and check if each of them is an 
MAF for the collection C  

Multiple X-trees 



For a collection C of rooted binary trees:   
Using inconsistency in F1 and F2, identify no more than 3 
edges in F1, in which one of the edges must be removed. 
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larger than the largest forest order in the collection? 

An O*(3k)-time algorithm for the problem [Shi-Wang-JC 2013]   
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For a collection C of rooted binary trees:   
Using inconsistency in F1 and F2, identify no more than 3 
edges in F1, in which one of the edges must be removed. 

MAF on Multiple Forests: 
Given a collection C = {F1, F2, …, Fh} of X-forests 
over the same label-set X, and a parameter k, is 
there an agreement forest whose order is at most k 
larger than the largest forest order in the collection? 

For a collection C of unrooted binary trees:   
Using inconsistency in F1 and F2, identify no more than 4 
edges in F1, in which one of the edges must be removed. 

An O*(3k)-time algorithm for the problem [Shi-Wang-JC 2013]   

An O*(4k)-time algorithm for the problem [Shi-Wang-JC 2013]   

*[Z.Chen-Wang 2012] developed an O*(6k)-time algorithm for the problem. 

Multiple X-trees 



In principle, the above techniques can be 
used for developing parameterized 
algorithms for multiple general X-trees. 

However, the multifurcating structures cause 
much more tedious case-by-case analysis, 
and also make the branch-and-search 
process much less efficient. 

We would look for conceptually simpler and 
more efficient methods. 

Multiple X-trees 



Recall that one source that causes 
inefficiency is sometimes we have to 
branch on a forest of small order. 

Thus, if we can maintain the condition 
that all forests in the collection are of 
the same order, then this undesired 
situation will be avoided. 

Multiple X-trees 



 Two X-forests are label isomorphic if they have 
the same label partitions (the corresponding 
trees may not necessarily be isomorphic). 

 A collection C = {F1, F2, …, Fh} is label isomorphic 
if every pair of forests in the collection are label 
isomorphic. 
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How expensive is it to achieve label isomorphism? 

Multiple X-trees 



Reduction Rule 1. If F1 has a vertex v and F2 has trees T1, …, 
Td such that L(v) = T ∩(T1 ∪ … ∪ Td), then take T(v) out of T.  

v 

T(v) 

F1 F2 
v 

T(v) 

F1 F2 X 

Branching Rule 1. If F1 has two siblings s1 and s2 and F2 has 
trees T1, T2 such that L(s1) ⊆ L(T1) and L(s2) ⊆ L(T2) , then 
branch on taking out T(s1) and T(s2). 
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Theorem. Let Φ1 and Φ2 be label-isomorphic X-
forests, obtained by h applications of Branching 
Rule 1 on X-forests F1 and F2. Then  
 

   Ord(Φ1) = Ord(Φ2) ≥ h + max{Ord(F1),Ord(F2)} 

Thus, Reduction Rule 1 and Branching Rule 1 not only 
make label isomorphism of X-forests, but also effectively 
decrease the parameter value k — at least as good as the 
recurrence relation T(k) = 2 T(k-1) 

For a given instance {F1, F2, …, Fh}, we always pick an Fp of 
the largest order and an Fq that is not label-isomorphic to Fp, 
and make them label-isomorphic. This process decreases 
the parameter k at least as good as T(k) = 2 T(k-1) 
 

Achieving Label Isomorphism 



Observation. Any MAF algorithm of running time 
O*(ck) with c ≥ 2 on two X-forests, based on 
exhaustive search can be translated into an 
O*(ck)-time MAF algorithm on multiple X-forests.  

Corollary. The MAF problem on multiple rooted 
general X-trees can be solved in time O*(2.42k). 

Remark. This seems to provide a rather general tool to 
reduce the MAF problem on multiple trees to the problem 
with two trees.  

Multiple X-trees 
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 Ratio-(d+1) for two rooted general trees [Rodrigues et 
al. 2007] 

 Ratio-8 for multiple rooted binary trees [Chataigner 
2005]  
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(using LP Duality) 
 
For two unrooted binary trees 
 3-approximation [Whidden-Zeh 2009] 
 3-approximation [JC-Fan-Sze 2015] 
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Approximation Algorithms 

 Basic idea: 
In the study of parameterized algorithms for 
the MAF problem, our basic operation is to 
find a collection B of essential edges in which 
one must be removed, and branch on 
removing each of the edges in B 
 

 
 Thus: 

If we remove all edges in B, then we get an 
approximation algorithm of ratio |B| for the 
MAF problem. 
 

 

Our Approach 



 3-approximation for MAF on 2 unrooted general 
X-trees       [JC-Fan-Sze 2013] 

 

 3-approximation for MAF on multiple rooted 
binary trees            [JC-Shi-Feng-Wang 2014]  

 
 

 4-approximation for MAF on multiple unrooted 
binary trees           [JC-Shi-Feng-Wang 2014] 

  
 
 

 

3-approximation for the problem was independently 
developed by [Mukhopadhyay-Bhabak 2016]      
 
 

Approximations on 2 rooted (soft) general X-trees with      
ratio 4 [van Iersel et al. 2014] and 3 [Whidden et al. 2016]     
 
 

Approximation Algorithms 



Conclusions and Final Remarks 

 MAF and related problems from evolutionary 
biology offer nice combinatorial structures for 
algorithmic research; 

 The research is still in a fairly preliminary stage; 
 Most developed techniques are elementary 

based on straightforward combinatorial 
structural analysis; 

 Deeper insight and new techniques for more 
efficient algorithms? 

 Lower bounds? 
 Problem kernelizations? 
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