
Label Isomorphism:
On the MAF Problems for

Multiple Trees

Jianer Chen
School of Computer Science and Educational Software

Guangzhou University, P.R. China
Department of Computer Science & Engineering

Texas A&M University, USA

Nature 438, pp. 803-819 (2005)

IMS Singapore 2017

Label Isomorphism:
On the MAF Problems for

Multiple Trees

Jianer Chen
School of Computer Science and Educational Software

Guangzhou University, P.R. China
Department of Computer Science & Engineering

Texas A&M University, USA

Nature 438, pp. 803-819 (2005)

IMS Singapore 2017

A Quick Overview on
MAF Algorithms and

Definitions
 X-Tree (X-forest)
 A tree (forest) T for which there is a one-to-one
 mapping from the leaves of T to a symbol set X.

 Agreement forest
 An agreement forest of two X-trees is an
 X-forest that is a subgraph of both the X-trees.

 The Maximum Agreement Forest (MAF) Problem
 Find a maximum agreement forest (maf) for two
 given X-trees

Background

4

Phylogenetic tree
leaves are labeled
with extant species

internal nodes
correspond to
speciation events

if rooted, the
root represents
the ancestor of
all the species

www.bio.Miami.edu

 Different experiments may result in
different phylogenetic trees
Morphology
Molecular biology

Background

 Different experiments may result in
different phylogenetic trees
Morphology
Molecular biology

 Distance metrics have been proposed
to facilitate the comparison of different
phylogenetic trees for their similarity:

 Robinson-Foulds, Nearest Neighbor
 Interchange (NNI), TBR, SPR, …

Background

Subtree-Prune-and-Regraft (SPR)

http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/

Tree-Bisection-and-Reconnection (TBR)

http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/

 The Maximum Agreement Forest (MAF) Problem
 Find a maximum agreement forest (maf) for two given
 X-trees

Background

 SPR distance corresponds to the order of an MAF
 in rooted trees [Bordewich 2005]
 TBR distance corresponds to the order of an MAF
 in unrooted trees [Allen 2000]

 The Maximum Agreement Forest (MAF) Problem
 Find a maximum agreement forest (maf) for two given
 X-trees

Background

 SPR distance corresponds to the order of an MAF
 in rooted trees [Bordewich 2005]
 TBR distance corresponds to the order of an MAF
 in unrooted trees [Allen 2000]

 The MAF problem can be equivalently defined as to
 remove the minimum number of edges to make the two
 X-trees isomorphic (thus, a minimization problem,
 instead of a maximization problem).

 The Maximum Agreement Forest (MAF) Problem
 Find a maximum agreement forest (maf) for two given
 X-trees

Background

 SPR distance corresponds to the order of an MAF
 in rooted trees [Bordewich 2005]
 TBR distance corresponds to the order of an MAF
 in unrooted trees [Allen 2000]

 The MAF problem can be equivalently defined as to
 remove the minimum number of edges to make the two
 X-trees isomorphic (thus, a minimization problem,
 instead of a maximization problem).

 The problem of constructing an MAF for two binary X-

trees is NP-hard [Allen and Steel 2001], and MAX SNP-
hard [Bordewich et al. 2008]

 Most existing algorithms work by progressively
 removing edges from the X-trees to eventually
 make the trees isomorphic. Thus, we are actually
 working on two X-forests, instead of two X-trees.

Background

 Most existing algorithms work by progressively
 removing edges from the X-trees to eventually
 make the trees isomorphic. Thus, we are actually
 working on two X-forests, instead of two X-trees.

Background

 The MAF Problem Revised
 Remove the minimum number of edges from two
 given X-forests to make them isomorphic.

 Most existing algorithms work by progressively
 removing edges from the X-trees to eventually
 make the trees isomorphic. Thus, we are actually
 working on two X-forests, instead of two X-trees.

Background

 The MAF Problem Revised
 Remove the minimum number of edges from two
 given X-forests to make them isomorphic.

 The MAF Problem Further Revised (parameterized)
 For two given X-forests, can we remove k edges
 from one of the X-forests to make it a subgraph of
 the other X-forest.

 Isomorphism of X-forests
 The definition is up to a “forced contraction”
 operation that removes unlabeled leaves and
 contracts degree-2 vertices.

 Forest-structured set
 An X-forest can be regarded as the set X plus
 a structure enforced by the forest. The
 structure restricts the ways of splitting the set
 X. This view is more formal and sometimes
 more convenient when discussing operations
 on X-forests.

Background

Parameterized Algorithms

For two unrooted binary trees:
 Fixed parameter tractable [Allen-Steel 2001]
 Time O(4kk5 + nO(1)) [Hallett-McCartin 2007]
 O*(4kk)-time algorithm [Whidden-Zeh 2009]
 O*(3k)-time algorithm [JC-Fan-Sze 2015]

Parameterized Algorithms

For two rooted binary trees:
 Time O(4kk4 + n3) [Bordewich et al. 2008]
 O*(2.42k)-time algorithm [Whidden et al. 2013]
 O*(2.344k)-time algorithm [Z. Chen-Fan-Wang

2013]

For two unrooted binary trees:
 Fixed parameter tractable [Allen-Steel 2001]
 Time O(4kk5 + nO(1)) [Hallett-McCartin 2007]
 O*(4kk)-time algorithm [Whidden-Zeh 2009]
 O*(3k)-time algorithm [JC-Fan-Sze 2015]

Call for work

 “We should also look at the case where T1 and T2
are not necessarily binary unrooted trees.”

 [Hallett-McCartin, Theory of Computing Systems 41,
 pp. 539-550, 2007]

 “The most important open problem is extending our
approach to computing MAFs and MAAFs for
multifurcating trees and for more than two trees.”

 [Whidden-Beiko-Zeh, SIAM J. Comput. 42(4),
pp. 1431-1466, 2013]

Call for work

 “We should also look at the case where T1 and T2
are not necessarily binary unrooted trees.”

 [Hallett-McCartin, Theory of Computing Systems 41,
 pp. 539-550, 2007]

 “The most important open problem is extending our
approach to computing MAFs and MAAFs for
multifurcating trees and for more than two trees.”

 [Whidden-Beiko-Zeh, SIAM J. Comput. 42(4),
pp. 1431-1466, 2013]

Parameterized algorithms for
 two general X-trees
 Multiple binary X-trees
 Multiple general X-trees

Remark. It makes perfect sense to consider MAF for
non-binary trees and for more than two trees:

 Ambiguities in which the order of more than 2 branches
cannot be reliably resolved by phylogenetic tree
construction algorithms (soft multifurcations)

 Truly multifurcations (hard multifurcations)
 NCBI Taxonomy (an important source of species trees):

more than half of its branches being multifurcating
 MAF on multifurcating trees also corresponds to SPR and

TBR distances on the trees
 Phylogenetic tree for the same collection of species may be

constructed using more than two methods, each producing
a different tree.

Call for work

Two General X-trees (quick overview)

Given a pair of general X-forests (F1, F2), and
an integer k, remove at most k edges in the
larger-order X-forest so that it becomes a
subgraph of F1 and F2.

Two General X-trees (quick overview)

Given a pair of general X-forests (F1, F2), and
an integer k, remove at most k edges in the
larger-order X-forest so that it becomes a
subgraph of F1 and F2.

General Idea (for most proposed algorithms):
Repeat:
1. Identify structure inconsistency in F1 and F2;
2. Pick a collection B of edges in F1 (and in F2), and

make sure one of the edges in B must be deleted in
order to remove the inconsistency;

3. Branch on removing each of the edges in the
collection B.

a

b

c

d

a b

c d

a b

c d

a

b

c

d

Branching based on global inconsistency
quartet on four labels a, b, c, d

Two General X-trees (quick overview)

a

b

c

d

a b

c d

a b

c d

a

b

c

d

Observation.
If there are four labels a, b, c, d for which the quartets in F1
and F2 are different, then one of the edges in the quartet in
F1 is not in any MAF of F1 and F2.

Branching based on global inconsistency
quartet on four labels a, b, c, d

Two General X-trees (quick overview)

a

b

c

d

a b

c d

a b

c d

a

b

c

d

Branching based on global inconsistency
quartet on four labels a, b, c, d

Observation.
If there are four labels a, b, c, d for which the quartets in F1
and F2 are different, then one of the edges in the quartet in
F1 is not in any MAF of F1 and F2.

Two General X-trees (quick overview)

a

b

c

d

a b

c d

a b

c d

a

b

c

d

Branching based on global inconsistency
quartet on four labels a, b, c, d

Observation.
If there are four labels a, b, c, d for which the quartets in F1
and F2 are different, then one of the edges in the quartet in
F1 is not in any MAF of F1 and F2.

[Shi-Wang-Yang-Feng-Li-JC 2016] An O*(4k)-time algorithm
for the MAF problem on two unrooted multifurcating trees.

Two General X-trees (quick overview)

a

b

c

d

a b

c d

a b

c d

a

b

c

d

Branching based on global inconsistency
quartet on four labels a, b, c, d

Observation.
If there are four labels a, b, c, d for which the quartets in F1
and F2 are different, then one of the edges in the quartet in
F1 is not in any MAF of F1 and F2.

[Shi-Wang-Yang-Feng-Li-JC 2016] An O*(4k)-time algorithm
for the MAF problem on two unrooted multifurcating trees.

Two General X-trees (quick overview)

Remark. Hallett-McCartin initiated this method for MAF on
two unrooted binary trees. [Hallett-McCartin 2007]

Branching based on local inconsistency
Review the process on binary trees
1. Pick a sibling pair a and b in F2;
2. If a and b are also siblings in F1: shrink them;

F1

a b

F2

a b

F1
F2

Two General X-trees (quick overview)

Branching based on local inconsistency
Review the process on binary trees
1. Pick a sibling pair a and b in F2;
2. If a and b are also siblings in F1: shrink them;
3. If a and b are in different trees in F1, branch on making either

a or b as a single-vertex tree;

F1

a

b

F2

a b

F1

a

b

F2

a b

Two General X-trees (quick overview)

Branching based on local inconsistency
Review the process on binary trees
1. Pick a sibling pair a and b in F2;
2. If a and b are also siblings in F1: shrink them;
3. If a and b are in different trees in F1, branch on making either

a or b as a single-vertex tree;
4. Otherwise, branch on removing the edge incident to a,

removing the edge incident to b, and removing all edges
incident to the path connecting a and b.

F1

a b

F2

a b

F1

a b

F2

a b

Two General X-trees (quick overview)

Branching based on local inconsistency
On multifurcating trees
1. Pick a sibling pair a and b in F2;
2. If a and b are also siblings in F1: shrink them;
3. If a and b are in different trees in F1, branch on making either

a or b as a single-vertex tree;
4. Otherwise, branch on removing the edge incident to a,

removing the edge incident to b, and removing all edges
incident to the path connecting a and b.

？
F1

a b

F2

a b c
d

Two General X-trees (quick overview)

Branching based on local inconsistency
On multifurcating trees
1. Pick a sibling pair a and b in F2;
2. If a and b are also siblings in F1: shrink them;
3. If a and b are in different trees in F1, branch on making either

a or b as a single-vertex tree;
4. Otherwise, branch on removing the edge incident to a,

removing the edge incident to b, and removing all edges
incident to the path connecting a and b.

？
F1

a b

F2

a b
c

c d

Two General X-trees (quick overview)

Branching based on local inconsistency
Thus, for general X-forest, we need new
techniques to analyze the sibling structures.

Two General X-trees (quick overview)

We introduced a concept of BSS (basic sibling set), and
apply branch-and-search based on BSS. For an
inconsistency structure in BSS, we can identify at most 3
edges in an X-forest in which one must be removed.

Branching based on local inconsistency
Thus, for general X-forest, we need new
techniques to analyze the sibling structures.

Two General X-trees (quick overview)

We introduced a concept of BSS (basic sibling set), and
apply branch-and-search based on BSS. For an
inconsistency structure in BSS, we can identify at most 3
edges in an X-forest in which one must be removed.

This gives an O*(3k)-time parameterized algorithm for
two unrooted multifurcating trees [JC-Fan-Sze 2013]:

Branching based on local inconsistency
Thus, for general X-forest, we need new
techniques to analyze the sibling structures.

Two General X-trees (quick overview)

We introduced a concept of BSS (basic sibling set), and
apply branch-and-search based on BSS. For an
inconsistency structure in BSS, we can identify at most 3
edges in an X-forest in which one must be removed.

This gives an O*(3k)-time parameterized algorithm for
two unrooted multifurcating trees [JC-Fan-Sze 2013]:

[Whidden-Beiko-Zeh 2016] developed an algorithm
of time O*(2.42k) for two rooted multifurcating
trees, assuming soft multifurcations

This looks rather straightforward.

a b c d e f

Therefore, we need a very careful formulation of
the problem (forest-structured sets are useful),
and operations are only on “essential” edges.

What is difficult/tricky?
Not all edges are essential

Two General X-trees (quick overview)

MAF on Multiple Trees:
Given a collection C = {T1, T2, …, Th} of X-trees
over the same label-set X, and a parameter k, is
there an agreement forest of order at most k for
the collection?

Multiple X-trees

MAF on Multiple Forests:
Given a collection C = {F1, F2, …, Fh} of X-forests
over the same label-set X, and a parameter k, is
there an agreement forest whose order is at most k
larger than the largest forest order in the collection?

Multiple X-trees

What is difficult on multiple trees?

Multiple X-trees

 Consider an instance C = {F1, F2, …, Fh}
 Increase the order of an AF may require to delete many

edges in C (thus many branches);

What is difficult on multiple trees?

Multiple X-trees

 Consider an instance C = {F1, F2, …, Fh}
 Increase the order of an AF may require to delete many

edges in C (thus many branches);
 Branching on a forest of small order “wastes” time

(without increase the order of an AF).

a b

F3 F1 F2

a b

What is difficult on multiple trees?

Multiple X-trees

a b

a b

F1

a b

F2

F3

F3

What is difficult on multiple trees?
 Consider an instance C = {F1, F2, …, Fh}
 Increase the order of an AF may require to delete many

edges in C (thus many branches);
 Branching on a forest of small order “wastes” time

(without increase the order of an AF).

Multiple X-trees

MAF on Multiple Forests:
Given a collection C = {F1, F2, …, Fh} of X-forests
over the same label-set X, and a parameter k, is
there an agreement forest whose order is at most k
larger than the largest forest order in the collection?

Multiple X-trees

Observation. A MAF for the collection C is an
agreement forest for F1 and F2

MAF on Multiple Forests:
Given a collection C = {F1, F2, …, Fh} of X-forests
over the same label-set X, and a parameter k, is
there an agreement forest whose order is at most k
larger than the largest forest order in the collection?

Multiple X-trees

Observation. A MAF for the collection C is an
agreement forest for F1 and F2

MAF on Multiple Forests:
Given a collection C = {F1, F2, …, Fh} of X-forests
over the same label-set X, and a parameter k, is
there an agreement forest whose order is at most k
larger than the largest forest order in the collection?

Basic idea. Examine all agreement forests for
F1 and F2, and check if each of them is an
MAF for the collection C

Multiple X-trees

For a collection C of rooted binary trees:
Using inconsistency in F1 and F2, identify no more than 3
edges in F1, in which one of the edges must be removed.

MAF on Multiple Forests:
Given a collection C = {F1, F2, …, Fh} of X-forests
over the same label-set X, and a parameter k, is
there an agreement forest whose order is at most k
larger than the largest forest order in the collection?

An O*(3k)-time algorithm for the problem [Shi-Wang-JC 2013]

Multiple X-trees

For a collection C of rooted binary trees:
Using inconsistency in F1 and F2, identify no more than 3
edges in F1, in which one of the edges must be removed.

MAF on Multiple Forests:
Given a collection C = {F1, F2, …, Fh} of X-forests
over the same label-set X, and a parameter k, is
there an agreement forest whose order is at most k
larger than the largest forest order in the collection?

An O*(3k)-time algorithm for the problem [Shi-Wang-JC 2013]
[Z.Chen-Wang 2012] developed an O(6k)-time algorithm for the problem.

Multiple X-trees

For a collection C of rooted binary trees:
Using inconsistency in F1 and F2, identify no more than 3
edges in F1, in which one of the edges must be removed.

MAF on Multiple Forests:
Given a collection C = {F1, F2, …, Fh} of X-forests
over the same label-set X, and a parameter k, is
there an agreement forest whose order is at most k
larger than the largest forest order in the collection?

For a collection C of unrooted binary trees:
Using inconsistency in F1 and F2, identify no more than 4
edges in F1, in which one of the edges must be removed.

An O*(3k)-time algorithm for the problem [Shi-Wang-JC 2013]

An O*(4k)-time algorithm for the problem [Shi-Wang-JC 2013]

[Z.Chen-Wang 2012] developed an O(6k)-time algorithm for the problem.

Multiple X-trees

In principle, the above techniques can be
used for developing parameterized
algorithms for multiple general X-trees.

However, the multifurcating structures cause
much more tedious case-by-case analysis,
and also make the branch-and-search
process much less efficient.

We would look for conceptually simpler and
more efficient methods.

Multiple X-trees

Recall that one source that causes
inefficiency is sometimes we have to
branch on a forest of small order.

Thus, if we can maintain the condition
that all forests in the collection are of
the same order, then this undesired
situation will be avoided.

Multiple X-trees

 Two X-forests are label isomorphic if they have
the same label partitions (the corresponding
trees may not necessarily be isomorphic).

 A collection C = {F1, F2, …, Fh} is label isomorphic
if every pair of forests in the collection are label
isomorphic.

e

d

f

g a

c b

a c b
e

d

f

g
F1 F2

Multiple X-trees

 Two X-forests are label isomorphic if they have
the same label partitions (the corresponding
trees may not necessarily be isomorphic).

 A collection C = {F1, F2, …, Fh} is label isomorphic
if every pair of forests in the collection are label
isomorphic.

e

d

f

g a

c b

a c b
e

d

f

g
F1 F2

How expensive is it to achieve label isomorphism?

Multiple X-trees

Reduction Rule 1. If F1 has a vertex v and F2 has trees T1, …,
Td such that L(v) = T ∩(T1 ∪ … ∪ Td), then take T(v) out of T.

v

T(v)

F1 F2
v

T(v)

F1 F2 X

Branching Rule 1. If F1 has two siblings s1 and s2 and F2 has
trees T1, T2 such that L(s1) ⊆ L(T1) and L(s2) ⊆ L(T2) , then
branch on taking out T(s1) and T(s2).

s1

F1 F2
s2

F2
s1

F1
s2

s1

F1
s2 +

+

{

Achieving Label Isomorphism

Theorm. If neither Reduction Rule 1 nor Branching Rule 1 is
applicable on F1 and F2, then F1 and F2 are label-isomorphic.

Achieving Label Isomorphism

Theorm. If neither Reduction Rule 1 nor Branching Rule 1 is
applicable on F1 and F2, then F1 and F2 are label-isomorphic.

How expensive is Branching Rule 1?

Achieving Label Isomorphism

Theorm. If neither Reduction Rule 1 nor Branching Rule 1 is
applicable on F1 and F2, then F1 and F2 are label-isomorphic.

How expensive is Branching Rule 1?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

Achieving Label Isomorphism

Theorm. If neither Reduction Rule 1 nor Branching Rule 1 is
applicable on F1 and F2, then F1 and F2 are label-isomorphic.

How expensive is Branching Rule 1?

s1

F1 F2

s2

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

Achieving Label Isomorphism

Theorm. If neither Reduction Rule 1 nor Branching Rule 1 is
applicable on F1 and F2, then F1 and F2 are label-isomorphic.

How expensive is Branching Rule 1?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’

Achieving Label Isomorphism

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
is needed to make F1 and F2 label isomorphic
 If Ord(F1) ≥ Ord(F2)

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) ≥ Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) ≥ Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) ≥ Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

this tree contains
labels in different
trees in F2

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) ≥ Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

this tree contains
labels in different
trees in F2

Thus Reduction Rule
1 will further split it

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) ≥ Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

this tree contains
labels in different
trees in F2

Thus Reduction Rule
1 will further split it

Thus, an application of Branching Rule 1 on the forest of
larger order will decrease the parameter by at least 2

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) < Ord(F2)

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) < Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) < Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) < Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

this tree contains
labels in different
trees in F1

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) < Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

this tree contains
labels in different
trees in F1

Thus Reduction
Rule 1 will further
split it

Why does this lemma help?

Lemma. When Branching Rule 1 is applicable on siblings s1
and s2 in a tree T in F1 based on F2, there are labels a, a’, b, b’
in T, with a ∈ L(s1), b ∈ L(s2), a’, b’ ∉ L(s1)∪L(s2), such that a
and a’ (resp. b and b’) are in the same tree in F2.

To get a feeling, assume that only one Reduction Rule
Is needed to make F1 and F2 label isomorphic
 If Ord(F1) < Ord(F2)

s1

F1 F2

s2

a

a'

b’

b

a

a'

b

b’ +

Branching Rule 1
branches on L(s1)

this tree contains
labels in different
trees in F1

Thus Reduction
Rule 1 will further
split it

Thus, an application of Branching Rule 1 on the forest of
smaller order will also decrease the parameter by at least 1

Theorem. Let Φ1 and Φ2 be label-isomorphic X-
forests, obtained by h applications of Branching
Rule 1 on X-forests F1 and F2. Then

 Ord(Φ1) = Ord(Φ2) ≥ h + max{Ord(F1),Ord(F2)}

Achieving Label Isomorphism

Theorem. Let Φ1 and Φ2 be label-isomorphic X-
forests, obtained by h applications of Branching
Rule 1 on X-forests F1 and F2. Then

 Ord(Φ1) = Ord(Φ2) ≥ h + max{Ord(F1),Ord(F2)}

Thus, Reduction Rule 1 and Branching Rule 1 not only
make label isomorphism of X-forests, but also effectively
decrease the parameter value k — at least as good as the
recurrence relation T(k) = 2 T(k-1)

Achieving Label Isomorphism

Theorem. Let Φ1 and Φ2 be label-isomorphic X-
forests, obtained by h applications of Branching
Rule 1 on X-forests F1 and F2. Then

 Ord(Φ1) = Ord(Φ2) ≥ h + max{Ord(F1),Ord(F2)}

Thus, Reduction Rule 1 and Branching Rule 1 not only
make label isomorphism of X-forests, but also effectively
decrease the parameter value k — at least as good as the
recurrence relation T(k) = 2 T(k-1)

For a given instance {F1, F2, …, Fh}, we always pick an Fp of
the largest order and an Fq that is not label-isomorphic to Fp,
and make them label-isomorphic. This process decreases
the parameter k at least as good as T(k) = 2 T(k-1)

Achieving Label Isomorphism

Observation. Any MAF algorithm of running time
O*(ck) with c ≥ 2 on two X-forests, based on
exhaustive search can be translated into an
O*(ck)-time MAF algorithm on multiple X-forests.

Corollary. The MAF problem on multiple rooted
general X-trees can be solved in time O*(2.42k).

Remark. This seems to provide a rather general tool to
reduce the MAF problem on multiple trees to the problem
with two trees.

Multiple X-trees

Approximation Algorithms

Approximation Algorithms
Earlier Work:
 Ratio-3 for 2 rooted binary trees [Hein et al. 1996]

Approximation Algorithms
Earlier Work:
 Ratio-3 for 2 rooted binary trees [Hein et al. 1996]
 The algorithm of Hein et al has ratio ≥ 4, and a new

ratio-3 algorithm [Rodrigues et al. 2001]

Approximation Algorithms
Earlier Work:
 Ratio-3 for 2 rooted binary trees [Hein et al. 1996]
 The algorithm of Hein et al has ratio ≥ 4, and a new

ratio-3 algorithm [Rodrigues et al. 2001]
 The algorithm of Hein et al. has ratio ≥ 5, and the

algorithm of Rodrigues et al. has ratio ≥ 4
[Bonet et al. 2006]

Approximation Algorithms
Earlier Work:
 Ratio-3 for 2 rooted binary trees [Hein et al. 1996]
 The algorithm of Hein et al has ratio ≥ 4, and a new

ratio-3 algorithm [Rodrigues et al. 2001]
 The algorithm of Hein et al. has ratio ≥ 5, and the

algorithm of Rodrigues et al. has ratio ≥ 4
[Bonet et al. 2006]

 Ratio-3 for 2 rooted binary trees [Rodrigues et al. 2007]
 Ratio-3 for 2 rooted binary trees [Bordewich et al.

2008]

 Ratio-(d+1) for two rooted general trees [Rodrigues et
al. 2007]

 Ratio-8 for multiple rooted binary trees [Chataigner
2005]

Approximation Algorithms
Earlier Work:
 Ratio-3 for 2 rooted binary trees [Hein et al. 1996]
 The algorithm of Hein et al has ratio ≥ 4, and a new

ratio-3 algorithm [Rodrigues et al. 2001]
 The algorithm of Hein et al. has ratio ≥ 5, and the

algorithm of Rodrigues et al. has ratio ≥ 4
[Bonet et al. 2006]

 Ratio-3 for 2 rooted binary trees [Rodrigues et al. 2007]
 Ratio-3 for 2 rooted binary trees [Bordewich et al.

2008]

More recent work on two binary trees
For two rooted binary trees
 3-approximation in linear time [Whidden-Zeh 2009]
 2.5-approximation [Shi et al. 2016]
 2-approximation [Schalekamp-Zuylen-Ster 2016]

(using LP Duality)

Approximation Algorithms

More recent work on two binary trees
For two rooted binary trees
 3-approximation in linear time [Whidden-Zeh 2009]
 2.5-approximation [Shi et al. 2016]
 2-approximation [Schalekamp-Zuylen-Ster 2016]

(using LP Duality)

For two unrooted binary trees
 3-approximation [Whidden-Zeh 2009]
 3-approximation [JC-Fan-Sze 2015]

Approximation Algorithms

Approximation Algorithms

 Basic idea:
In the study of parameterized algorithms for
the MAF problem, our basic operation is to
find a collection B of essential edges in which
one must be removed, and branch on
removing each of the edges in B

Our Approach

Approximation Algorithms

 Basic idea:
In the study of parameterized algorithms for
the MAF problem, our basic operation is to
find a collection B of essential edges in which
one must be removed, and branch on
removing each of the edges in B

 Thus:

If we remove all edges in B, then we get an
approximation algorithm of ratio |B| for the
MAF problem.

Our Approach

 3-approximation for MAF on 2 unrooted general
X-trees [JC-Fan-Sze 2013]

 3-approximation for MAF on multiple rooted
binary trees [JC-Shi-Feng-Wang 2014]

 4-approximation for MAF on multiple unrooted
binary trees [JC-Shi-Feng-Wang 2014]

3-approximation for the problem was independently
developed by [Mukhopadhyay-Bhabak 2016]

Approximations on 2 rooted (soft) general X-trees with
ratio 4 [van Iersel et al. 2014] and 3 [Whidden et al. 2016]

Approximation Algorithms

Conclusions and Final Remarks

 MAF and related problems from evolutionary
biology offer nice combinatorial structures for
algorithmic research;

 The research is still in a fairly preliminary stage;
 Most developed techniques are elementary

based on straightforward combinatorial
structural analysis;

 Deeper insight and new techniques for more
efficient algorithms?

 Lower bounds?
 Problem kernelizations?

	Label Isomorphism:�On the MAF Problems for Multiple Trees
	Label Isomorphism:�On the MAF Problems for Multiple Trees
	Definitions
	Background
	Slide Number 5
	Slide Number 6
	Subtree-Prune-and-Regraft (SPR)
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Parameterized Algorithms
	Parameterized Algorithms
	Call for work
	Call for work
	Call for work
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Two General X-trees (quick overview)
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Multiple X-trees
	Achieving Label Isomorphism
	Achieving Label Isomorphism
	Achieving Label Isomorphism
	Achieving Label Isomorphism
	Achieving Label Isomorphism
	Achieving Label Isomorphism
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Why does this lemma help?
	Achieving Label Isomorphism
	Achieving Label Isomorphism
	Achieving Label Isomorphism
	Multiple X-trees
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Approximation Algorithms
	Conclusions and Final Remarks

