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Thanks to Rod for some mathematics

There is important work connecting computability with various
branches of mathematics outside logic—algebra, number theory,
geometry, and analysis. Rod Downey has done beautiful work of
this kind.

Two papers

I “The isomorphism problem for torsion-free Abelian groups is
analytic complete,” Downey and Montalbán.

I “Reverse mathematics, Archimedean classes, and Hahn’s
Theorem,” Downey and Solomon.



Familiar fields and their elementary first order theories

C—field of complex numbers
R—ordered field of real numbers

1. Th(C) is the theory of algebraically closed fields of
characteristic 0.

Models of Th(C) are determined, up to isomorphism, by their
transcendence degree.

2. Th(R) is the theory of real closed ordered fields.

Models of Th(R) with the Archimedean property are
isomorphic to elementary substructures of R. We can obtain
non-archimedean real closed ordered fields using Compactness,
or by algebraic constructions. I will describe two such.



Puiseux series

Definition. Let K be a field. The Puiseux series over K are formal
power series s =

∑
i≥z ai t

i
n , where n ∈ N− {0}, z ∈ Z, ai ∈ K .

Notation: K{{t}}—set of Puiseux series with coefficients in K .

Operations. Addition and multiplication—as for ordinary power
series.

Valuation. K{{t}} has valuation w , where

I w(s) is exponent in first non-zero term, if s 6= 0,

I w(s) =∞ if s = 0.

Order. If K is ordered, so is K{{t}}—s > 0 if tw(s) has positive
coefficient.



Newton-Puiseux Theorem

Theorem (Newton, 1676; Puiseux, 1850-51).

I If K ≡ C, then K{{t}} is algebraically closed.

I If K ≡ R, then K{{t}} is real closed.

I will say how to find a root of a polynomial.



Finding roots, as Newton did

For simplicity, suppose K ≡ C. Let p(x) = A0 + A1x + · · ·+ Anx
n,

where Aj ∈ K{{t}}. If A0 = 0, then 0 is a root. Suppose A0 6= 0.

(Draw Newton polygon.)

Consider side with first point (i ,w(Ai )), last point (j ,w(Aj)).

I ν =
w(Ai )−w(Aj )

j−i is valuation of a root.

I carrier ∆ν—set of pairs (i ,w(Ai )) on side.

I ν-principal part—polynomial
∑

k∈∆ν
ckz

k−i , where ck—first
non-zero coefficient in Ak .

I For a root with valuation ν, the coefficient b of tν is a root of
the ν-principal part.

Given r1 = btν the first term of a root, find second term b′tν
′

using q(x) = p(r1 + x). Let r2 = btν + b′tν
′
. Continue.



Complexity and representation of Puiseux series

Question: How hard is it to find a root of a polynomial?

To answer the question, we must first say how we plan to represent
elements of K{{t}}.

Representation. Use a function f : ω → K ×Q s.t. if
f (n) = (an, qn), then

I qn increases with n,

I there is a uniform bound on the denominators of the qn’s.

Note: qn is defined for all n. This, plus fact that denominators are
bounded, implies that limn→∞ qn =∞.



Complexity of basic operations

Lemma.

1. Applying uniform effective procedures to K and
s, s ′ ∈ K{{t}}, we compute s + s ′, s · s ′.

2. It is Π0
1 in K and s to say s = 0.

3. If s 6= 0, then we can effectively find w(s).



Complexity of root-taking process

Rough result. Let I be jump ideal. Suppose K ∈ I , and let R be
set of elements of K{{t}} with representation in I . Then R is
algebraically closed.

We can do better.



More precise results

Theorem. There is uniform ∆0
2 procedure that, given K and

sequence of coefficients for non-trivial polynomial
p(x) = A0 + A1x + . . .+ Anx

n over K{{t}}, yields a root.

Proceed by Newton’s method. Use ∆0
2 to decide which coefficients

are 0. The rest is computable.

Theorem. If I is a Turing ideal, then for K ∈ I , algebraically
closed of characteristic 0, every non-trivial polynomial over K{{t}}
with coefficients in I has a root in I .

We proceed non-uniformly. We give ourselves enough information
to say which coefficients in the initial polynomial are 0, and to find
a bound on the denominators for the coefficients. For succeeding
steps, we must play detective.



Hahn fields

Let K be a field, and let G is a divisible ordered Abelian group.

Definition. The Hahn field K ((G )) consists of formal sums
s =

∑
g∈S ag t

g , where S ⊆ G is well ordered and ag ∈ K .

I The support of s is {g ∈ S : ag 6= 0}.
I The length of s is the order type of Supp(s).

Operations. Addition and multiplication, and the valuation
function w , are defined as expected. If K is ordered, then so is
K ((G )), with expected ordering.



Generalized Newton-Puiseux Theorem

Theorem (Maclane, 1939). Let G be a divisible ordered Abelian
group.

I If K ≡ C, then K ((G )) is algebraically closed.

I If K ≡ R, then K ((G )) is real closed.



Complexity and representation

Question. How hard is it to find a root of a polynomial?

We first say how we plan to represent Hahn series.

Representation. To represent s ∈ K ((G )), we use a function f
from an ordinal α to K × G s.t. the second component of f (β)
increases with β < α.



Rough result for Hahn fields

Proposition (K-Lange-Solomon). Let A be a countable
“admissible” set. Let K ≡ C, and let G be a divisible ordered
Abelian group, both in A. Let R be the set of elements of K ((G ))
represented in A. Then R is algebraically closed.

What is an admissible set?



Admissible sets

An admissible set is a transitive set A satisfying the axioms of
Kripke-Platek set theory (KP). In KP, we have some of the
axioms of ZF , but power set is dropped, and replacement and
collection are restricted to formulas with just bounded quantifiers.

Example. LωCK
1

is the least admissible set that contains ω.

Important for us: In an admissible set, we can define functions f
on ordinals by Σ1 recursion—there is a finitary Σ1-formula saying
how to pass from f |α to f (α) (a Σ1-formula has only existential
and bounded quantifiers).



Computing in an admissible set

In an admissible set A, we have the following non-standard notions
of computability.

1. S ⊆ A is A-c.e. if it is defined in (A,∈) by a Σ1-formula.

2. A partial function f is A-computable if the graph is A-c.e.
Most often, we define a partial recursive function f on
ordinals in A by Σ1 recursion.



Rough result

Rough Theorem (K-Lange-Solomon). Let A be a countable
admissible set. Let K be an algebraically closed field and let G be
a divisible ordered Abelian group, both elements of A. Let R be
the set of elements s of K ((G )) represented in A. Then R is
algebraically closed.

Idea of proof: Given non-trivial polynomial p(x) with coefficients
in R, define, by Σ1-recursion on ordinals α, a sequence of initial
segments rα of a root r . The length of rα is α, until/unless we
come to a root. After that, the sequence is constant.

We need to know that some rα is a root. For this, we need bounds
on lengths.



Lengths of roots

K-Lange. If p(x) is a polynomial with coefficients of lengths
α0, α1, . . . , αn, and γ is a limit ordinal with α0 +α1 + . . .+αn < γ,
then all roots of p(x) have length less than ωω

γ
.

To complete proof of Rough Theorem, we note that for if the αi ’s
are in A, we can take γ ∈ A, and then ωω

γ ∈ A. So, for some
α ∈ A, rα is a root, and rα ∈ A.



What if A is uncountable?

Corollary (K-Lange-Solomon). Let A be an uncountable
admissible set. Suppose K ≡ C, G a divisible ordered Abelian
group, both in A. Let R be the set of elements of K ((G ))
represented in A. Then R is algebraically closed.

We can reduce to the countable case, using Downward
Löwenheim-Skolem Theorem and Levy collapse.



Future work

Question: Given K , G , and a polynomial p(x) with coefficients
Ai ∈ K ((G )), how hard is it (how many jumps) are need to
compute rα ?



How to get bounds on lengths

Definition. A subfield R of K ((G )) is truncation-closed if it
contains all truncations (initial segments) of its elements. We say
that R is closed in K ((G )) if

1. R is truncation closed,

2. K ⊆ R,

3. R is relatively algebraically closed in K ((G )).



tc-basis, canonical sequence

Definitions. Let R be a closed subfield of K ((G )). We call
(rα)α<γ a tc-basis for R, and we call (Rα)α≤γ a canonical
sequence for R if the following conditions hold:

1. Rα is the set of elements of K ((G )) algebraic over
K ∪ {rβ : β < α},

2. rα ∈ R − Rα,

3. for each α < γ, either

(a) rα = tg for some g ∈ G , or
(b) rα has limit length, with all proper truncations in Rα,

4. Rγ = R.



Bounding Theorem

Theorem (K-Lange). Let R be a closed subfield of K ((G )), and
suppose γ is a countable limit ordinal.

1. If R has a tc-basis of length γ, then all elements of R have
length less than ωω

γ
.

2. If R has a tc-basis of length γ + n, where n is a positive
integer, then all elements have length less than ωω

γ+n · ωωγ
.

Proposition (K-Lange). These bounds are sharp.


