Roots of polynomials in fields of generalized power series

Julia F. Knight*, Karen Lange, and Reed Solomon

September 11, 2017

Thanks to Rod for some mathematics

There is important work connecting computability with various branches of mathematics outside logic-algebra, number theory, geometry, and analysis. Rod Downey has done beautiful work of this kind.

Two papers

- "The isomorphism problem for torsion-free Abelian groups is analytic complete," Downey and Montalbán.
- "Reverse mathematics, Archimedean classes, and Hahn's Theorem," Downey and Solomon.

Familiar fields and their elementary first order theories

\mathbb{C}-field of complex numbers
\mathbb{R}-ordered field of real numbers

1. $\operatorname{Th}(\mathbb{C})$ is the theory of algebraically closed fields of characteristic 0 .

Models of $\operatorname{Th}(\mathbb{C})$ are determined, up to isomorphism, by their transcendence degree.
2. $\operatorname{Th}(\mathbb{R})$ is the theory of real closed ordered fields.

Models of $\operatorname{Th}(\mathbb{R})$ with the Archimedean property are isomorphic to elementary substructures of \mathbb{R}. We can obtain non-archimedean real closed ordered fields using Compactness, or by algebraic constructions. I will describe two such.

Puiseux series

Definition. Let K be a field. The Puiseux series over K are formal power series $s=\sum_{i \geq z} a_{i} t^{\frac{i}{n}}$, where $n \in \mathbb{N}-\{0\}, z \in \mathbb{Z}, a_{i} \in K$.

Notation: $K\{\{t\}\}$-set of Puiseux series with coefficients in K.
Operations. Addition and multiplication-as for ordinary power series.

Valuation. $K\{\{t\}\}$ has valuation w, where

- $w(s)$ is exponent in first non-zero term, if $s \neq 0$,
- $w(s)=\infty$ if $s=0$.

Order. If K is ordered, so is $K\{\{t\}\}-s>0$ if $t^{w(s)}$ has positive coefficient.

Newton-Puiseux Theorem

Theorem (Newton, 1676; Puiseux, 1850-51).

- If $K \equiv \mathbb{C}$, then $K\{\{t\}\}$ is algebraically closed.
- If $K \equiv \mathbb{R}$, then $K\{\{t\}\}$ is real closed.

I will say how to find a root of a polynomial.

Finding roots, as Newton did

For simplicity, suppose $K \equiv \mathbb{C}$. Let $p(x)=A_{0}+A_{1} x+\cdots+A_{n} x^{n}$, where $A_{j} \in K\{\{t\}\}$. If $A_{0}=0$, then 0 is a root. Suppose $A_{0} \neq 0$.
(Draw Newton polygon.)
Consider side with first point $\left(i, w\left(A_{i}\right)\right)$, last point $\left(j, w\left(A_{j}\right)\right)$.

- $\nu=\frac{w\left(A_{i}\right)-w\left(A_{j}\right)}{j-i}$ is valuation of a root.
- carrier Δ_{ν}-set of pairs $\left(i, w\left(A_{i}\right)\right)$ on side.
- ν-principal part—polynomial $\sum_{k \in \Delta_{\nu}} c_{k} z^{k-i}$, where c_{k}-first non-zero coefficient in A_{k}.
- For a root with valuation ν, the coefficient b of t^{ν} is a root of the ν-principal part.
Given $r_{1}=b t^{\nu}$ the first term of a root, find second term $b^{\prime} t^{\nu^{\prime}}$ using $q(x)=p\left(r_{1}+x\right)$. Let $r_{2}=b t^{\nu}+b^{\prime} t^{\nu^{\prime}}$. Continue.

Complexity and representation of Puiseux series

Question: How hard is it to find a root of a polynomial?
To answer the question, we must first say how we plan to represent elements of $K\{\{t\}\}$.

Representation. Use a function $f: \omega \rightarrow K \times \mathbb{Q}$ s.t. if $f(n)=\left(a_{n}, q_{n}\right)$, then

- q_{n} increases with n,
- there is a uniform bound on the denominators of the q_{n} 's.

Note: q_{n} is defined for all n. This, plus fact that denominators are bounded, implies that $\lim _{n \rightarrow \infty} q_{n}=\infty$.

Complexity of basic operations

Lemma.

1. Applying uniform effective procedures to K and $s, s^{\prime} \in K\{\{t\}\}$, we compute $s+s^{\prime}, s \cdot s^{\prime}$.
2. It is Π_{1}^{0} in K and s to say $s=0$.
3. If $s \neq 0$, then we can effectively find $w(s)$.

Complexity of root-taking process

Rough result. Let I be jump ideal. Suppose $K \in I$, and let R be set of elements of $K\{\{t\}\}$ with representation in I. Then R is algebraically closed.

We can do better.

More precise results

Theorem. There is uniform Δ_{2}^{0} procedure that, given K and sequence of coefficients for non-trivial polynomial $p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}$ over $K\{\{t\}\}$, yields a root.

Proceed by Newton's method. Use Δ_{2}^{0} to decide which coefficients are 0 . The rest is computable.

Theorem. If I is a Turing ideal, then for $K \in I$, algebraically closed of characteristic 0 , every non-trivial polynomial over $K\{\{t\}\}$ with coefficients in I has a root in I.

We proceed non-uniformly. We give ourselves enough information to say which coefficients in the initial polynomial are 0 , and to find a bound on the denominators for the coefficients. For succeeding steps, we must play detective.

Hahn fields

Let K be a field, and let G is a divisible ordered Abelian group.
Definition. The Hahn field $K((G))$ consists of formal sums $s=\sum_{g \in S} a_{g} t^{g}$, where $S \subseteq G$ is well ordered and $a_{g} \in K$.

- The support of s is $\left\{g \in S: a_{g} \neq 0\right\}$.
- The length of s is the order type of $\operatorname{Supp}(s)$.

Operations. Addition and multiplication, and the valuation function w, are defined as expected. If K is ordered, then so is $K((G))$, with expected ordering.

Generalized Newton-Puiseux Theorem

Theorem (Maclane, 1939). Let G be a divisible ordered Abelian group.

- If $K \equiv \mathbb{C}$, then $K((G))$ is algebraically closed.
- If $K \equiv \mathbb{R}$, then $K((G))$ is real closed.

Complexity and representation

Question. How hard is it to find a root of a polynomial?
We first say how we plan to represent Hahn series.
Representation. To represent $s \in K((G))$, we use a function f from an ordinal α to $K \times G$ s.t. the second component of $f(\beta)$ increases with $\beta<\alpha$.

Rough result for Hahn fields

Proposition (K-Lange-Solomon). Let A be a countable "admissible" set. Let $K \equiv \mathbb{C}$, and let G be a divisible ordered Abelian group, both in A. Let R be the set of elements of $K((G))$ represented in A. Then R is algebraically closed.

What is an admissible set?

Admissible sets

An admissible set is a transitive set A satisfying the axioms of Kripke-Platek set theory $(K P)$. In $K P$, we have some of the axioms of $Z F$, but power set is dropped, and replacement and collection are restricted to formulas with just bounded quantifiers.

Example. $L_{\omega_{1}^{c K}}$ is the least admissible set that contains ω.
Important for us: In an admissible set, we can define functions f on ordinals by Σ_{1} recursion-there is a finitary Σ_{1}-formula saying how to pass from $f \mid \alpha$ to $f(\alpha)$ (a Σ_{1}-formula has only existential and bounded quantifiers).

Computing in an admissible set

In an admissible set A, we have the following non-standard notions of computability.

1. $S \subseteq A$ is A-c.e. if it is defined in (A, \in) by a Σ_{1}-formula.
2. A partial function f is A-computable if the graph is A-c.e. Most often, we define a partial recursive function f on ordinals in A by Σ_{1} recursion.

Rough result

Rough Theorem (K-Lange-Solomon). Let A be a countable admissible set. Let K be an algebraically closed field and let G be a divisible ordered Abelian group, both elements of A. Let R be the set of elements s of $K((G))$ represented in A. Then R is algebraically closed.

Idea of proof: Given non-trivial polynomial $p(x)$ with coefficients in R, define, by Σ_{1}-recursion on ordinals α, a sequence of initial segments r_{α} of a root r. The length of r_{α} is α, until/unless we come to a root. After that, the sequence is constant.

We need to know that some r_{α} is a root. For this, we need bounds on lengths.

Lengths of roots

K-Lange. If $p(x)$ is a polynomial with coefficients of lengths $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$, and γ is a limit ordinal with $\alpha_{0}+\alpha_{1}+\ldots+\alpha_{n}<\gamma$, then all roots of $p(x)$ have length less than $\omega^{\omega^{\gamma}}$.

To complete proof of Rough Theorem, we note that for if the α_{i} 's are in A, we can take $\gamma \in A$, and then $\omega^{\omega^{\gamma}} \in A$. So, for some $\alpha \in A, r_{\alpha}$ is a root, and $r_{\alpha} \in A$.

What if A is uncountable?

Corollary (K-Lange-Solomon). Let A be an uncountable admissible set. Suppose $K \equiv \mathbb{C}, G$ a divisible ordered Abelian group, both in A. Let R be the set of elements of $K((G))$ represented in A. Then R is algebraically closed.

We can reduce to the countable case, using Downward Löwenheim-Skolem Theorem and Levy collapse.

Future work

Question: Given K, G, and a polynomial $p(x)$ with coefficients $A_{i} \in K((G))$, how hard is it (how many jumps) are need to compute r_{α} ?

How to get bounds on lengths

Definition. A subfield R of $K((G))$ is truncation-closed if it contains all truncations (initial segments) of its elements. We say that R is closed in $K((G))$ if

1. R is truncation closed,
2. $K \subseteq R$,
3. R is relatively algebraically closed in $K((G))$.

tc-basis, canonical sequence

Definitions. Let R be a closed subfield of $K((G))$. We call $\left(r_{\alpha}\right)_{\alpha<\gamma}$ a tc-basis for R, and we call $\left(R_{\alpha}\right)_{\alpha \leq \gamma}$ a canonical sequence for R if the following conditions hold:

1. R_{α} is the set of elements of $K((G))$ algebraic over $K \cup\left\{r_{\beta}: \beta<\alpha\right\}$,
2. $r_{\alpha} \in R-R_{\alpha}$,
3. for each $\alpha<\gamma$, either
(a) $r_{\alpha}=t^{g}$ for some $g \in G$, or
(b) r_{α} has limit length, with all proper truncations in R_{α},
4. $R_{\gamma}=R$.

Bounding Theorem

Theorem (K-Lange). Let R be a closed subfield of $K((G))$, and suppose γ is a countable limit ordinal.

1. If R has a tc-basis of length γ, then all elements of R have length less than $\omega^{\omega^{\gamma}}$.
2. If R has a $t c$-basis of length $\gamma+n$, where n is a positive integer, then all elements have length less than $\omega^{\omega^{\gamma+n}} \cdot \omega^{\omega^{\gamma}}$.

Proposition (K-Lange). These bounds are sharp.

