Wadge-like classifications of real valued functions (The Day-Downey-Westrick reducibilities for R-valued functions)

Takayuki Kihara

Nagoya University, Japan

Aspects of Computation: in celebration of the research work of Professor Rod Downey Institute for Mathematical Sciences, NUS, Singapore, Sep 4th, 2017

- Day-Downey-Westrick (DDW) recently introduced *m*-, *tt*-, and *T*-reducibility for real-valued functions.
- We give a full description of the structures of DDW's *m* and *T*-degrees of real-valued functions.

Caution: Without mentioning, we always assume Woodin's AD⁺. But. of course:

- If we restrict our attention to Borel sets and Baire functions, every result presented in this talk is provable within ZFC.
- If we restrict our attention to projective sets and functions, every result presented in this talk is provable within ZF+DC+PD.
- We even have L(ℝ) ⊨ AD⁺, assuming that there are arbitrarily large Woodin cardinals.

Day-Downey-Westrick's *m*-reducibility

For $f, g : 2^{\omega} \to \mathbb{R}$, say f is *m*-reducible to g (written $f \leq_m g$) if given p < q, there are r < s and continuous $\theta : 2^{\omega} \to 2^{\omega}$ s.t.

if Z separates the level sets $\{x : g(x) \le r\}$ and $\{x : g(x) \ge s\}$,

 $\theta^{-1}[Z]$ separates the level sets $\{x : f(x) \le p\}$ and $\{x : f(x) \ge q\}$.

Definition (Bourgain 1980)

Let $f : 2^{\omega} \to \mathbb{R}$, p < q, and $S \subseteq 2^{\omega}$. Define the (f, p, q)-derivative $D_{f,p,q}(S)$ of S as follows.

$$\mathbb{S} \setminus \bigcup \{ x \in \mathbb{S} : (\exists U \ni x) \ f[U] \subseteq (-\infty, q) \ \text{or} \ f[U] \subseteq (p, \infty) \},$$

where **U** ranges over open sets. Consider the derivation procedure

$$P_{f,p,q}^{0} = 2^{\omega}, \ P_{f,p,q}^{\xi+1} = D_{f,p,q}(P_{f,p,q}^{\xi}), \ P_{f,p,q}^{\lambda} = \bigcap_{\xi < \lambda} P_{f,p,q}^{\xi} \text{ for } \lambda \text{ limit}$$

The Bourgain rank $\alpha(f)$ is defined as follows:

$$\alpha(f) = \min\{\alpha : (\forall p < q) \ P^{\alpha}_{f,p,q} = \emptyset\}.$$

- $\alpha(f) = 1$ iff f is continuous.
- The rank $\alpha(f)$ exists iff f is a Baire-one function.

Theorem (Day-Downey-Westrick)

- For Baire-one functions, $\alpha(f) \leq \alpha(g)$ implies $f \leq_m g$.
- The α -rank 1 consists of two **m**-degrees.
- Each successor α -rank > 1 consists of four **m**-degrees.
- Each limit α -rank consists of a single *m*-degree.

This gives a full description of the *m*-degrees of the Baire-one functions.

1st Main Theorem (K.)

The structure of the DDW-*m*-degrees of real-valued functions looks like the following figure:

The DDW-*m*-degrees form a semi-well-order of height Θ . For a limit ordinal $\xi < \Theta$ and finite $n < \omega$,

- the DDW-*m*-rank $\xi + 3n + c_{\xi}$ consists of two incomparable degrees
- each of the other ranks consists of a single degree.

Here, $c_{\xi} = 2$ if $\xi = 0$; $c_{\xi} = 1$ if $cf(\xi) = \omega$; and $c_{\xi} = 0$ if $cf(\xi) \ge \omega_1$.

 $\begin{aligned} \Delta_1^{ir} &= \text{constant functions; } \Delta_1 &= \text{continuous functions;} \\ \Sigma_1 &= \text{lower semi-continuous; } \Pi_1 &= \text{upper semi-continuous.} \end{aligned}$

- Π_{ξ} : The ξ^{th} nonselfdual pointclass with the separation prop.
- Σ_{ξ} : The ξ^{th} nonselfdual pointclass with no separation prop.
- Δ_{ξ} : The ξ^{th} selfdual pointclass.
- $\Delta_{\xi}^{j_{f}}$: Lipschitz σ -join-reducibles in the ξ^{th} selfdual pointclass.

Relationship with DDW's result (i.e., the structure below ω_1)

- The α -rank 1 consists of $\{\Delta^{j_1}, \Delta_1\}$.
- The α -rank $\xi + 1$ ($\xi > 0$) consists of { $\Sigma_{\xi}, \Pi_{\xi}, \Delta_{\xi+1}^{jr}, \Delta_{\xi+1}$ }.
- The limit α -rank ξ consists of $\{\Delta^{j}\xi\}$.
- $\Sigma_{\xi} \approx \text{left-sided}; \Pi_{\xi} \approx \text{right-sided}; \Delta_{\xi}^{j_{\xi}} \approx \text{one-sided}; \Delta_{\xi} \approx \text{two-sided}.$

Theorem (K.-Montalbán; 201x)

The Wadge degrees \approx the "natural" many-one degrees.

DDW defined **T**-reducibility for \mathbb{R} -valued functions as parallel continuous (strong) Weihrauch reducibility ($f \leq_T g$ iff $f \leq_{eW}^c \widehat{g}$).

2nd Main Theorem (K.)

The DDW *T*-degrees \approx the "natural" Turing degrees.

(Steel '82; Becker '88) The "natural" Turing degrees form a well-order of type Θ . Hence, the DDW **T**-degrees (of nonconst. functions) form a well-order of type Θ . (The DDW **T**-rank of a Baire class function coincides with 2+ its Baire rank)

More Theorems... (with Westrick)

There are many other characterizations of DDW *T*-degrees, e.g., relative computability w.r.t. point-open topology on the space $\mathbb{R}^{(2^{\omega})}$.

Introduction to descriptive set theory

Takayuki Kihara (Nagoya) Day-Downey-Westrick reducibility

- Pointclass: $\Gamma \subseteq \omega^{\omega}$
- Dual: $\check{\Gamma} = \{\omega^{\omega} \setminus A : A \in \Gamma\}.$
- A pointclass Γ is selfdual iff $\Gamma = \check{\Gamma}$.
- For A, B ⊆ ω^ω, A is Wadge reducible to B (A ≤_w B) if
 (∃θ continuous)(∀X ∈ ω^ω) X ∈ A ⇔ θ(X) ∈ B.
- $\mathbf{A} \subseteq \omega^{\omega}$ is selfdual if $\mathbf{A} \equiv_{\mathbf{w}} \omega^{\omega} \setminus \mathbf{A}$.
- $A \subseteq \omega^{\omega}$ is selfdual iff $\Gamma_A = \{B \in \omega^{\omega} : B \leq_w A\}$ is selfdual.

$$\Delta^i_{\alpha}$$
 is selfdual, but Σ^i_{α} and Π^i_{α} are nonselfdual.

Theorem (Wadge; Martin-Monk 1970s)

The Wadge degrees are semi-well-ordered.

In particular, nonselfdual pairs are well-ordered, say $(\Gamma_{\alpha}, \check{\Gamma}_{\alpha})_{\alpha < \Theta}$ where Θ is the height of the Wadge degrees. A pointclass **F** has the separation property if

 $(\forall A, B \in \Gamma) [A \cap B = \emptyset \implies (\exists C \in \Gamma \cap \check{\Gamma}) A \subseteq C \& B \cap C = \emptyset]$

Example (Lusin 1927, Novikov 1935, and others)

- Π^{0}_{α} has the separation property for any $\alpha < \omega_{1}$.
- Σ_{1}^{1} and \prod_{2}^{1} have the separation property.
- (PD) \sum_{2n+1}^{1} and \prod_{2n+2}^{1} have the separation property.

Nonselfdual pairs are well-ordered, say $(\Gamma_{\alpha}, \check{\Gamma}_{\alpha})_{\alpha < \Theta}$.

Theorem (Van Wasep 1978; Steel 1981)

Exactly one of Γ_{α} and $\check{\Gamma}_{\alpha}$ has the separation property.

- Π_{α} : the one which has the separation property
- Σ_{α} : the other one
- $\Delta_{\alpha} = \Sigma_{\alpha} \cap \Pi_{\alpha}$

Example

 $\Delta_1 = \text{clopen} (\Delta_1^0); \Sigma_1 = \text{open} (\Sigma_1^0); \Pi_1 = \text{closed} (\Pi_1^0);$

 $\begin{array}{l} \boldsymbol{\Delta}_{\alpha},\,\boldsymbol{\Sigma}_{\alpha},\,\boldsymbol{\Pi}_{\alpha}\;(\alpha<\omega_{1})\text{: the }\alpha^{\text{th}}\text{ level of the Hausdorff difference hierarchy}\\ \boldsymbol{\Sigma}_{\omega_{1}}=\boldsymbol{F}_{\sigma}\;(\boldsymbol{\Sigma}_{2}^{\mathbf{0}});\,\boldsymbol{\Pi}_{\omega_{1}}=\boldsymbol{G}_{\delta}\;(\boldsymbol{\Pi}_{2}^{\mathbf{0}})\end{array}$

$$\begin{split} \boldsymbol{\Sigma}_{\omega_1} &= \boldsymbol{F}_{\sigma} \text{ (i.e. } \boldsymbol{\Sigma}_{2}^{\boldsymbol{0}} \text{); } \boldsymbol{\Pi}_{\omega_1} = \boldsymbol{G}_{\delta} \text{ (i.e. } \boldsymbol{\Pi}_{2}^{\boldsymbol{0}} \text{)} \\ \boldsymbol{\Sigma}_{\omega_1^2} &= \text{the difference of two } \boldsymbol{G}_{\delta} \text{ sets; } \boldsymbol{\Pi}_{\omega_1^2}^2 = \text{the diff. of two } \boldsymbol{F}_{\sigma} \text{ sets} \\ \boldsymbol{\Delta}_{\omega_1^{\alpha}}, \boldsymbol{\Sigma}_{\omega_1^{\alpha}}, \boldsymbol{\Pi}_{\omega_1^{\alpha}} (\alpha < \omega_1) \text{: the } \alpha^{\text{th level of the diff. hierarchy over } \boldsymbol{F}_{\sigma} \end{split}$$

 $a_0 \rightarrow \cdots \rightarrow a_n$: an ordered space endowed with a Sierpiński-like representation; circle \bigcirc : the jump of an inner represented space.

(Ex.
$$\mathbf{A} \subseteq \omega^{\omega}$$
 is \mathbf{F}_{σ} (i.e. $\Sigma_{2}^{\mathbf{0}}$) iff $\chi_{\mathbf{A}} : \omega^{\omega} \to \mathbb{S}'$ is continuous)

$$\begin{split} \boldsymbol{\Sigma}_{\omega_{1}^{\omega_{1}}} &= \boldsymbol{G}_{\delta\sigma} \left(\boldsymbol{\Sigma}_{3}^{\boldsymbol{0}} \right); \, \boldsymbol{\Pi}_{\omega_{1}^{\omega_{1}}} = \boldsymbol{F}_{\sigma\delta} \left(\boldsymbol{\Pi}_{3}^{\boldsymbol{0}} \right) \\ \boldsymbol{\Sigma}_{\omega_{1}^{\omega_{1}^{2}}} &= \text{the difference of two } \boldsymbol{F}_{\sigma\delta} \text{ sets}; \, \boldsymbol{\Pi}_{\omega_{1}^{\omega_{1}^{2}}} = \text{the diff. of two } \boldsymbol{G}_{\delta\sigma} \text{ sets} \\ \boldsymbol{\Delta}_{\omega_{1}^{\omega_{1}^{\alpha}}}, \, \boldsymbol{\Sigma}_{\omega_{1}^{\omega_{1}^{\alpha}}}, \, \boldsymbol{\Pi}_{\omega_{1}^{\omega_{1}^{\alpha}}} \left(\alpha < \omega_{1} \right): \text{the } \alpha^{\text{th}} \text{ level of the diff. hierarchy over } \boldsymbol{G}_{\delta\sigma} \end{split}$$

- $\sum_{\sim 2}^{0}$, $\prod_{\sim 2}^{0}$: Wadge-rank ω_1 .
- $\sum_{\sim 3}^{0}$, $\prod_{\sim 3}^{0}$: Wadge-rank $\omega_{1}^{\omega_{1}}$.
- $\sum_{n=1}^{\infty} \prod_{n=1}^{\infty} \sum_{n=1}^{\infty}$: Wadge-rank $\omega_1 \uparrow \uparrow n$ (the *n*th level of the superexp hierarchy)
- $\varepsilon_0[\omega_1] := \lim_{n \to \infty} (\omega_1 \uparrow \uparrow n)$: Its cofinality is ω . Hence, the class of rank $\varepsilon_0[\omega_1]$ is selfdual. Moreover, $\Delta_{\varepsilon_0[\omega_1]}$ is far smaller than Δ^0_{ω} .

(Because we can use arbitrarily deep nests of circles to define a Δ_{ω}^{0} set.)

• (Duparc 2001) $\varepsilon_{\omega_1}[\omega_1]$: the ω_1^{th} fixed point of the exp. of base ω_1 . $\sum_{\omega}^0, \prod_{\omega=0}^0$: Wadge-rank $\varepsilon_{\omega_1}[\omega_1]$.

- (Duparc 2001) The Veblen hierarchy of base ω_1 : $\phi_{\alpha}(\gamma)$: the γ^{th} ordinal closed under +, $\sup_{n \in \omega}$, and $(\phi_{\beta})_{\beta < \alpha}$.
- ϕ_0 enumerates $\mathbf{1}, \omega_1, \omega_1^2, \omega_1^3, \dots, \omega_1^{\omega+1}, \omega_1^{\omega+2}, \dots$
- ϕ_1 enumerates 1, $\varepsilon_{\omega_1}[\omega_1], \ldots$
- W-rank $\phi_0(\gamma) \approx$ a well-founded nest of circles of rank γ .
- W-rank $\phi_{\alpha}(\gamma) \approx$ a well-founded nest of ω^{α} -circles of rank γ .

An ω^{α} -circle corresponds to the ω^{α} -th jump of a representation. Thus, every Borel Wadge degree is characterized in terms of representation

- $\sum_{\sim \omega^{\alpha}}^{0}$, $\prod_{\sim \omega^{\alpha}}^{0}$: Wadge-rank $\phi_{\alpha}(1)$ ($0 < \alpha < \omega_{1}$).
- $\sum_{i=1}^{1}$, $\prod_{i=1}^{1}$: Wadge-rank $\sup_{\xi < \omega_1} \phi_{\xi}(1)$.

Definition

Let **Q** be a partial order. For **A**, **B** : $\omega^{\omega} \rightarrow \mathbf{Q}$, **A** is **Q**-Wadge reducible to **B** ($\mathbf{A} \leq_{w}^{\mathbf{Q}} \mathbf{B}$) if

 $(\exists \theta \text{ continuous})(\forall X \in \omega^{\omega}) A(X) \leq_Q B \circ \theta(X).$

- $2 = \{0, 1\}$: 0 and 1 are incomparable.
- T = {0, 1, ⊥}: Plotkin's order; ⊥ < 0, 1.
- Wadge studied the 2- and T-Wadge degrees.
- (Wadge's Lemma) The T-Wadge degrees are semi-linear-ordered.
- (Van Engelen-Miller-Steel 1987; Block 2014)
 If *Q* is BQO, so is the *Q*-Wadge degrees.
 In particular, the T-Wadge degrees are semi-well-ordered.

(K.-Montalbán 201x) If **Q** is BQO, every Borel **Q**-Wadge degree is characterized in terms of represented spaces as before.

(using Sierpiński-like representations of **Q**-labeled trees and ω^{α} -circles.)

Embedding Lemma for the DDW-*m*-degrees

1st Main Theorem (K.)

The structure of the DDW-*m*-degrees of real-valued functions looks like the following figure:

Let **Q** be a partial order. For **A**, **B** : $\omega^{\omega} \rightarrow \mathbf{Q}$, **A** is **Q**-**m**-Wadge reducible to **B** ($\mathbf{A} \leq_{mw}^{Q} \mathbf{B}$) if there are $\psi : \omega \rightarrow \omega$ and a continuous function $\theta : \omega^{\omega} \rightarrow \omega^{\omega}$ such that

 $(\forall X \in \omega^{\omega}) A(m^{\gamma}X) \leq_{Q} B(\psi(m)^{\gamma}\theta(m,X)).$

•
$$A \leq_{Lip}^{Q} B \implies A \leq_{mw}^{Q} B \implies A \leq_{w}^{Q} B.$$

• A is Lipschitz σ -join-reducible if $A \upharpoonright n <_w A$ for any $n \in \omega$.

Lemma

The structure of the **2**-*m*-Wadge degrees in ω^{ω} looks like the following:

That is, each successor selfdual Wadge degree splits into two degrees (which are linearly ordered), and other Wadge degrees remain the same.

For a function $f : \omega^{\omega} \to \mathbb{R}$, define $S_f : \omega^{\omega} \to \mathbb{T}$ as follows: For any $p, q \in \mathbb{Q}$ with p < q

$$\mathbf{S}_{\mathbf{f}}(\langle p,q\rangle^{\widehat{}}X) = \begin{cases} 1 & \text{if } q \leq \mathbf{f}(X), \\ 0 & \text{if } \mathbf{f}(X) \leq p, \\ \bot & \text{if } p < \mathbf{f}(X) < q. \end{cases}$$

A pair $\langle p, q \rangle$ is identified with a natural number in an effective manner.

Recall that *f* is *m*-reducible to *g* (written $f \leq_m g$) if given p < q, there are r < s and continuous $\theta : 2^{\omega} \rightarrow 2^{\omega}$ s.t.

if Z separates the level sets $\{x : g(x) \le r\}$ and $\{x : g(x) \ge s\}$,

 $\theta^{-1}[Z]$ separates the level sets $\{x : f(x) \le p\}$ and $\{x : f(x) \ge q\}$.

Remark: $f \leq_m g$ iff $S_f \leq_{mw}^{\mathbb{T}} S_g$.

In particular, the DDW-m-degrees form a substructure of the \mathbb{T} -mw-degrees.

The image of the embedding of the DDW-*m*-degrees

1st Main Theorem (K.)

The structure of the DDW-*m*-degrees of real-valued functions looks like the following figure:

- $\Lambda_{\alpha}^{\mathbb{T}} := \{ A : \omega^{\omega} \to \mathbb{T} \mid (\exists S \in \Gamma_{\alpha}) A \leq_{w} S \} \text{ for } \Lambda \in \{ \Sigma, \Pi, \Delta \}.$ • $\Delta_{\alpha}^{\mathbb{T}} \neq \Sigma_{\alpha}^{\mathbb{T}} \cap \Pi_{\alpha}^{\mathbb{T}}.$
- For a Wadge degree d, $\Gamma_d = \{B : \deg_w(B) \le d\}$.
- A T-Wadge degree *d* is proper if Γ_d ≠ Λ^T_α for any Λ and α, that is, it is not the T-Wadge degree of a 2-valued function.

Surjectivity Lemma

```
For every non-proper \mathbb{T}-Wadge degree d,
```

there is $f : 2^{\omega} \rightarrow \mathbb{R}$ such that S_f is Γ_d -complete.

Lemma

- Let **A** be $\Delta_{\alpha}^{\mathbb{T}}$ -complete.
 - If either α is successor or **A** is Lip- σ -join-reducible, then there is $f : 2^{\omega} \rightarrow \mathbb{R}$ s.t. $S_f \equiv_{mw}^{\mathbb{T}} A$.
 - **2** Otherwise, there is no $f : 2^{\omega} \to \mathbb{R}$ s.t. $S_f \equiv_{mw}^{\mathbb{T}} A$.

Consequently, the DDW-m-degrees subsume all non-proper \mathbb{T} -mw-degrees in 2^{ω}

Lemma

If d is a proper \mathbb{T} -Wadge degree, then

$$(\exists \alpha < \Theta) \ \mathbf{\Delta}_{\alpha}^{\mathbb{T}} \subseteq \mathbf{\Gamma}_{\mathbf{d}} \subseteq \mathbf{\Sigma}_{\alpha}^{\mathbb{T}} \cap \mathbf{\Pi}_{\alpha}^{\mathbb{T}}.$$

Proof

- $\alpha < \Theta$: Least ordinal s.t. $\Gamma_d \subseteq \Sigma_{\alpha}^{\mathbb{T}} \cap \Pi_{\alpha}^{\mathbb{T}}$.
- Claim: $(\forall \beta < \alpha) \Sigma^{\mathbb{T}}_{\beta} \cup \Pi^{\mathbb{T}}_{\beta} \subseteq \Gamma_{d}$.
- A, B_0, B_1 : Γ_d -, $\Sigma_{\beta}^{\mathbb{T}}$ -, and $\Pi_{\beta}^{\mathbb{T}}$ -complete.
- $A \not\leq_w B_i$ for some i < 2, since $\Gamma_d \not\subseteq \Sigma_{\beta}^{\mathbb{T}} \cap \Pi_{\beta}^{\mathbb{T}}$.
- By Wadge's Lemma, $B_{1-i} \equiv_w \neg B_i \leq_w A$.
- Since **d** is proper, $B_{1-i} \not\equiv_w A$, and thus $A \not\leq_w B_{1-i}$.
- By Wadge's Lemma, $B_i \equiv_w \neg B_{1-i} \leq_w A$.

Lemma

If **d** is a proper \mathbb{T} -Wadge degree, then there is no $f : \omega^{\omega} \to \mathbb{R}$ such that S_f is Γ_d -complete.

Proof

- $S_f \in \Gamma_d$; Then there is α s.t. $\Delta_{\alpha}^{\mathbb{T}} \subseteq \Gamma_d \subseteq \Sigma_{\alpha}^{\mathbb{T}} \cap \Pi_{\alpha}^{\mathbb{T}}$.
- Claim: $S_f \upharpoonright \langle p, q \rangle$ is $\Delta_{\alpha}^{\mathbb{T}}$ for any p < q.
- $A_0, A_1: \Sigma_{\alpha}$, and Π_{α} -complete; $p = p_0 < q_0 < p_1 < q_1 = q$.
- Since $S_f \in \Sigma_{\alpha}^{\mathbb{T}} \cap \Pi_{\alpha}^{\mathbb{T}}, S_f \upharpoonright \langle p_i, q_i \rangle \leq_w A_i$ via τ_i .
- Define $B_0 = \tau_0^{-1}[\neg A_0]$ and $B_1 = \tau_1^{-1}[A_1]$; these are Π_{α} .

$$\begin{array}{ll} f(X) \leq p_0 \implies X \in B_0 \implies f(X) < q_0. \\ f(X) \geq q_1 \implies X \in B_1 \implies f(X) > p_1. \end{array}$$

Since B₀ ∩ B₁ = Ø, by the separation property of Π_α, there is a Δ_α set C s.t. B₁ ⊆ C and B₀ ∩ C = Ø.

 $f(X) \ge q = q_1 \implies X \in C \implies f(X) > p = p_0.$

• This means that $S_f \leq_w C$, that is, $S_f \in \Delta_{\alpha}^{\mathbb{T}}$.

By the previous lemmas, we conclude:

1st Main Theorem (K.)

The structure of the DDW-*m*-degrees of real-valued functions looks like the following figure:

The DDW-*m*-degrees form a semi-well-order of height Θ . For a limit ordinal $\xi < \Theta$ and finite $n < \omega$,

- the DDW-*m*-rank $\xi + 3n + c_{\xi}$ consists of two incomparable degrees
- each of the other ranks consists of a single degree.

Here, $\mathbf{c}_{\xi} = \mathbf{2}$ if $\xi = \mathbf{0}$; $\mathbf{c}_{\xi} = \mathbf{1}$ if $\mathrm{cf}(\xi) = \omega$; and $\mathbf{c}_{\xi} = \mathbf{0}$ if $\mathrm{cf}(\xi) \ge \omega_1$.

That is, each successor selfdual Wadge degree splits into two degrees (which are linearly ordered), and other Wadge degrees remain the same.

Historical background on the classification of Baire functions

- Baire (1899): Baire hierarchy.
- Jayne (1974): level (*m*, *n*) Baire/Borel functions.
- O'Malley (1977): Baire-one-star functions.
- Császár-Laczkovich (1979): Baire hierarchy by discrete limit.
- Bourgain (1980), many others: Classifying Baire-one functions by Cantor-Bendixson-like ranks, mind-changes, etc.
- Kechris-Louveau (1990): Ranks on Baire-one functions.
- Pawlak 2000 and others: Hierarchy of Baire-one-star functions.
- first level function = Δ_{2}^{0} -measurable = Baire-one-star = discrete-Baire one
- Weihrauch (around 1990), Hertling, and others, Carroy (2013): Continuous strong Weihrauch reducibility \leq_{sW}^{c} . Carroy (2013): CB-rank analysis of functions under \leq_{sW}^{c} . The continuous functions with compact domain and countable range form a well-order of type ω_1 under \leq_{sW}^{c} .
- Day-Downey-Westrick (201x):
 ≤_T := Parallel continuous strong Weihrauch reducibility ≤^c₋.

Introduction to Martin's conjecture

2nd Main Theorem (K.)

The DDW *T*-degrees \approx the "natural" Turing degrees.

Takayuki Kihara (Nagoya) Day-Downey-Westrick reducibility

- Natural Solution to Post's Problem: Is there a "natural" intermediate c.e. Turing degree?
- Natural degrees should be relativizable and degree invariant:
 - (Relativizability) It is a function $f: 2^{\omega} \rightarrow 2^{\omega}$.
 - (Degree-Invariance) $X \equiv_T Y$ implies $f(X) \equiv_T f(Y)$.
- (Sacks 1963) Is there a degree invariant c.e. operator which always gives us an intermediate Turing degree?
- (Lachlan 1975) There is no uniformly degree invariant c.e. operator which always gives us an intermediate Turing degree.
- (The Martin Conjecture; a.k.a. the 5th Victoria-Delfino problem)
 - Degree invariant increasing functions are well-ordered,
 - and each successor rank is given by the Turing jump.
- (Cabal) The VD problems 1-5 appeared in 1978; the VD problems 6-14 in 1988.
 Only the 5th and 14th are still unsolved (the 14th asks whether AD⁺ = AD).
- (Steel 1982) The Martin Conjecture holds true for uniformly degree invariant functions.

(Hypothesis) Natural degrees are relativizable and degree-invariant.

 f: 2^ω → 2^ω is uniformly degree invariant (UI) if there is a function u: ω² → ω² such that for all X, Y ∈ 2^ω,

 $X \equiv_T Y$ via $(i, j) \implies f(X) \equiv_T f(Y)$ via u(i, j).

 f: 2^ω → 2^ω is uniformly order preserving (UOP) if there is a function u: ω → ω such that for all X, Y ∈ 2^ω,

 $X \leq_T Y$ via $e \implies f(X) \leq_T f(Y)$ via u(e).

• **f** is Turing reducible to **g** on a cone $(f \leq_{\tau}^{\nabla} g)$ if

 $(\exists C \in 2^{\omega})(\forall X \geq_T C) f(X) \leq_T g(X) \oplus C.$

Theorem (Steel 1982; Slaman-Steel 1988; Becker 1988)

- The \equiv_{τ}^{∇} -degree of UI functions form a well-order of length Θ .
- Every UI function is \equiv_{τ}^{∇} -equivalent to a UOP function.

Proof of the 2nd Main Theorem

2nd Main Theorem (K.)

The DDW *T*-degrees \approx the "natural" Turing degrees.

Indeed, the identity map induces an isomorphism between the \leq_{τ}^{∇} -degrees of UOP functions and the DDW *T*-degrees!

Embedding Lemma

Assume that **f** and **g** are UOP functions. Then,

$$f \leq_{T}^{\nabla} g \iff f \leq_{sW}^{c} g \iff f \leq_{W}^{c} \widehat{g}.$$

A uniformly pointed perfect tree (u.p.p. tree) is a perfect tree $T \subseteq 2^{<\omega}$ s.t. $X \oplus T \leq_T T[X]$ uniformly in X, where T[X] is the X-th path through T.

Martin's Cone Lemma (1968)

Any countable partition of 2^{ω} has a part containing a u.p.p. tree.

Proof of $f \leq_T^{\nabla} g \implies f \leq_{sW}^c g$

- Assume that $f(X) \leq_T g(X)$ on a cone.
- By MCL, there is a u.p.p. tree **T** s.t. $f(T[X]) \leq_T g(T[X])$ via a Φ .
- Since f is UOP and $X \leq_T T[X]$ uniformly, $f(X) \leq_T f(T[X])$ via a Ψ .
- Hence, $f = \Psi \circ \Phi \circ g \circ T$.

Embedding Lemma

Assume that **f** and **g** are UOP functions. Then,

$$f \leq_T^{\nabla} g \iff f \leq_{sW}^c g \iff f \leq_W^c \widehat{g}.$$

It remains to show the following:

Surjectivity Lemma

Every function is \widehat{cW} -equivalent to a UOP function.

That is, for any $f : 2^{\omega} \to \mathbb{R}$, there is a UOP function g s.t. $\hat{f} \equiv_{w}^{c} \hat{g}$.

Lemma (Becker 1988)

For any reasonable pointclass Γ and its indexing U, the pointclass jump J_{Γ}^{U} is a UOP jump operator.

Moreover, the \equiv_{τ}^{∇} -degree of J_{r}^{U} is independent of the choice of U.

Lemma (Becker 1988)

Every nonselfdual Wadge class is the relativization of a reasonable pointclass.

Surjectivity Lemma (Nonselfdual)

For any reasonable pointclass Γ ,

$$S_f$$
 is Γ-complete $\implies \hat{f} ≡_{sW}^c \hat{J}_{\Gamma}$.

Corollary

If S_f is nonselfdual, then there is a UOP function g s.t. $\widehat{f} \equiv_{sW}^c \widehat{g}$.

Recall that the cofinality of a selfdual Wadge rank is at most ω .

Lemma (Successor)

If
$$S_f \in \Delta_{\alpha+1}$$
 and S_g is Σ_{α} -complete, then $f \leq_{sW}^{c} \widehat{g}$.

Lemma (Limit of cofinality ω)

If α is a limit ordinal of cofinality ω , then there is a UOP function g such that $\widehat{f} \equiv_{sW}^{c} \widehat{g}$.

Consequently,

Surjectivity Lemma

Every \mathbb{R} -valued function is \widehat{cW} -equivalent to a UOP function.

1st Main Theorem (K.)

The structure of the DDW-*m*-degrees of real-valued functions looks like the following figure:

2nd Main Theorem (K.)

The DDW *T*-degrees \approx the "natural" Turing degrees.

Indeed, the identity map induces an isomorphism between the \leq_{τ}^{∇} -degrees of UOP functions and the DDW *T*-degrees!