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Introduction 
 

Vertex Cover 

Input: Graph G = (V,E), parameter k. 

Question:  Does G contain k vertices that cover all edges? 

 

Vertex v covers edge e if v is incident with e. 

 

 

FPT algorithm: f(k)𝑛𝑂 1  time. 
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Introduction 
 

Known FPT algorithms 

 

Bounded search tree 

 

 For any edge uv, 

        either u or v must be in a solution → O(2𝑘kn) 

 Path 𝑃3    → O(1.618𝑘kn)  

 Vertex of degree at least 3  → O(1.5𝑘kn) 

 Chan, Kanj, and Xia (2010)  → O(1.2738𝑘 + kn) 
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Introduction 
 

Kernelization 

 

Vertex of degree > k must be in soln  → O(𝑘2) 

 

Crown decomposition   → 3k vertices 

 

Linear programming    → 2k vertices 
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Introduction 
 

Matching 

 Papadimitriou and Yannakakis (1993) →   O(3𝑘kn) 

 

Graph  minor 

 Fellow and Langston (1986) → O(f(k)𝑛3) 

      f(k) astronomical  

 Johnson (1987)   → O(f(k)𝑛2) 

      f(k) ≈ 22
500𝑘
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Introduction 
 

化腐朽为神奇 
Do bad things in clever ways 

 

 Iterative compression  

 Color coding  

 Random separation (Indirect Certificate) 

 Representative sets 

 Randomized divide and conquer 
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Introduction 
 

Motivations 

 

 Better understanding 

 Training students 

 Intellectually challenging 
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Iterative  Compression 
 

Reed, Smith, and Vetta (2004) 

Idea: Given a (k+1)-solution, obtain a k-solution in FPT time.  

 

 

For vertex cover:  

 

         Given a vertex cover X of G,  

         is there a smaller vertex cover for G? 
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Iterative  Compression 

 

Characterization of minimum vertex cover 

 

Theorem 1 (Cai  2005). A vertex cover X of G = (V, E)  is a 

minimum vertex cover iff for every independent set  S in G[X],  

|N*(S)| ≥ |S|. 

 

Outside neighborhood N*(S) :  N(S) ∩ (V – X). 
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Iterative Compression 
 

Compression routine: determine whether there a vertex cover 

smaller than a given (k+1)-vertex cover X. 

 

 Consider every independent set S in X. 

 If for some S, |N*(S)| < |S|, then  we obtain a smaller vertex 

cover. Otherwise no k-vertex cover. 

 

Time:  O(2𝑘kn). 
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Iterative Compression 
 

Another characterization: 

 

Theorem 2. A vertex cover X of G is a minimum vertex cover iff 

for every maximal independent set S in G[X], S is a minimum 

vertex cover of G[S U N*(S) ]. 

 

Theorem 3 (Moon and Moser 1965)   

An n-vertex graph contains at most 3𝑛/3maximal independent sets. 
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Iterative Compression 
 

Compression routine:  X = (k+1)-vertex cover of G. 

 

 Consider every maximal independent set S in X, and find a 

minimum vertex cover X(S) of G[ S U N*(S)]. 

 

 If for some S, X(S) is smaller than X, then we obtain a smaller 

vertex cover. Otherwise no k-vertex cover.  

 

Time:  O(3𝑘/3𝑛2.5). 
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Iterative Compression 
 

Three ways to obtain a (k+1)-vertex cover: 

 
 Recursively:  Arbitrarily choose a vertex v, and recursively solve the problem for G – v  

                             to obtain a k-vertex cover X of G – v. Then X + v is a (k+1)-vertex cover of G. 

 

 Iteratively: Order vertices as 𝑣1, …, 𝑣𝑛, and set 𝐺𝑖  = G[𝑣1, …, 𝑣𝑖]. 

                         A k-vertex cover X of 𝐺𝑖  yields a (k+1)-vertex cover  X + 𝑣𝑖+1 of 𝐺𝑖+1, 

                         which is then compressed into a k-vertex cover of  𝐺𝑖+1. 

 

 Approximation: Use 2-approximation algorithm for Vertex Cover to find a k’-vertex cover.  

                                Then k’ ≤ 2k. 

 

 

19 Singapore Aug. 22, 2017 



Color Coding 

 

Alon, Yuster, and Zwick (1995) 

Idea: Randomly color elements and find a colorful k-solution in 

FPT time. 

 

For vertex cover: 

 

Given a vertex k-colored  graph, determine whether the graph 

contains a colorful vertex cover. 
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Color Coding 
 

G = (V, E; c): vertex colored graph with c: V → {1, …, t}. 

 

Color class 𝑉𝑖: vertices with color i. 

 

Colorful vertex cover X: all vertices in vertex cover X have distinct 

colors, i.e., X contains at  most one vertex from each color class. 
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Color Coding 
 

Colorful Vertex Cover 

Instance: Vertex colored graph G. 

Question: Does G contain a colorful vertex cover X? 

 

 

NP-complete for following two variations: 

 X contains at most 2 vertices from each color class. 

 Size of X is upper bounded. 
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Color Coding 
 

No easier than 2SAT. 

 

Polynomial-time algorithms  

 by reduction to 2SAT 

 using ideas for 2SAT. 
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Color Coding 
 

For vertex v, let 𝑥𝑣 be its corresponding Boolean variable. 

 

 For edges E, define F(E) =   (𝑥𝑢𝑢𝑣 ∈𝐸  ⋁ 𝑥𝑣). 

 

 For each color class 𝑉𝑖, define F(𝑉𝑖) = 𝑥𝑢 ∧ 𝑥𝑣 distinct 𝑢,𝑣 ∈ 𝑉𝑖
. 

 

Set F(G) = F(E) ∧ ( 𝐹(𝑉𝑖
𝑡
𝑖=1 )). 
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Color Coding 

 

Theorem 4. Vertex colored graph G admits a colorful vertex cover 

iff its corresponding formula F(G) is satisfiable. → O(𝑛2) algorithm 

 

Proof. For vertices v, determine 𝑥𝑣 ∈ {0,1} such that  

 for every edge uv,  𝑥𝑢 + 𝑥𝑣 ≥ 1, and  

 for each color class 𝑉𝑖 ,  𝑥𝑣𝑣 ∈ 𝑉𝑖
 ≤ 1, equivalent to, 

      for every distinct u, v in 𝑉𝑖, 𝑥𝑢 + 𝑥𝑣 ≤ 1. 

 

Note x + y ≥ 1 equivalent to  x ∨ 𝑦, and  

         x + y ≤ 1 equivalent to 𝑥 ∨ 𝑦.     █ 
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Color Coding 
 

Linear-time algorithm: 

 

Let u be a vertex with a value → force values on other vertices. 

 

Case 𝑥𝑢 = 0: for every edge uv  

 if 𝑥𝑣 = 0  then conflict and stop  

  else set 𝑥𝑣 = 1. 

 

Case 𝑥𝑢 = 1: for every other vertex v in the color class containing u 

 if 𝑥𝑣 = 1  then conflict and stop  

  else set 𝑥𝑣 = 0. 
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Color Coding 
 

For a vertex v, define 𝐹𝑥(v), where x ∈ {0, 1}, to be the set of vertices 

that are forced to receive a value when 𝑥𝑣 = x. 

 

Set 𝐹𝑥(v) = ⦰ if 𝑥𝑣 = x causes a conflict of values for the forced vertices. 

 

Lemma 5. If 𝐹𝑥(v) ≠ ⦰ then G admits a colorful vertex cover iff 

G ─ 𝐹𝑥(v) admits one. 
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Color Coding 
 

Repeat the following until G is empty: 

 Arbitrarily choose a vertex v from G; 

 In parallel,  

     compute 𝐹0(v), if 𝐹0(v) not empty then set G ← G ─ 𝐹0(v) and 

   assign values to vertices in 𝐹0(v) accordingly; 

     compute 𝐹1(v), if 𝐹1(v) not empty then set G ← G ─ 𝐹1(v) and 

   assign values to vertices in 𝐹1(v) accordingly; 

 If both 𝐹0(v) and 𝐹1(v) empty then “No Solution” 

 

Note: Parallel part can be simulated sequentially by dovetailing. 
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Random Separation → Indirect Certificate 
 

Cai, Chan and Chan (2006) 

 

Idea: Randomly partition vertex set of G into two disjoint sets to separate 

a solution S from the rest of G into connected components, and then 

select appropriate components to form a solution. 

 

 Typically, we want S to be blue and N(S) to be red. 

 The probability of obtaining such a partition is 2− 𝑘+𝑝  where p = |N(S)|. 

 For probability to be a function of k, G need to have bounded degree 

→ the method usually works for degree-bounded graphs only. 
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Indirect Certificate 
 

More general than random separation 

 

Idea: Randomly partition elements into two disjoint parts, and use 

a small structure, called indirect certificate, in one part to obtain a 

solution in another part in FPT time. 

 

Small structure: size bounded above by a function of k. 
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Indirect Certificate 

 

First used by Cai, Chan, and Chan, 2006 

 Maximum weight k-Independent set in planar graphs. 

 Induced k-path, k-cycle for graphs with bounded degeneracy. 

 

Cygan et. al., 2014 

 Eulerian deletion. 

 

Cai and Ye, 2016. 

 Edge-disjoint paths with length constraints. 
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Indirect Certificate 

 

Theorem 6. For any vertex cover X of a graph G = (V,E), V – X  

contains at most |X| vertices C such that N(C) resides in X and 

forms a vertex cover.  

 

C is an indirect certificate and can be used to find a k-vertex 

cover in polynomial time. 
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Indirect Certificate 

 

Proof.  
 X*: minimum vertex cover inside X. 

 

 Every vertex in X* covers some edge in cut [X*, V –X*]. 

 

 For each vertex v in X*, arbitrarily choose an adjacent vertex c(v) in V – X*. 

 

 C = {c(v) : v ∈ X*}, and N(C) has required properties.    █ 
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Indirect Certificate 
 

Step 1. Randomly and independently color each vertex either red or blue 

            with probability ½  to form red vertices R. 

 

Step 2. Return N(R) as a solution if N(R) contains blue vertices only and  

            forms a k-vertex cover; otherwise return ``No solution''. 

 

Note: Algorithm can be derandomized by (n,2k)-universal sets. 

 

 

 

Theorem 7. The algorithm finds, with probability at least 4−𝑘, a k-vertex cover of G,  

                if it exists, in O(m + n) time. 
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Indirect Certificate 

 

Proof. Suppose G has a k-vertex cover X. 

 

 By Theorem 6, V – X contains at most k vertices C dominating a vertex cover inside X. 

       Step 1 colors, with probability at least 4−𝑘,  X blue and C red. 

 

 Step 2 correctly finds a k-vertex cover consisting of blue vertices only. 

       By Theorem 6, X contains a k-vertex cover X* consisting of blue vertices only such that 

   X* ⊆ N(C) ⊆ N(R) 

       N(R) consists of blue vertices only and all vertices in N(R) are needed to cover  

       all crossing edges between blue and red vertices.     █ 
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Indirect Certificate: Edge-Disjoint Paths 
 

Finding two edge-disjoint (s,t)-paths in a graph with one path of length ≤ k. 

Joint work with YE Junjie 

 

Is there an (s,t)-path P of length ≤ k whose deletion does not disconnect s and t? 

 

Indirect certificate for P: O(𝑘2) special edges outside P. 

 

   

 

 

 

 

 
Singapore 36 Aug. 22, 2017 



Indirect Certificate: Edge-Disjoint Paths 
 

Vertex v is a nearby-vertex if d(s, v) + d(v, t) ≤ k, and an edge is a nearby-edge if 

its two endpoints are nearby-vertices. 

 

Lemma 13. Let P be an (s,t)-path of length at most k, and Q a minimum length  

(s,t)-path edge-disjoint from P. Then 

(1) all edges of P are nearby-edges, and 

(2) Q contains at most (k+1)2 nearby-edges. 
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Indirect Certificate: Edge-Disjoint Paths 
 

Algorithm 

 

1. Find all nearby-edges by BFS. 

 

2. With probability ½ , randomly color each nearby-edge blue or red. 

    Color remaining edges red. 

 

3. If blue graph contains an (s,t)-path P of length ≤ k, and red graph contains an 

(s,t)-path Q, then P and Q form a solution. Otherwise no solution. 
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Conclusion 
 

 Ideas useful for special vertex covers 

 

 Polynomial algorithms for colorful solutions of other problems 

 

 High potential for indirect certificate method 
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