
1

Vertex Covers Revisited:

 New and Simple FPT Algorithms

CAI Leizhen

Chinese Univ of Hong Kong

Singapore Aug. 22, 2017

2

Outline

 Introduction

 Iterative Compression

 Color Coding

 Random Separation (Indirect Certificate)

 Conclusion

Singapore Aug. 22, 2017

Introduction

Vertex Cover

Input: Graph G = (V,E), parameter k.

Question: Does G contain k vertices that cover all edges?

Vertex v covers edge e if v is incident with e.

FPT algorithm: f(k)𝑛𝑂 1 time.

3 Singapore Aug. 22, 2017

Aug. 22, 2017 Singapore 4

Aug. 22, 2017 Singapore 5

Aug. 22, 2017 Singapore 6

Aug. 22, 2017 Singapore 7

Aug. 22, 2017 Singapore 8

Introduction

Known FPT algorithms

Bounded search tree

 For any edge uv,

 either u or v must be in a solution → O(2𝑘kn)

 Path 𝑃3 → O(1.618𝑘kn)

 Vertex of degree at least 3 → O(1.5𝑘kn)

 Chan, Kanj, and Xia (2010) → O(1.2738𝑘 + kn)

 9 Singapore Aug. 22, 2017

Introduction

Kernelization

Vertex of degree > k must be in soln → O(𝑘2)

Crown decomposition → 3k vertices

Linear programming → 2k vertices

10 Singapore Aug. 22, 2017

Introduction

Matching

 Papadimitriou and Yannakakis (1993) → O(3𝑘kn)

Graph minor

 Fellow and Langston (1986) → O(f(k)𝑛3)

 f(k) astronomical

 Johnson (1987) → O(f(k)𝑛2)

 f(k) ≈ 22
500𝑘

11 Singapore Aug. 22, 2017

Introduction

化腐朽为神奇
Do bad things in clever ways

 Iterative compression

 Color coding

 Random separation (Indirect Certificate)

 Representative sets

 Randomized divide and conquer

12 Singapore Aug. 22, 2017

Introduction

Motivations

 Better understanding

 Training students

 Intellectually challenging

13 Singapore Aug. 22, 2017

Iterative Compression

Reed, Smith, and Vetta (2004)

Idea: Given a (k+1)-solution, obtain a k-solution in FPT time.

For vertex cover:

 Given a vertex cover X of G,

 is there a smaller vertex cover for G?

14 Singapore Aug. 22, 2017

Iterative Compression

Characterization of minimum vertex cover

Theorem 1 (Cai 2005). A vertex cover X of G = (V, E) is a

minimum vertex cover iff for every independent set S in G[X],

|N*(S)| ≥ |S|.

Outside neighborhood N*(S) : N(S) ∩ (V – X).

15 Singapore Aug. 22, 2017

Iterative Compression

Compression routine: determine whether there a vertex cover

smaller than a given (k+1)-vertex cover X.

 Consider every independent set S in X.

 If for some S, |N*(S)| < |S|, then we obtain a smaller vertex

cover. Otherwise no k-vertex cover.

Time: O(2𝑘kn).

16 Singapore Aug. 22, 2017

Iterative Compression

Another characterization:

Theorem 2. A vertex cover X of G is a minimum vertex cover iff

for every maximal independent set S in G[X], S is a minimum

vertex cover of G[S U N*(S)].

Theorem 3 (Moon and Moser 1965)

An n-vertex graph contains at most 3𝑛/3maximal independent sets.

17 Singapore Aug. 22, 2017

Iterative Compression

Compression routine: X = (k+1)-vertex cover of G.

 Consider every maximal independent set S in X, and find a

minimum vertex cover X(S) of G[S U N*(S)].

 If for some S, X(S) is smaller than X, then we obtain a smaller

vertex cover. Otherwise no k-vertex cover.

Time: O(3𝑘/3𝑛2.5).

18 Singapore Aug. 22, 2017

Iterative Compression

Three ways to obtain a (k+1)-vertex cover:

 Recursively: Arbitrarily choose a vertex v, and recursively solve the problem for G – v

 to obtain a k-vertex cover X of G – v. Then X + v is a (k+1)-vertex cover of G.

 Iteratively: Order vertices as 𝑣1, …, 𝑣𝑛, and set 𝐺𝑖 = G[𝑣1, …, 𝑣𝑖].

 A k-vertex cover X of 𝐺𝑖 yields a (k+1)-vertex cover X + 𝑣𝑖+1 of 𝐺𝑖+1,

 which is then compressed into a k-vertex cover of 𝐺𝑖+1.

 Approximation: Use 2-approximation algorithm for Vertex Cover to find a k’-vertex cover.

 Then k’ ≤ 2k.

19 Singapore Aug. 22, 2017

Color Coding

Alon, Yuster, and Zwick (1995)

Idea: Randomly color elements and find a colorful k-solution in

FPT time.

For vertex cover:

Given a vertex k-colored graph, determine whether the graph

contains a colorful vertex cover.

20 Singapore Aug. 22, 2017

Color Coding

G = (V, E; c): vertex colored graph with c: V → {1, …, t}.

Color class 𝑉𝑖: vertices with color i.

Colorful vertex cover X: all vertices in vertex cover X have distinct

colors, i.e., X contains at most one vertex from each color class.

21 Singapore Aug. 22, 2017

Color Coding

Colorful Vertex Cover

Instance: Vertex colored graph G.

Question: Does G contain a colorful vertex cover X?

NP-complete for following two variations:

 X contains at most 2 vertices from each color class.

 Size of X is upper bounded.

22 Singapore Aug. 22, 2017

Color Coding

No easier than 2SAT.

Polynomial-time algorithms

 by reduction to 2SAT

 using ideas for 2SAT.

23 Singapore Aug. 22, 2017

Color Coding

For vertex v, let 𝑥𝑣 be its corresponding Boolean variable.

 For edges E, define F(E) = (𝑥𝑢𝑢𝑣 ∈𝐸 ⋁ 𝑥𝑣).

 For each color class 𝑉𝑖, define F(𝑉𝑖) = 𝑥𝑢 ∧ 𝑥𝑣 distinct 𝑢,𝑣 ∈ 𝑉𝑖
.

Set F(G) = F(E) ∧ (𝐹(𝑉𝑖
𝑡
𝑖=1)).

24 Singapore Aug. 22, 2017

Color Coding

Theorem 4. Vertex colored graph G admits a colorful vertex cover

iff its corresponding formula F(G) is satisfiable. → O(𝑛2) algorithm

Proof. For vertices v, determine 𝑥𝑣 ∈ {0,1} such that

 for every edge uv, 𝑥𝑢 + 𝑥𝑣 ≥ 1, and

 for each color class 𝑉𝑖 , 𝑥𝑣𝑣 ∈ 𝑉𝑖
 ≤ 1, equivalent to,

 for every distinct u, v in 𝑉𝑖, 𝑥𝑢 + 𝑥𝑣 ≤ 1.

Note x + y ≥ 1 equivalent to x ∨ 𝑦, and

 x + y ≤ 1 equivalent to 𝑥 ∨ 𝑦. █

25 Singapore Aug. 22, 2017

Color Coding

Linear-time algorithm:

Let u be a vertex with a value → force values on other vertices.

Case 𝑥𝑢 = 0: for every edge uv

 if 𝑥𝑣 = 0 then conflict and stop

 else set 𝑥𝑣 = 1.

Case 𝑥𝑢 = 1: for every other vertex v in the color class containing u

 if 𝑥𝑣 = 1 then conflict and stop

 else set 𝑥𝑣 = 0.

26 Singapore Aug. 22, 2017

Color Coding

For a vertex v, define 𝐹𝑥(v), where x ∈ {0, 1}, to be the set of vertices

that are forced to receive a value when 𝑥𝑣 = x.

Set 𝐹𝑥(v) = ⦰ if 𝑥𝑣 = x causes a conflict of values for the forced vertices.

Lemma 5. If 𝐹𝑥(v) ≠ ⦰ then G admits a colorful vertex cover iff

G ─ 𝐹𝑥(v) admits one.

27 Singapore Aug. 22, 2017

Color Coding

Repeat the following until G is empty:

 Arbitrarily choose a vertex v from G;

 In parallel,

 compute 𝐹0(v), if 𝐹0(v) not empty then set G ← G ─ 𝐹0(v) and

 assign values to vertices in 𝐹0(v) accordingly;

 compute 𝐹1(v), if 𝐹1(v) not empty then set G ← G ─ 𝐹1(v) and

 assign values to vertices in 𝐹1(v) accordingly;

 If both 𝐹0(v) and 𝐹1(v) empty then “No Solution”

Note: Parallel part can be simulated sequentially by dovetailing.

 28 Singapore Aug. 22, 2017

Random Separation → Indirect Certificate

Cai, Chan and Chan (2006)

Idea: Randomly partition vertex set of G into two disjoint sets to separate

a solution S from the rest of G into connected components, and then

select appropriate components to form a solution.

 Typically, we want S to be blue and N(S) to be red.

 The probability of obtaining such a partition is 2− 𝑘+𝑝 where p = |N(S)|.

 For probability to be a function of k, G need to have bounded degree

→ the method usually works for degree-bounded graphs only.

29 Singapore Aug. 22, 2017

Indirect Certificate

More general than random separation

Idea: Randomly partition elements into two disjoint parts, and use

a small structure, called indirect certificate, in one part to obtain a

solution in another part in FPT time.

Small structure: size bounded above by a function of k.

30 Singapore Aug. 22, 2017

Indirect Certificate

First used by Cai, Chan, and Chan, 2006

 Maximum weight k-Independent set in planar graphs.

 Induced k-path, k-cycle for graphs with bounded degeneracy.

Cygan et. al., 2014

 Eulerian deletion.

Cai and Ye, 2016.

 Edge-disjoint paths with length constraints.

31 Singapore Aug. 22, 2017

Indirect Certificate

Theorem 6. For any vertex cover X of a graph G = (V,E), V – X

contains at most |X| vertices C such that N(C) resides in X and

forms a vertex cover.

C is an indirect certificate and can be used to find a k-vertex

cover in polynomial time.

32 Singapore Aug. 22, 2017

Indirect Certificate

Proof.
 X*: minimum vertex cover inside X.

 Every vertex in X* covers some edge in cut [X*, V –X*].

 For each vertex v in X*, arbitrarily choose an adjacent vertex c(v) in V – X*.

 C = {c(v) : v ∈ X*}, and N(C) has required properties. █

33 Singapore Aug. 22, 2017

Indirect Certificate

Step 1. Randomly and independently color each vertex either red or blue

 with probability ½ to form red vertices R.

Step 2. Return N(R) as a solution if N(R) contains blue vertices only and

 forms a k-vertex cover; otherwise return ``No solution''.

Note: Algorithm can be derandomized by (n,2k)-universal sets.

Theorem 7. The algorithm finds, with probability at least 4−𝑘, a k-vertex cover of G,

 if it exists, in O(m + n) time.

34 Singapore Aug. 22, 2017

Indirect Certificate

Proof. Suppose G has a k-vertex cover X.

 By Theorem 6, V – X contains at most k vertices C dominating a vertex cover inside X.

 Step 1 colors, with probability at least 4−𝑘, X blue and C red.

 Step 2 correctly finds a k-vertex cover consisting of blue vertices only.

 By Theorem 6, X contains a k-vertex cover X* consisting of blue vertices only such that

 X* ⊆ N(C) ⊆ N(R)

 N(R) consists of blue vertices only and all vertices in N(R) are needed to cover

 all crossing edges between blue and red vertices. █

35 Singapore Aug. 22, 2017

Indirect Certificate: Edge-Disjoint Paths

Finding two edge-disjoint (s,t)-paths in a graph with one path of length ≤ k.

Joint work with YE Junjie

Is there an (s,t)-path P of length ≤ k whose deletion does not disconnect s and t?

Indirect certificate for P: O(𝑘2) special edges outside P.

Singapore 36 Aug. 22, 2017

Indirect Certificate: Edge-Disjoint Paths

Vertex v is a nearby-vertex if d(s, v) + d(v, t) ≤ k, and an edge is a nearby-edge if

its two endpoints are nearby-vertices.

Lemma 13. Let P be an (s,t)-path of length at most k, and Q a minimum length

(s,t)-path edge-disjoint from P. Then

(1) all edges of P are nearby-edges, and

(2) Q contains at most (k+1)2 nearby-edges.

Singapore 37 Aug. 22, 2017

Indirect Certificate: Edge-Disjoint Paths

Algorithm

1. Find all nearby-edges by BFS.

2. With probability ½ , randomly color each nearby-edge blue or red.

 Color remaining edges red.

3. If blue graph contains an (s,t)-path P of length ≤ k, and red graph contains an

(s,t)-path Q, then P and Q form a solution. Otherwise no solution.

Singapore 38 Aug. 22, 2017

Conclusion

 Ideas useful for special vertex covers

 Polynomial algorithms for colorful solutions of other problems

 High potential for indirect certificate method

39 Singapore Aug. 22, 2017

