Increasing dimension s to dimension t with few changes

Linda Brown Westrick University of Connecticut Joint with Noam Greenberg, Joe Miller and Sasha Shen

> August 31, 2017 Aspects of Computation Workshop National University of Singapore

Observation: You can make sequences of effective dimension 1 by flipping density zero bits on a random.

Question 1 (Rod): Can you make every sequence of effective dimension 1 that way?

Yes!

Theorem 1: The sequences of effective dimension 1 are exactly the sequences which differ on a density zero set from a ML random sequence.

Observation: You can make sequences of effective dimension 1/2 by changing all odd bits of a random to 0. Density of changes: 1/4.

Question 2: Can we change a random on fewer than 1/4 of the bits and still make a sequence of effective dimension 1/2?

A naive bound on the distance needed: **Proposition**: If $\overline{\rho}(X\Delta Y) = d$, then

 $\dim X \le \dim Y + H(d)$

where H is Shannon's binary entropy function $H(p) = -(p \log p + (1-p) \log(1-p))$.

So if dim X = 1 and we want to find nearby Y with dim Y = s, then we will need to use distance at least $d = H^{-1}(1 - s)$.

Yes! (to Question 2) **Theorem 2**: For any X with dim X = 1 and any s < 1, there is Y with $d(X,Y) = H^{-1}(1-s)$ and dim(Y) = s. where $d(X,Y) = \overline{\rho}(X\Delta Y)$.

Notation

Write
$$X = \sigma_1 \sigma_2 \dots$$
 where $|\sigma_i| = i^2$.
Let $\dim(\sigma) = K(\sigma)/|\sigma|$.
Let $s_i = \dim(\sigma_i | \sigma_1 \dots \sigma_{i-1})$
Fact:

$$\dim(\sigma_1 \dots \sigma_i) \approx \sum_{k=1}^{i} \frac{|\sigma_k|}{|\sigma_1 \dots \sigma_i|} s_k$$

Also:

$$\rho(\sigma_1 \dots \sigma_i) = \sum_{k=1}^k \frac{|\sigma_k|}{|\sigma_1 \dots \sigma_i|} \rho(\sigma_k),$$

where $\rho(\sigma) = (\# \text{ of 1s in } \sigma)/|\sigma|$.

Fact: For any σ and any s < 1, there is τ with $\rho(\sigma \Delta \tau) \leq H^{-1}(1-s)$ and $\dim(\tau) \leq s$.

(using basic Vereschagin-Vitanyi theory)

Theorem 2: For any X with dim X = 1 and any s < 1, there is Y with $d(X, Y) = H^{-1}(1 - s)$ and dim(Y) = s.

Proof: Given $X = \sigma_1 \sigma_2 \dots$, produce $Y = \tau_1 \tau_2 \dots$, where τ_i is obtained from σ_i by applying the above fact.

Each dim $(\tau_i) \leq s$ and each $\rho(\sigma_i \Delta \tau_i) \leq H^{-1}(1-s)$, so Y and $X \Delta Y$ satisfy these bounds in the limit.

Observation: Consider a Bernoulli *p*-random X (obtained by flipping a coin with probability *p* of getting a 1). We have $\dim(X) = H(p)$ and $\rho(X) = p$.

Obviously, we will need at least density 1/2 - p of changes to bring the density up to 1/2, a necessary pre-requisite for bringing the effective dimension to 1.

Proposition: For each s, there is X with $\dim(X) = s$ such that for all Y with $\dim(Y) = 1$, we have $\overline{\rho}(X\Delta Y) \ge 1/2 - H^{-1}(s)$.

 $(X \text{ is any Bernoulli } H^{-1}(s)\text{-random.})$

Theorem 3: For any s < 1 and any X with $\dim(X) = s$, there is Y with $\dim(Y) = 1$ and $d(X, Y) \le 1/2 - H^{-1}(s)$.

Fact: For any σ, s, t with $\dim(\sigma) = s < t \le 1$, there is τ with $\rho(\sigma \Delta \tau) \le H^{-1}(t) - H^{-1}(s)$ and $\dim(\tau) = t$.

(more basic Vereshchagin-Vitanyi theory)

Let $X = \sigma_1 \sigma_2 \dots$ where $|\sigma_i| = i^2$. Recall $s_i = \dim(\sigma_i | \sigma_1 \dots \sigma_{i-1})$. Lemma: Let t_1, t_2, \dots , and $d_1, d_2 \dots$ be any sequences satisfying for all i,

$$d_i = H^{-1}(t_i) - H^{-1}(s_i).$$

Then there is $Y = \tau_1 \tau_2 \dots$ such that for all i,

 $t_i \leq \dim(\tau_i | \tau_1 \dots \tau_{i-1})$ and $\rho(\sigma_i \Delta \tau_i) \leq d_i$.

Proof: Uses Harper's Theorem and compactness.

A convexity argument

Given $X = \sigma_1 \sigma_2 \dots$ with dim(X) = s, we want to produce $Y = \tau_1 \tau_2 \dots$ with dim(Y) = 1 and $d(X, Y) \leq 1/2 - H^{-1}(s)$.

Let $t_i = 1$ for all *i*. Let $d_i = 1/2 - H^{-1}(s_i)$. Let Y be as guaranteed by the Main Lemma. Then

$$\dim(Y) = \liminf_{i} \sum_{k=1}^{i} \frac{|\tau_k|}{|\tau_1 \dots \tau_i|} t_k = 1$$

$$d(X,Y) = \limsup_{i} \sum_{k=1}^{i} \frac{|\tau_k|}{|\tau_1 \dots \tau_i|} (1/2 - H^{-1}(s_i))$$

$$\leq 1/2 - H^{-1}(\liminf_{i} \sum_{k=1}^{i} \frac{|\tau_k|}{|\tau_1 \dots \tau_i|} s_i) = 1/2 - H^{-1}(s)$$

because $s_i \mapsto 1/2 - H^{-1}(s_i)$ is concave.

Increasing dimension s to dimension 1:

- Distance at least $1/2 H^{-1}(s)$ may be needed to handle starting with a Bernoulli $H^{-1}(s)$ -random.
- This distance suffices (construction).

Decreasing dimension 1 to dimension s:

- Distance at least $H^{-1}(1-s)$ is needed for information coding reasons.
- This distance suffices (construction).

Increasing dimension s to dimension t:

- Distance at least $H^{-1}(t) H^{-1}(s)$ may be needed to handle starting with a Bernoulli $H^{-1}(s)$ -random.
- Construction breaks (convexity)

Decreasing dimension t to dimension s:

- Distance at least $H^{-1}(t-s)$ is needed for information coding reasons.
- Construction breaks (even finite version)

Strategy: Pump all information density up to t.

Problem: setting all $t_i = t$ in the Main Lemma, the map $s_i \mapsto d_i = H^{-1}(t_i) - H^{-1}(s_i)$ is not concave.

(on the board)

Strategy: Constant distance. Let $d = H^{-1}(t) - H^{-1}(s)$, pump in as much information as possible within distance d.

Problem: setting all $d_i = d$ in the Main Lemma, the map $s_i \mapsto t_i = H(d_i + H^{-1}(s_i))$ is not convex (except at some small values of s_i).

(on the board)

Line toeing strategy

Theorem 3+: For any $s < t \le 1$ and any X with $\dim(X) = s$, there is Y with $\dim(Y) = t$ and $d(X, Y) \le H^{-1}(t) - H^{-1}(s)$.

Proof uses the following strategy:

Given s_i , set t_i so that (s_i, t_i) lies on the line connecting (s, t) and (1, 1).

This produces a map $s_i \mapsto d_i$ which is concave!!

(on the board)

Theorem 3+: For any $s < t \le 1$ and any X with $\dim(X) = s$, there is Y with $\dim(Y) = t$ and $d(X, Y) \le H^{-1}(t) - H^{-1}(s)$.

Proof uses the following strategy:

Given s_i , set t_i so that (s_i, t_i) lies on the line connecting (s, t) and (1, 1).

This produces a map $s_i \mapsto d_i$ which is concave!!

(on the board)

(seven derivatives later, including a partial derivative with respect to one of the parameters, we prove this map is concave.)

Problem: This map only works for pairs (s, t) such that the map $s_i \to d_i$ is decreasing at s.

After some undergraduate calculus, these are exactly the pairs (s, t) satisfying

$$(1-t)g'(t) \le (1-s)g'(s)$$

where $g = H^{-1}$.

(on board)

We see that the line to eing strategy fails for some small values of s.

We have already seen a strategy that only succeeds on some small values of s – the constant distance strategy.

(only four derivatives needed to show that $s_i \mapsto t_i$ has the required convexity properties for small s!)

We have already seen a strategy that only succeeds on some small values of s – the constant distance strategy.

(only four derivatives needed to show that $s_i \mapsto t_i$ has the required convexity properties for small s!)

After some undergraduate calculus, the pairs (s, t) for which the constant distance strategy works are exactly those satisfying

$$(1-t)g'(t) \ge (1-s)g'(s)$$

where $g = H^{-1}$.

Yes, I really meant that

Line to eing strategy works at (s, t) if and only if

$$(1-t)g'(t) \leq (1-s)g'(s)$$

Constant distance strategy works at (s, t) if and only if

$$(1-t)g'(t) \ge (1-s)g'(s)$$

where $g = H^{-1}$.

For every $s < t \le 1$, there is a working strategy (there is a way to set the t_i, d_i in the Main Lemma so that by convexity, the resulting Y has the right effective dimension and the right distance from a given X).

This proves Theorem 3+.

This is too precise to be a coincidence!?

Increasing dimension s to dimension t:

- Distance at least $H^{-1}(t) H^{-1}(s)$ may be needed to handle starting with a Bernoulli $H^{-1}(s)$ -random.
- This distance suffices (construction)

Decreasing dimension t to dimension s:

- Distance at least $H^{-1}(t-s)$ is needed for information coding reasons.
- Construction breaks (even finite version)
- In fact, this distance is demonstrably too short.

Given s < t < 1, what is the minimum distance d such that for every X with $\dim(X) = t$, there is a Y with $\dim(Y) = s$ and $d(X, Y) \le d$?

Why do the line-toeing and constant-distance strategies dovetail so perfectly?