Increasing dimension s to dimension t with few changes

Linda Brown Westrick
University of Connecticut
Joint with Noam Greenberg, Joe Miller and Sasha Shen

August 31, 2017
Aspects of Computation Workshop
National University of Singapore

Randomness and effective dimension 1

Observation: You can make sequences of effective dimension 1 by flipping density zero bits on a random.

Question 1 (Rod): Can you make every sequence of effective dimension 1 that way?

Yes!
Theorem 1: The sequences of effective dimension 1 are exactly the sequences which differ on a density zero set from a ML random sequence.

Decreasing from dimension 1 to dimension $s<1$

Observation: You can make sequences of effective dimension $1 / 2$ by changing all odd bits of a random to 0 . Density of changes: $1 / 4$.

Question 2: Can we change a random on fewer than $1 / 4$ of the bits and still make a sequence of effective dimension $1 / 2$?

Decreasing from dimension 1 to dimension $s<1$

A naive bound on the distance needed:
Proposition: If $\bar{\rho}(X \Delta Y)=d$, then

$$
\operatorname{dim} X \leq \operatorname{dim} Y+H(d)
$$

where H is Shannon's binary entropy function $H(p)=-(p \log p+(1-p) \log (1-p))$.
So if $\operatorname{dim} X=1$ and we want to find nearby Y with $\operatorname{dim} Y=s$, then we will need to use distance at least $d=H^{-1}(1-s)$.

Yes! (to Question 2)
Theorem 2: For any X with $\operatorname{dim} X=1$ and any $s<1$, there is Y with $d(X, Y)=H^{-1}(1-s)$ and $\operatorname{dim}(Y)=s$.
where $d(X, Y)=\bar{\rho}(X \Delta Y)$.

Notation

Write $X=\sigma_{1} \sigma_{2} \ldots$ where $\left|\sigma_{i}\right|=i^{2}$.
Let $\operatorname{dim}(\sigma)=K(\sigma) /|\sigma|$.
Let $s_{i}=\operatorname{dim}\left(\sigma_{i} \mid \sigma_{1} \ldots \sigma_{i-1}\right)$
Fact:

$$
\operatorname{dim}\left(\sigma_{1} \ldots \sigma_{i}\right) \approx \sum_{k=1}^{i} \frac{\left|\sigma_{k}\right|}{\left|\sigma_{1} \ldots \sigma_{i}\right|} s_{k}
$$

Also:

$$
\rho\left(\sigma_{1} \ldots \sigma_{i}\right)=\sum_{k=1}^{k} \frac{\left|\sigma_{k}\right|}{\left|\sigma_{1} \ldots \sigma_{i}\right|} \rho\left(\sigma_{k}\right),
$$

where $\rho(\sigma)=(\#$ of 1 s in $\sigma) /|\sigma|$.

Decreasing from dimension 1 to dimension s

Fact: For any σ and any $s<1$, there is τ with $\rho(\sigma \Delta \tau) \leq H^{-1}(1-s)$ and $\operatorname{dim}(\tau) \leq s$.
(using basic Vereschagin-Vitanyi theory)
Theorem 2: For any X with $\operatorname{dim} X=1$ and any $s<1$, there is Y with $d(X, Y)=H^{-1}(1-s)$ and $\operatorname{dim}(Y)=s$.

Proof: Given $X=\sigma_{1} \sigma_{2} \ldots$, produce $Y=\tau_{1} \tau_{2} \ldots$, where τ_{i} is obtained from σ_{i} by applying the above fact.
Each $\operatorname{dim}\left(\tau_{i}\right) \leq s$ and each $\rho\left(\sigma_{i} \Delta \tau_{i}\right) \leq H^{-1}(1-s)$, so Y and $X \Delta Y$ satisfy these bounds in the limit.

Increasing from dimension s to dimension 1

Observation: Consider a Bernoulli p-random X (obtained by flipping a coin with probability p of getting a 1). We have $\operatorname{dim}(X)=H(p)$ and $\rho(X)=p$.

Obviously, we will need at least density $1 / 2-p$ of changes to bring the density up to $1 / 2$, a necessary pre-requisite for bringing the effective dimension to 1 .

Proposition: For each s, there is X with $\operatorname{dim}(X)=s$ such that for all Y with $\operatorname{dim}(Y)=1$, we have $\bar{\rho}(X \Delta Y) \geq 1 / 2-H^{-1}(s)$.
(X is any Bernoulli $H^{-1}(s)$-random.)
Theorem 3: For any $s<1$ and any X with $\operatorname{dim}(X)=s$, there is Y with $\operatorname{dim}(Y)=1$ and $d(X, Y) \leq 1 / 2-H^{-1}(s)$.

A finite increasing theorem

Fact: For any σ, s, t with $\operatorname{dim}(\sigma)=s<t \leq 1$, there is τ with $\rho(\sigma \Delta \tau) \leq H^{-1}(t)-H^{-1}(s)$ and $\operatorname{dim}(\tau)=t$.
(more basic Vereshchagin-Vitanyi theory)

The Main Lemma

Let $X=\sigma_{1} \sigma_{2} \ldots$ where $\left|\sigma_{i}\right|=i^{2}$.
Recall $s_{i}=\operatorname{dim}\left(\sigma_{i} \mid \sigma_{1} \ldots \sigma_{i-1}\right)$.
Lemma: Let t_{1}, t_{2}, \ldots, and $d_{1}, d_{2} \ldots$ be any sequences satisfying for all i,

$$
d_{i}=H^{-1}\left(t_{i}\right)-H^{-1}\left(s_{i}\right) .
$$

Then there is $Y=\tau_{1} \tau_{2} \ldots$ such that for all i,

$$
t_{i} \leq \operatorname{dim}\left(\tau_{i} \mid \tau_{1} \ldots \tau_{i-1}\right) \quad \text { and } \quad \rho\left(\sigma_{i} \Delta \tau_{i}\right) \leq d_{i}
$$

Proof: Uses Harper's Theorem and compactness.

A convexity argument

Given $X=\sigma_{1} \sigma_{2} \ldots$ with $\operatorname{dim}(X)=s$, we want to produce $Y=\tau_{1} \tau_{2} \ldots$ with $\operatorname{dim}(Y)=1$ and $d(X, Y) \leq 1 / 2-H^{-1}(s)$.
Let $t_{i}=1$ for all i. Let $d_{i}=1 / 2-H^{-1}\left(s_{i}\right)$. Let Y be as guaranteed by the Main Lemma. Then

$$
\begin{gathered}
\operatorname{dim}(Y)=\lim _{i} \inf \sum_{k=1}^{i} \frac{\left|\tau_{k}\right|}{\left|\tau_{1} \ldots \tau_{i}\right|} t_{k}=1 \\
\begin{aligned}
& d(X, Y)= \limsup _{i} \sum_{k=1}^{i} \frac{\left|\tau_{k}\right|}{\left|\tau_{1} \ldots \tau_{i}\right|}\left(1 / 2-H^{-1}\left(s_{i}\right)\right) \\
& \leq 1 / 2-H^{-1}\left(\liminf _{i} \sum_{k=1}^{i} \frac{\left|\tau_{k}\right|}{\left|\tau_{1} \ldots \tau_{i}\right|} s_{i}\right)=1 / 2-H^{-1}(s)
\end{aligned}
\end{gathered}
$$

because $s_{i} \mapsto 1 / 2-H^{-1}\left(s_{i}\right)$ is concave.

Summary of the Preparation

Increasing dimension s to dimension 1:

- Distance at least $1 / 2-H^{-1}(s)$ may be needed to handle starting with a Bernoulli $H^{-1}(s)$-random.
- This distance suffices (construction).

Decreasing dimension 1 to dimension s :

- Distance at least $H^{-1}(1-s)$ is needed for information coding reasons.
- This distance suffices (construction).

Generalization goal

Increasing dimension s to dimension t :

- Distance at least $H^{-1}(t)-H^{-1}(s)$ may be needed to handle starting with a Bernoulli $H^{-1}(s)$-random.
- Construction breaks (convexity)

Decreasing dimension t to dimension s :

- Distance at least $H^{-1}(t-s)$ is needed for information coding reasons.
- Construction breaks (even finite version)

Failure of convexity I (increasing from s to t)

Strategy: Pump all information density up to t.
Problem: setting all $t_{i}=t$ in the Main Lemma, the map $s_{i} \mapsto d_{i}=H^{-1}\left(t_{i}\right)-H^{-1}\left(s_{i}\right)$ is not concave.
(on the board)

Failures of convexity II (increasing from s to t)

Strategy: Constant distance. Let $d=H^{-1}(t)-H^{-1}(s)$, pump in as much information as possible within distance d.

Problem: setting all $d_{i}=d$ in the Main Lemma, the map $s_{i} \mapsto t_{i}=H\left(d_{i}+H^{-1}\left(s_{i}\right)\right)$ is not convex (except at some small values of s_{i}). (on the board)

Line toeing strategy

Theorem 3+: For any $s<t \leq 1$ and any X with $\operatorname{dim}(X)=s$, there is Y with $\operatorname{dim}(Y)=t$ and $d(X, Y) \leq H^{-1}(t)-H^{-1}(s)$.

Proof uses the following strategy:
Given s_{i}, set t_{i} so that $\left(s_{i}, t_{i}\right)$ lies on the line connecting (s, t) and $(1,1)$.
This produces a map $s_{i} \mapsto d_{i}$ which is concave!!
(on the board)

Line toeing strategy

Theorem 3+: For any $s<t \leq 1$ and any X with $\operatorname{dim}(X)=s$, there is Y with $\operatorname{dim}(Y)=t$ and $d(X, Y) \leq H^{-1}(t)-H^{-1}(s)$.

Proof uses the following strategy:
Given s_{i}, set t_{i} so that $\left(s_{i}, t_{i}\right)$ lies on the line connecting (s, t) and $(1,1)$.
This produces a map $s_{i} \mapsto d_{i}$ which is concave!!
(on the board)
(seven derivatives later, including a partial derivative with respect to one of the parameters, we prove this map is concave.)

Pairs (s, t) for which the line toeing strategy works

Problem: This map only works for pairs (s, t) such that the map $s_{i} \rightarrow d_{i}$ is decreasing at s.

After some undergraduate calculus, these are exactly the pairs (s, t) satisfying

$$
(1-t) g^{\prime}(t) \leq(1-s) g^{\prime}(s)
$$

where $g=H^{-1}$.
(on board)
We see that the line toeing strategy fails for some small values of s.

Constant distance strategy, reprise

We have already seen a strategy that only succeeds on some small values of s - the constant distance strategy.
(only four derivatives needed to show that $s_{i} \mapsto t_{i}$ has the required convexity properties for small s !)

Constant distance strategy, reprise

We have already seen a strategy that only succeeds on some small values of s - the constant distance strategy.
(only four derivatives needed to show that $s_{i} \mapsto t_{i}$ has the required convexity properties for small s !)

After some undergraduate calculus, the pairs (s, t) for which the constant distance strategy works are exactly those satisfying

$$
(1-t) g^{\prime}(t) \geq(1-s) g^{\prime}(s)
$$

where $g=H^{-1}$.

Yes, I really meant that

Line toeing strategy works at (s, t) if and only if

$$
(1-t) g^{\prime}(t) \leq(1-s) g^{\prime}(s)
$$

Constant distance strategy works at (s, t) if and only if

$$
(1-t) g^{\prime}(t) \geq(1-s) g^{\prime}(s)
$$

where $g=H^{-1}$.
For every $s<t \leq 1$, there is a working strategy (there is a way to set the t_{i}, d_{i} in the Main Lemma so that by convexity, the resulting Y has the right effective dimension and the right distance from a given X).

This proves Theorem 3+.

This is too precise to be a coincidence!?

Summary of the talk

Increasing dimension s to dimension t :

- Distance at least $H^{-1}(t)-H^{-1}(s)$ may be needed to handle starting with a Bernoulli $H^{-1}(s)$-random.
- This distance suffices (construction)

Decreasing dimension t to dimension s :

- Distance at least $H^{-1}(t-s)$ is needed for information coding reasons.
- Construction breaks (even finite version)
- In fact, this distance is demonstrably too short.

Questions

Given $s<t<1$, what is the minimum distance d such that for every X with $\operatorname{dim}(X)=t$, there is a Y with $\operatorname{dim}(Y)=s$ and $d(X, Y) \leq d$?

Why do the line-toeing and constant-distance strategies dovetail so perfectly?

