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Randomness and effective dimension 1

Observation: You can make sequences of effective dimension 1 by flipping
density zero bits on a random.

Question 1 (Rod): Can you make every sequence of effective dimension 1
that way?

Yes!
Theorem 1: The sequences of effective dimension 1 are exactly the sequences
which differ on a density zero set from a ML random sequence.
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Decreasing from dimension 1 to dimension s < 1

Observation: You can make sequences of effective dimension 1/2 by
changing all odd bits of a random to 0. Density of changes: 1/4.

Question 2: Can we change a random on fewer than 1/4 of the bits and still
make a sequence of effective dimension 1/2?
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Decreasing from dimension 1 to dimension s < 1

A naive bound on the distance needed:
Proposition: If ρ(X∆Y ) = d, then

dimX ≤ dimY +H(d)

where H is Shannon’s binary entropy function H(p) = −(p log p+ (1− p) log(1− p)).

So if dimX = 1 and we want to find nearby Y with dimY = s, then we will
need to use distance at least d = H−1(1− s).

Yes! (to Question 2)
Theorem 2: For any X with dimX = 1 and any s < 1, there is Y with
d(X,Y ) = H−1(1− s) and dim(Y ) = s.

where d(X,Y ) = ρ(X∆Y ).
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Notation

Write X = σ1σ2 . . . where |σi| = i2.

Let dim(σ) = K(σ)/|σ|.

Let si = dim(σi|σ1 . . . σi−1)

Fact:

dim(σ1 . . . σi) ≈
i∑

k=1

|σk|
|σ1 . . . σi|

sk

Also:

ρ(σ1 . . . σi) =

k∑
k=1

|σk|
|σ1 . . . σi|

ρ(σk),

where ρ(σ) = (# of 1s in σ)/|σ|.

Linda Brown Westrick University of Connecticut Joint with Noam Greenberg, Joe Miller and Sasha ShenIncreasing dimension s to dimension t with few changes
August 31, 2017 Aspects of Computation Workshop National University of Singapore 5

/ 20



Decreasing from dimension 1 to dimension s

Fact: For any σ and any s < 1, there is τ with ρ(σ∆τ) ≤ H−1(1− s) and
dim(τ) ≤ s.

(using basic Vereschagin-Vitanyi theory)

Theorem 2: For any X with dimX = 1 and any s < 1, there is Y with
d(X,Y ) = H−1(1− s) and dim(Y ) = s.

Proof: Given X = σ1σ2 . . . , produce Y = τ1τ2 . . . , where τi is obtained from
σi by applying the above fact.

Each dim(τi) ≤ s and each ρ(σi∆τi) ≤ H−1(1− s), so Y and X∆Y satisfy
these bounds in the limit.
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Increasing from dimension s to dimension 1

Observation: Consider a Bernoulli p-random X (obtained by flipping a coin
with probability p of getting a 1). We have dim(X) = H(p) and ρ(X) = p.

Obviously, we will need at least density 1/2− p of changes to bring the density
up to 1/2, a necessary pre-requisite for bringing the effective dimension to 1.

Proposition: For each s, there is X with dim(X) = s such that for all Y with
dim(Y ) = 1, we have ρ(X∆Y ) ≥ 1/2−H−1(s).

(X is any Bernoulli H−1(s)-random.)

Theorem 3: For any s < 1 and any X with dim(X) = s, there is Y with
dim(Y ) = 1 and d(X,Y ) ≤ 1/2−H−1(s).
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A finite increasing theorem

Fact: For any σ, s, t with dim(σ) = s < t ≤ 1, there is τ with
ρ(σ∆τ) ≤ H−1(t)−H−1(s) and dim(τ) = t.

(more basic Vereshchagin-Vitanyi theory)
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The Main Lemma

Let X = σ1σ2 . . . where |σi| = i2.

Recall si = dim(σi|σ1 . . . σi−1).

Lemma: Let t1, t2, . . . , and d1, d2 . . . be any sequences satisfying for all i,

di = H−1(ti)−H−1(si).

Then there is Y = τ1τ2 . . . such that for all i,

ti ≤ dim(τi|τ1 . . . τi−1) and ρ(σi∆τi) ≤ di.

Proof: Uses Harper’s Theorem and compactness.
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A convexity argument

Given X = σ1σ2 . . . with dim(X) = s, we want to produce Y = τ1τ2 . . . with
dim(Y ) = 1 and d(X,Y ) ≤ 1/2−H−1(s).

Let ti = 1 for all i. Let di = 1/2−H−1(si). Let Y be as guaranteed by the
Main Lemma. Then

dim(Y ) = lim inf
i

i∑
k=1

|τk|
|τ1 . . . τi|

tk = 1

d(X,Y ) = lim sup
i

i∑
k=1

|τk|
|τ1 . . . τi|

(1/2−H−1(si))

≤ 1/2−H−1(lim inf
i

i∑
k=1

|τk|
|τ1 . . . τi|

si) = 1/2−H−1(s)

because si 7→ 1/2−H−1(si) is concave.
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Summary of the Preparation

Increasing dimension s to dimension 1:

Distance at least 1/2−H−1(s) may be needed to handle starting with a
Bernoulli H−1(s)-random.

This distance suffices (construction).

Decreasing dimension 1 to dimension s:

Distance at least H−1(1− s) is needed for information coding reasons.

This distance suffices (construction).
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Generalization goal

Increasing dimension s to dimension t:

Distance at least H−1(t)−H−1(s) may be needed to handle starting with
a Bernoulli H−1(s)-random.

Construction breaks (convexity)

Decreasing dimension t to dimension s:

Distance at least H−1(t− s) is needed for information coding reasons.

Construction breaks (even finite version)
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Failure of convexity I (increasing from s to t)

Strategy: Pump all information density up to t.

Problem: setting all ti = t in the Main Lemma, the map
si 7→ di = H−1(ti)−H−1(si) is not concave.

(on the board)
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Failures of convexity II (increasing from s to t)

Strategy: Constant distance. Let d = H−1(t)−H−1(s), pump in as much
information as possible within distance d.

Problem: setting all di = d in the Main Lemma, the map
si 7→ ti = H(di +H−1(si)) is not convex (except at some small values of si).

(on the board)
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Line toeing strategy

Theorem 3+: For any s < t ≤ 1 and any X with dim(X) = s, there is Y
with dim(Y ) = t and d(X,Y ) ≤ H−1(t)−H−1(s).

Proof uses the following strategy:

Given si, set ti so that (si, ti) lies on the line connecting (s, t) and (1, 1).

This produces a map si 7→ di which is concave!!

(on the board)

(seven derivatives later, including a partial derivative with respect to one of
the parameters, we prove this map is concave.)
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Pairs (s, t) for which the line toeing strategy works

Problem: This map only works for pairs (s, t) such that the map si → di is
decreasing at s.

After some undergraduate calculus, these are exactly the pairs (s, t) satisfying

(1− t)g′(t) ≤ (1− s)g′(s)

where g = H−1.

(on board)

We see that the line toeing strategy fails for some small values of s.
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Constant distance strategy, reprise

We have already seen a strategy that only succeeds on some small values of s
– the constant distance strategy.

(only four derivatives needed to show that si 7→ ti has the required convexity
properties for small s!)

After some undergraduate calculus, the pairs (s, t) for which the constant
distance strategy works are exactly those satisfying

(1− t)g′(t) ≥ (1− s)g′(s)

where g = H−1.
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Yes, I really meant that

Line toeing strategy works at (s, t) if and only if

(1− t)g′(t)≤(1− s)g′(s)

Constant distance strategy works at (s, t) if and only if

(1− t)g′(t)≥(1− s)g′(s)

where g = H−1.

For every s < t ≤ 1, there is a working strategy (there is a way to set the ti, di
in the Main Lemma so that by convexity, the resulting Y has the right
effective dimension and the right distance from a given X).

This proves Theorem 3+.

This is too precise to be a coincidence!?
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Summary of the talk

Increasing dimension s to dimension t:

Distance at least H−1(t)−H−1(s) may be needed to handle starting with
a Bernoulli H−1(s)-random.

This distance suffices (construction)

Decreasing dimension t to dimension s:

Distance at least H−1(t− s) is needed for information coding reasons.

Construction breaks (even finite version)

In fact, this distance is demonstrably too short.
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Questions

Given s < t < 1, what is the minimum distance d such that for every X with
dim(X) = t, there is a Y with dim(Y ) = s and d(X,Y ) ≤ d?

Why do the line-toeing and constant-distance strategies dovetail so perfectly?
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