Degrees of autostability relative to strong constructivizations of structures of finite signature

Margarita Marchuk

Sobolev Institute of Mathematics

Aspects of Computation 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Computable structures

- Our signatures (languages) are computable, and our structures have universes contained in ω.
- We identify formulas with their Gödel numbers

A structure $\mathfrak M$ is computable if its atomic diagram $D(\mathfrak M)$ is computable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Autostability

Definition

Let d be a Turing degree. A computable structure \mathfrak{M} is d-autostable (d-computably categorical) if for every computable structure \mathfrak{N} isomorphic to \mathfrak{M} , there exists a d-computable isomorphism from \mathfrak{M} onto \mathfrak{N} .

Definition(Fokina, Kalimullin, Miller, 2010)

The autostability spectrum~~of a computable structure $\mathfrak M$ is the set

 $AutSpec(\mathfrak{M}) = \{ \mathbf{d} : \mathfrak{M} \text{ } \mathbf{d}\text{-autostable} \}.$

A Turing degree d_0 is the degree of autostability of \mathfrak{M} if d_0 is the least degree in $\mathrm{SCAutSpec}(\mathfrak{M})$.

A structure \mathfrak{M} is **decidable** if its complete digram $D^c(\mathfrak{M})$ is computable, i.e. given a first-order formular $\phi(\bar{x})$ and a tuple \bar{a} from \mathfrak{M} , one can effectively determine whether $\phi(\bar{a})$ is true in \mathfrak{M} or not.

A decidable structure \mathfrak{M} is called **d-autostable relative to** strong constructivizations (d-SC-autostable) if

every two decidable copies of $\mathfrak M$ are d-computably isomorphic.

Prime models and complete formulas

Let \mathfrak{M} be a structure of a signature σ . Th(\mathfrak{M}) denotes the first-order theory of \mathfrak{M} .

A structure \mathfrak{M} is a **prime model** (of the theory $\operatorname{Th}(\mathfrak{M})$) if \mathfrak{M} is elementary embeddable into every structure \mathfrak{N} of the theory $\operatorname{Th}(\mathfrak{M})$.

A structure \mathfrak{M} is an **almost prime model** if there exists a finite tuple \overline{c} from \mathfrak{M} such that $(\mathfrak{M}, \overline{c})$ is a prime model.

A first-order formula $\psi(x_0, \ldots, x_n)$ is a **complete formula** for the theory $\operatorname{Th}(\mathfrak{M})$ if $\mathfrak{M} \models \exists \bar{x} \psi(\bar{x})$ and, for every σ -formula $\varphi(\bar{x})$, either $\mathfrak{M} \models \forall \bar{x}(\psi(\bar{x}) \to \varphi(\bar{x}))$ or $\mathfrak{M} \models \forall \bar{x}(\psi(\bar{x}) \to \neg \varphi(\bar{x}))$.

Nurtazin's criterion

Theorem (Nurtazin 1974)

Suppose that \mathfrak{M} is a decidable structure of a signature σ . \mathfrak{M} is SC-autostable if and only if there exists a finite tuple \overline{c} from \mathfrak{M} such that the following holds:

(a) The structure $(\mathfrak{M}, \overline{c})$ is a prime model of the theory $\operatorname{Th}(\mathfrak{M}, \overline{c})$. (b) Given a $(\sigma \cup \{\overline{c}\})$ -formula $\psi(\overline{x})$ one can effectively, uniformly

in ψ , determine whether ψ is a complete formula for $\operatorname{Th}(\mathfrak{M}, \overline{c}).$

Goncharov's result

Theorem (Goncharov, 2011)

Let d be a Turing degree. Suppose that \mathfrak{M} is a decidable structure of a signature σ , \bar{a} is a finite tuple from \mathfrak{M} such that the following conditions hold.

(a) The structure $(\mathfrak{M}, \overline{a})$ is a prime model.

(b) Given a $(\sigma \cup \{\bar{a}\})$ -formula $\psi(\bar{x})$, one can effectively relative to d, uniformly in ψ , determine whether ψ is a complete formula in the theory $Th(\mathfrak{M}, \bar{a})$.

Then \mathfrak{M} is d-SC-autostable.

In particular, if \mathfrak{M} is a decidable almost prime model (i.e. \mathfrak{M} is decidable and there exists a tuple \bar{a} such that (a) is satisfied), then \mathfrak{M} is c-autostable for some c.e. degree c.

SC-autostability spectrum

Goncharov investigated autostability spectrum restricted to decidable structures.

Definition(Goncharov, 2011)

The autostability spectrum relative to strong constructivizations (SC-autostability spectrum) of the structure \mathfrak{M} is the set

 $SCAutSpec(\mathfrak{M}) = \{ \mathbf{d} : \mathfrak{M} \ \mathbf{d}\text{-}SC\text{-}autostable} \}.$

A Turing degree d_0 is the degree of SC-autostability of \mathfrak{M} if d_0 is the least degree in $\mathrm{SCAutSpec}(\mathfrak{M})$.

Directions

- Examples of SC-autostability spectrum.
- Relations between autostability spectrum and SC-autostability spectrum.
- Which autostability spectrums can be witnessed by structures of familiar classes?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples of SC-autostability.

Theorem (S.S. Goncharov, 2011)

Every c.e. degree ${\bf d}$ is the degree of SC-autostability of some decidable almost prime model of the infinite signature.

Theorem (N.A. Bazhenov, 2016)

- For every computable ordinal α, the Turing degree 0^α is a degree of SC-autostability for some decidable Boolean algebra.
- For a computable ordinal α, every Turing degree c.e. in and above 0^{α+1} is the degree of SC-autostability for some decidable structure of the infinite signature.

PA-degrees

A Turing degree d is called a $\mathbf{PA} - \mathbf{degree}$ if it computes some complete extension of Peano arithmetics.

Theorem (N.A. Bazhenov, 2016)

There exists a decidable structure \mathfrak{M} such that \mathfrak{M} is a prime model of the infinite signature of the theory $Th(\mathfrak{M})$, and the SC-autostability spectrum of \mathfrak{M} contains precisely the PA-degrees.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark 1 If \mathfrak{M} is a decidable structure, then

- $\operatorname{AutSpec}(\mathfrak{M}) \subseteq \operatorname{SCAutSpec}((\mathfrak{M}).$
- ▶ If $\mathbf{0} \in \operatorname{AutSpec}(\mathfrak{M})$, then $\mathbf{0}^{\omega} \in \operatorname{SCAutSpec}(\mathfrak{M})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let \mathfrak{M} be a decidable structure of a signature σ . Then there exists a computable structure \mathfrak{M}^* of the new signature σ^* such that $\operatorname{AutSpec}(\mathfrak{M}^*) = \operatorname{SCAutSpec}(\mathfrak{M})$. In particular, every degree of SC-autostability is a degree of autostability.

Proof. Consider the structure \mathfrak{M}^* of the signature

$$\sigma^* = \{P_{\Phi}^n : \Phi(x_1, \dots, x_n) \text{ is an } \sigma\text{-formula}\}$$

such that $|\mathfrak{M}^*|=|\mathfrak{M}|$ and the predicates of σ^* are interpreted in the natural way.

Theorem (with N.A. Bazhenov 2016)

- Suppose that 0 ≤ α ≤ β ≤ ω. There exists a decidable structure M such that 0^α is the degree of SC-autostability of M and 0^β is the degree of autostability of M.
- Suppose that 0 ≤ β ≤ ω. There exists a decidable structure 𝔐 such that 𝔐 has no degree of SC-autostability and 0^β is the degree of autostability of 𝔐.

Problem 1

Does there exist a decidable structure that has degree of SC-autostaility and has no degree of autostability?

Problem 2

Is every autostability spectrum the SC-autostability spectrum for some decidable structure? In particular, is every degree of autostability a degree of SC-autostability?

Familiar classes

Theorem (Bazhenov, 2016)

For an infinite computable ordinal β , every Turing degree c.e. in and above $\mathbf{0}^{(2\beta+1)}$ is the degree of SC-autostability for some discrete linear order.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Goncharov, 2011)

Let d be a c.e. degree. There exists a decidable structure \mathfrak{M} of the signature $\sigma_1 = \{R_i^1 : i \in \omega\}$ such that:

- (1) \mathfrak{M} is a prime model,
- (2) d is the degree of SC-autostabilioty of \mathfrak{M} ,
- (3) every computable copy of $\mathfrak M$ is decidable.

We construct the effective transformation Ψ of computable structures of the signature σ_1 into computable structure of finite signature. We ensure that Ψ preserves the key properties. Using this transformation we show the following.

Theorem

Let d be a c.e. degree. There exists a decidable structure \mathfrak{M} of the finite signature σ_2 such that:

(1) \mathfrak{M} is a prime model,

(2) d is the degree of SC-autostabilioty of \mathfrak{M} ,

(3) every computable copy of \mathfrak{M} is decidable.

We use the ideas of Goncharov (1980) to construct a transformation Ψ' of computable structures of the signature σ_2 into computable directed graphs such that Ψ' preserves the key properties.

Corollary 1

Let ${\bf d}$ be a c.e. degree. There exists a decidable directed graph ${\mathfrak M}$ such that:

(1) \mathfrak{M} is a prime model,

- (2) ${\bf d}$ is the degree of SC-autostabilioty of ${\mathfrak M},$
- (3) every computable copy of \mathfrak{M} is decidable.

Recall that a signature σ is **nontrivial** if σ contains a predicate or functional symbol of arity ≥ 2 .

Now we can use the standard codings of directed graphs into structures of the nontrivial signature σ .

Corollary 2

Let d be a c.e. degree. There exists a decidable structure ${\mathfrak M}$ of the nontrivial signature σ such that:

(1) \mathfrak{M} is a prime model,

- (2) d is the degree of SC-autostabilioty of \mathfrak{M} ,
- (3) every computable copy of \mathfrak{M} is decidable.

Familiar classes

Problem 3

Let K be one of the familiar algebraic classes (e.g., directed graphs, partial orders, lattices, groups, fields, etc.). Suppose \mathfrak{M} is a decidable structure (for an arbitrary computable signature). Does there always exist a decidable structure $\mathfrak{N}_{\mathfrak{M}}$ from K such that $\mathrm{SCAutSpec}(\mathfrak{N}_{\mathfrak{M}}) = \mathrm{SCAutSpec}(\mathfrak{M})$

Announcement

Announced result

There exists a decidable undirected graph \mathcal{G} such that \mathcal{G} is a prime model of the theory $Th(\mathcal{G})$, and the SC-autostability spectrum of \mathcal{G} contains precisely the PA-degrees.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you for your attention!