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ABSTRACT. It is well known that computable randomness is closed under computable permutations. We

investigate analogous statements for resource bounded randomness notions. Suppose S is a polynomial

time computable permutation of the set of strings over the unary alphabet (identified with N). If its

inverse is not polynomially bounded, it is easy to build a polynomial time random bit sequence Z such

that Z ◦ S is not polynomial time random. So one should only consider permutations S satisfying the

extra condition that the inverse is polynomially bounded. Now the closure depends on additional

assumptions in complexity theory.

On the one hand, if BPP = EXP then polynomial time randomness is not preserved by some permutation

S such that in fact both S and its inverse are in P.

On the other hand, we show that polynomial space randomness is preserved by polynomial time

permutations with polynomially bounded inverse; so if P = PSPACE, then polynomial time randomness is

preserved.
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A hierarchy of randomness notions

Formal randomness notions for an infinite bit sequence Z ∈ {0, 1}N
can be introduced via algorithmic tests.

I Martin-Löf (1966) defined algorithmic tests as uniformly Σ0
1

sequences 〈Gm〉m∈N, where Gm ⊆ {0, 1}N and λGm ≤ 2−m;

Z is Martin-Löf-random if Z 6∈
⋂
Gm for each such test.

I Schnorr (1971) used a more restrictive notions of tests: he

required that the measure λGm be computable uniformly in m.

This yields the weaker notion of Schnorr randomness.

I He also introduced computable randomness of Z: no

computable betting strategy succeeds when betting along Z.

Martin-Löf rd. ⇒ computably random ⇒ Schnorr random
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Criteria for formal randomness notions

1. A reasonable notion should imply intuitive properties of random

sequences: e.g. Borel normal; no infinite “part” (bits in a recursive

set of positions) is computable; parts are independent.

The first two properties hold for any Schnorr random Z. However, there

is a computably random Z such that the even-positioned bits are Turing

equivalent to the odd-positioned bits (take Z in a high minimal degree).

This is no longer possible for a ML-random Z.

2. A reasonable randomness notion should be invariant under

computable measure-preserving operations on {0, 1}N.

E.g. a computable permutation of the bits.

It follows from the definitions that ML- and Schnorr randomness are

invariant under computable permutations. For computable randomness,

it’s also true, but requires more work. 4 / 28



Preliminary:

resource–bounded

randomness notions
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Algorithmic tests in the resource–bounded setting

A martingale M is a function from {0, 1}∗ to {q ∈ Q : q > 0}
satisfying M(x) = (M(x0) +M(x1))/2 for all x ∈ {0, 1}∗.

M succeeds on a set Z if lim supnM(Z � n) =∞.

I A martingale M is polynomial time computable if on input x

one can determine the rational M(x) in polynomial time.

I Here a positive rational number q is presented by the pair

〈k, n〉 of natural numbers (written in binary) such that

q = k/n in lowest terms.

I Similarly, define when a martingale is polynomial space

computable.
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Polynomial time and polynomial space

randomness

I Z ∈ {0, 1}N is polynomial time random if no polynomial time

computable martingale succeeds on Z.

I This was briefly defined by Schnorr (1971). Lutz (1990) studied

resource bounded martingales. Ambos-Spies and Mayordomo

looked at the associated randomness notions (for sets of strings,

rather than bit sequences). Polynomial randomness was studied in

more explicit form in Yongge Wang’s 1996 thesis (Uni Heidelberg)a.

I In a similar way one defines polynomial space randomness.

aSee the 1996 survey ”Resource bounded measure and randomness”

by Ambos-Spies and Mayordomo for background and references.
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Tally languages

From now on we identify a bit sequence Z ∈ {0, 1}N with a subset

of {0}∗ (a tally language):

Z ∈ {0, 1}N is seen as {0k : Z(k) = 1}.

In this way we can apply the notions of complexity theory to Z.
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Polytime randoms exist

in all superpolynomial time classes
Recall that a function h is time constructible if the function

0n → h(n) can be computed in time O(h(n)).

Existence result. Suppose the function h(n) is time constructible

and eventually dominates each polynomial (e.g. h(n) = nlogn).

There is polynomial time random Z computable in time O(h(n)).

Basic idea (Schnorr, essentially): Let 〈M e〉e∈N be an effective list of

all polytime martingales with initial capital 1, and let

L =
∑

2−eMe.

Z is a bit sequence along which L does not increase. To get

L ∈ DTIME(h), let Me “kick in” only on sufficiently long strings.
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Base invariance of polynomial time randomness

I Polynomial time martingales and polytime randomness in base

b > 2 are defined similar to the above.

I Polynomial time randomness can be seen as a property of real

numbers, rather than of sequences of digits for a fixed base:

Theorem (Figueira, N 2013) For a real number r ∈ [0, 1],

I let Z be the binary expansion of r

I let Y be the expansion of r in base b.

Z is polynomial time random ⇐⇒ Y is polynomial time random.

A similar result was previously known for computable randomness. In

both cases, one uses a characterization of the randomness notion for

reals via differentiability of certain effectively computable functions.
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Polynomial time functions g : (0, 1)→ R

I A sequence of rationals (pi)i∈N is called a Cauchy name if

∀k > i |pi − pk| ≤ 2−i

I In the efficient setting, one uses a compact set of Cauchy

names to represent reals.

I A sequence (ai)i∈N, where ai ∈ {−1, 0, 1}, a0 = 0, a1 = 1,

determines the real
∑

i∈N ai2
−i ∈ (0, 1).

I A function g : (0, 1)→ R is called polynomial time computable

if there is a polynomial time oracle Turing machine turning

every such Cauchy name for x into a Cauchy name for g(x).

Functions such as ex, x2, sin x are polynomial time computable.
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Characterising polynomial time randomness

via differentiability

Theorem (N., STACS 2014)

A real z is polynomial time random ⇐⇒
g′(z) exists for every nondecreasing polynomial time function g.
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Permutations with polynomially

unbounded inverse

Proposition. Let S be a polynomial time computable permutation

of {0}∗ such that for each polynomial p, there are infinitely many n

with p(S(n)) ≤ n.

There is a polynomial time random Z ⊆ {0}∗ (computable in time

2O(n)) such that Z ◦ S is not polynomial time random.

Idea:

I build polytime random Z as above: let L =
∑

2−eMe;

Z is a bit sequence along which L does not increase.

I If S(n) is much smaller than n, we can predict Z(S(n)) in

time polynomial in n. So Z ◦ S is not polytime random.
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A polytime computable permutation with

unbounded inverse

A permutation S as in the Proposition exists:

For the k-th polynomial pk, if n = 〈k, i〉 is least such that

pk(〈k, 0〉) ≤ n, put a cycle into S as follows:

n→ 〈k, 0〉 → 〈k, 1〉 → . . .→ 〈k, i− 1〉 → n.

Hence one should only look for closure under polynomial time

computable permutation S such that S−1 is polynomially bounded.
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Part 1: If P = PSPACE then closure holds
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Based on the arguments in Buhrman, Melkebeek, Regan,

Sivakumar and Strauss (2000), we show that polynomial space

randomness is closed under polynomial time computable

permutations S with polynomially bounded inverse.

So if P = PSPACE, this closure property applies to polynomial time

randomness as well.

I Let g(n) be a polynomial bound for S−1.

I Suppose that a polynomial space martingale B succeeds on

Z ◦ S. We may assume that B has the savings property:

if σ � τ then B(τ) ≥ B(σ)− 2.
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The “savings – gale” B ∈ PSPACE succeeds on Z ◦ S.

We define a martingale D ∈ PSPACE that succeeds on Z.

For bit strings α,w such that |α| = g(|w|), we write α ∼S w if

α = w ◦ S whenever both sides are defined, namely

k < |α| ∧ S(k) < |w| ⇒ α(k) = w(S(k)).

There are 2g(|w|)−|w| many α’s of length g(|w|) such that α ∼S w.

To define D(w) we take their average:

D(w) = 2|w|−g(|w|)
∑

B(α) [[|α| = g(|w|) ∧ α ∼S w]]

D is a martingale because if |α| = g(n+ 1) and α ∼S w, then either

α ∼S w0 or α ∼S w1. Since g is a polynomial, D is in PSPACE. B

succeeds on Z ◦ S, so for each c we can find w ≺ Z such that B(α) ≥ c
for each α ∼S w. So D succeeds on Z.
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Extension to scanning functions

A scanning function is a function V : {0, 1}∗ → {0}∗ such that

V (α) 6= V (α� i) for each bit string α and each i < |α|. For Z ⊆ N
let Z ◦ V ⊆ N be the set Y such that Y (i) = Z(V (Y � i)) for each i.

For a function g : N→ N, one says that V is g-filling if for each n

and each string α of length g(n), ∀r < n∃i V (α� i) = r.

For bit strings α,w, we write α ∼V w if for each j < |α|, if the j-th

query x in the run of V on α is less than |w|, then w(x) = α(j).

The argument given for permutations actually shows the following.

Theorem. Let V be a scanning function in PSPACE that is g-filling

for a polynomial g.

If Z is polynomial space random, then so is Z ◦ V .
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Part 2: If BPP is large then closure fails
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The class BPP

I BPP is short for “bounded-error probabilistic polynomial

time”. (But BEPP is too long.)

I BPP contains the languages for which there is a polynomial

time algorithm that uses random bits and obtains the answer

with error probability < 1/2− ε for some fixed ε.

I By repeating runs independently, we can ensure that the error

probability on inputs of length n is at most 2−q(n) for a given

polynomial q.

Example of a problem in BPP that is not known to be in P:

polynomial identity testing. Polynomials are given as arithmetical

circuits, have to test whether they are equal.
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If BPP contains a time class larger than P

then closure fails

Theorem. Assume that DTIME(h) ⊆ BPP for some time

constructible function h that eventually dominates each

polynomial, e.g. nlogn.

Then there is a polynomial time random set Z ∈ DTIME(23·n) and

a permutation S with S, S−1 ∈ P such that

Z ◦ S is not polynomial time random.

We may assume that h(n) ≤ nlogn.
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Let M be a martingale in DTIME(h) that bets only on odd

positions, and dominates up to a multiplicative constant all

polynomial time martingales that bet only on odd positions. Let

A = {x ∈ {0, 1}∗ : x has odd length and M(x1) < M(x0)}.

A is computable in time h and hence by assumption in BPP.

Let B ⊆ {0}∗ be a set in DTIME(25·n) so that no martingale in

DTIME(24·n) succeeds along B. Define Z ⊆ N as follows:

Z(2n) = B(n); Z(2n+ 1) = A(Z � 2n+ 1).

Z = B A B A B A B A B A B A B . . .

B(0)A(Z � 1)B(1)A(Z � 3)B(2)A(Z � 5) . . .
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Z is polynomial time random

Z = B A B A B A B A B A B A B . . .

B(0)A(Z � 1)B(1)A(Z � 3)B(2)A(Z � 5) . . .

Assume that a polynomial time martingale L succeeds on Z. We may

suppose L bets only on odd positions (the A’s), or only on even

positions (the B’s).

I The case “odd positions” cannot happen: by definition of A, the

capital of the universal M , and hence of L, is bounded along Z.

I In the case “even positions”, we define a martingale

N ∈ DTIME(nh(n) + h(n)) that succeeds on B, contradiction.

I N computes the values of Z at the even positions using that

A ∈ DTIME(h). It doesn’t need to bet on these values; they are

only needed to determine the bets of L at the odd positions.

23 / 28



A reshuffling Ẑ of Z

Since A ∈ BPP, there is a randomised algorithm R that computes

A(x) on input x ∈ {0, 1}2n+1 with error probability 2−3n−2. This

takes time p(n) for some polynomial p, and hence uses at most p(n)

random bits.

Let Ẑ consisting for n = 0, 1, . . . of p(n) bits taken from B,

followed by the bit A(Z � 2n+ 1).

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

Then Ẑ = Z ◦ S for the right permutation S, and S, S−1 ∈ P.
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The reshuffling Ẑ is not polynomial time random

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

Recall algorithm R computes A(x) on input x ∈ {0, 1}2n+1 with error

probability 2−3n−2.

Idea: use B as a reservoir of random bits.

The probability that a string y of length p(n) miscomputes A(x) for

some x of length 2n+ 1 is at most 22n+1 · 2−3n−2 = 2−n−1. Whether y

miscomputes some x can be determined in time O(23n).

Starting with 2−n−1 of the initial capital set aside for this purpose, we

can bet on the set of miscomputing y. On each such y we gain SGD 1.

If the portion of B’s of length p(n) is a miscomputing y i.o. then the

martingale succeeds on the sequence B.
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The reshuffling Ẑ is not polynomial time random

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

I The martingale explained above can be computed in time

O(24k).

I This uses that p(n+ 1)− p(n) ≤ p(n) for a.e. n. For k = p(n)

we have to average over at most 2k many y’s satisfying a

condition that can be checked in time O(23n). This yields the

exponent 4.

Since B is O(24n)-random, almost every such portion of B’s

computes the value of Ẑ at the “A” that comes after correctly.

26 / 28



The reshuffling Ẑ is not polynomial time random

Ẑ = B A B B B A B B B B B B A . . .

p(0) p(1) p(2)

To repeat, almost every such portion of B’s of length p(n)

computes the value of Ẑ at the “A” that comes after correctly.

We use this to define a polynomial time martingale that succeeds

on Ẑ. To make bet at the position rn of the n-th “A”:

I From Ẑ � rn determine x = Z � 2n+ 1

I let y = the portion of B’s preceding the n-th “A”

I run the algorithm R(x) with random bits y, and bet half of

the capital on the value predicted by R

For almost every n, this martingale gains by a factor 1.5 at rn.
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Question

PP denotes probabilistic polynomial time: w is in the language if

the majority of computations of a polynomial time NTM on input

w is accepting. Clearly PP ⊆ PSPACE.

Is the assumption P = PP sufficient for closure of polynomial time

randomness under permutations S such that S, S−1 ∈ P?

Reference: upcoming paper “Closure of resource bounded

randomness notions under polynomial time permutations”,

available on Nies’ web site.
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