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Motivation

In the last several years, Julia Knight and Karen Lange (sometimes with
coauthors) have worked towards a computability theoretic analysis of the
following theorem and its proof.

Theorem (Mourgues and Ressayre)

Every real closed field has an integer part.

The algebraic method of Mourgues and Ressayre’s proof is used in the
context of ordered abelian groups to prove Hahn’s Theorem, and many of
Knight and Lange’s results have analogs for ordered abelian groups.

Our goal is to give these analogs and show how to answer one of Knight
and Lange’s main open questions in the simpler context of ordered abelian
groups.

Ordered abelian groups, generalized series and integer parts Reed Solomon



Ordered groups and fields

An ordered abelian group is an abelian group G together with a linear
order ≤G on G satisfying

x ≤G y ⇒ x + z ≤G y + z

If we reverse the order by

x ≤′G y ⇔ x ≥G y

then (G ,≤′G ) is also an ordered abelian group.

An ordered field is a field F together with a linear order ≤F on F satisfying

x ≤F y and r ≥F 0F ⇒ x + z ≤F y + z and r · x ≤F r · y
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Archimedian classes

G will denote a (computable) ordered abelian group and R will denote a
(computable) real closed field. In either case, we define

• x is archimedean equivalent to y

x ∼ y ⇔ ∃n ∈ N (|x | ≤ n|y | and |y | ≤ n|x |)

• x is archimedean less than y

x � y ⇔ ∀n ∈ N (n|x | < |y |)

• [x ] = w(x) = the equivalence class of x under ∼
• w(X ) = {[x ] | x ∈ X}

Since we can effectively pass to the divisible closure of G without adding
archimedean classes, we can assume G is divisible.
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Value group sections in R

w(R×) = {[x ] | x ∈ R and x 6= 0R} forms a divisible ordered abelian group

[x ] < [y ] ⇔ x �R y [x ] + [y ] = [x ·R y ] 0w(R×) = [1R ]

called the value group of R. This group describes the algebraic structure
of the archimedean classes in R.

It is useful to work with an appropriate copy of the value group inside R.
For any embedding t : w(R×)→ (R>0, ·) of ordered groups such that
t([x ]) ∈ [x ], the image of t is a value group section of R.

Theorem (Knight, Lange)

Every countable R has a value group section which is ∆0
2(R). Furthermore,

there is a computable R such that every value group section computes 0′.
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w(R×) = {[x ] | x ∈ R and x 6= 0R} is a divisible ordered abelian group

[x ] < [y ] ⇔ x �R y [x ] + [y ] = [x ·R y ] 0w(R×) = [1R ]

called the value group of R.

Note: When studying valuations of ordered fields, one typically reverses
the order in the value group by setting

[x ] > [y ] ⇔ x �R y

For now, we haven’t done this, but we will see why this is done later.
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Archimedean representatives in G

In G , the archimedean classes form a linear order.

w(G>0) = {[x ] | x > 0G} is a linear order with [x ] < [y ] ⇔ x � y .

We can find appropriate copies of this linear order inside G . For any
embedding t : w(G>0)→ G>0 as linear orders such that t([x ]) ∈ [x ], the
image of t is a set of archimedean representatives of G .

Theorem (Downey, Solomon)

Every countable G has a set of archimedean representatives which is
∆0

2(G ). Furthermore, there is a computable G such that every set of
archimedean representatives computes 0′.
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Theorem (Solomon)

Let L be a r.e. presented linear order. There is a computable G such that
w(G>0) is isomorphic to L. In particular, for any computable Ĝ ∼= G and
any set A(Ĝ ) of archimedean representatives, A(Ĝ ) ∼= L.

Theorem (Feiner)

There is an r.e. presented linear order with no computable copy.

Corollary

There is a computable G such that no computable copy of G has a
computable set of archimedean representatives.
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Residue field of R

For a real closed field R,

O = {r ∈ R | [r ] ≤ [1R ]} is the finite and infinitesimal elements

M = {r ∈ R | [r ] < [1R ]} is the infinitesimal elements

The quotient O/M is the residue field.

The residue field of R is a real closed archimedean field, so it is isomorphic
to a subfield of R.

If t is an embedding of the residue field into R such that t([x ]) ∈ [x ], then
the image of t is a residue field section of R.

Theorem (Knight, Lange)

Every R has a residue field section which is Π0
2(R). Furthermore, there is a

computable R such that no residue field section is Σ0
2.
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Hahn fields

Let k be an archimedean real closed field and let G be an divisible ordered
abelian group. Let t be an indeterminant.

The Hahn field k((G )) consists of the formal series∑
g∈S

ag t
g

where S ⊆ G is well ordered and each ag ∈ k − {0k}. The formal series
are added and multiplied in k((G )) as usual.

There is a natural order on k((G )) defined by∑
g∈S0

ag t
g <

∑
g∈S1

bg t
g ⇔ ag < bg for the least g such that ag 6= bg

In fact, k((G )) is a real closed field with residue field k.
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∑
g∈S0

ag t
g <

∑
g∈S1

bg t
g ⇔ ag < bg for the least g such that ag 6= bg

This implies [∑
g∈S

ag t
g
]

= [1tg ] where g = least(S)

∑
g∈S0

ag t
g �

∑
g∈S1

bg t
g ⇔ least(S0) >G least(S1)

If we order the elements [
∑

g∈S ag t
g ] of the value group by[ ∑

g∈S0

ag t
g
]
>
[ ∑
g∈S1

bg t
g
]
⇔

∑
g∈S0

ag t
g �

∑
g∈S1

bg t
g

then the map sending [
∑

g∈S ag t
g ] to least(S) is an isomorphism from the

value group onto G .
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Recall: The standard definition for the value group on a real closed field
orders the archimedean classes by

[x ] > [y ] ⇔ x � y

Following this convention, k((G )) is a real closed field with residue field k
and value group G .
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Integer parts

An integer part of R is a discrete ordered subring I such that

∀r ∈ R ∃i ∈ I (i ≤ r < i + 1)

Mourgues and Ressayre proved every R has an integer part.

Let k denote the residue field of R.

They construct a value group section H and a truncation closed
embedding from R into k((H)) from which it is easy to define the
integer part.

Knight and Lange have results on the complexity of this construction.
However, it is unknown whether ACA0 can prove the existence of an
integer part, or whether each computable real closed field has a ∆0

2 integer
part.
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Hahn’s Theorem (Classical Version)

Hahn’s Theorem is a similar embedding theorem with a similar proof.

• Switch from real closed fields to (divisible) ordered abelian groups.

• Value group is replaced by a linear order (to represent the structure of
the archimedean classes).

• The residue field is replaced by archimedean ordered abelian groups.

Theorem (Hölder’s Theorem)

Every archimedean ordered group is isomorphic to a subgroup of (R,+).

Let L be a linear order and let
∑

LR denote the abelian group of all
functions f : L→ R under componentwise addition.
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Hahn’s Theorem (Classical Version)

A Hahn subgroup of
∑

LR is a subgroup H such that for all f ∈ H,

supp(f ) = {` ∈ L | f (`) 6= 0} is well ordered

and for all ` ∈ L and f ∈ H, the function C`f is also in H where

C`f (x) =

{
f (x) if x <L `
0R otherwise

Each f ∈ H can be represented by
∑

`∈S r`t
` where S ⊆ L is well ordered

and each r` ∈ R with r` 6= 0.

f = r`0t
`0 + r`1t

`1 + · · · +r`αt
`α + r`α+1t

`α+1 + · · ·
C`αf = r`0t

`0 + r`1t
`1 + · · ·

The requirement that H is closed under the C` operations is the analog of
being truncation closed in the Mourgues and Ressayre construction.
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Order H by f < g if and only if f (`) <R g(`) where ` is the least element
of {x ∈ L | f (x) 6= g(x)}.

As before, if we flip the order on the equivalence classes to

[f ] > [g ] ⇔ f � g

then the map sending [f ] to the least element of supp(f ) is an order
isomorphism from the archimedean classes of H onto L.
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Theorem (Hahn’s Theorem)

Let G be a ordered abelian group and let A ⊆ G be a set of archimedean
representatives. We order A by x <A y if and only if x � y. G is
isomorphic to a Hahn subgroup of

∑
AR.

Theorem (Hölder’s Theorem)

Every archimedean ordered group is isomorphic to a subgroup of R.

To study Hahn’s Theorem effectively or in reverse math for countable G ,
we would like to replace R by countable archimedean groups. Using
Hölder’s Theorem (in RCA0), we can always embed these archimedean
groups into R and get the original version.
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Let A be a linear order and let Ka for a ∈ A be a sequence of archimedean
ordered groups. A Hahn subgroup of

∑
A Ka (indexed by I ) is a sequence

of functions fi : A→
⋃

A Ka for i ∈ I such that

• fi (a) ∈ Ka for all i ∈ I and a ∈ A,

• supp(fi ) is well ordered,

• {fi | i ∈ I} is group closed under the Ca operations for a ∈ A.

We say G is isomorphic to a Hahn subgroup of
∑

A Ka if there is a Hahn
subgroup {fg | g ∈ G} indexed by G such that

• f0G (a) = 0Ka for all a ∈ A, so it is the identity element,

• fg + fh = fg+h and f−g = −fg , and

• g <G h if and only if fg < fh in the Hahn subgroup.
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Theorem (Hahn’s Theorem, Version 2)

For every ordered abelian group G, there is a linear order A and a
sequence Ka (for a ∈ A) of archimedean ordered subgroups of G such that
G is order isomorphic to a Hahn subgroup of

∑
A Ka.

Theorem (Downey, Solomon)

Hahn’s Theorem is equivalent to ACA0 over RCA0.

In one direction, suppose Hahn’s Theorem holds. For g , h ∈ G , if the least
element of supp(fg ) is not equal to the least element of supp(fh), then g
and h are in different archimedean classes. Using this fact, you can build a
group G to recover the range of a given function using the Hahn
embedding.
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Outline of Hahn’s Theorem in ACA0

• Fix G (divisible) and let A be a set of archimedean representatives.

• For each a ∈ A define Ha = {g ∈ G | g � a or g ∼ a} and
H ′a = {g ∈ G | g � a}.

• Ha and H ′a are convex and divisible, and Ha/H
′
a is archimedean.

• Since H ′a is divisible, there is a subgroup Ka such that Ha = H ′a + Ka.
(The groups Ka play the role of the residue field section in the
Mourgues and Ressayre construction.)

• It remains to construct the Hahn subgroup of
∑

A Ka indexed by G .
This is done by starting with the divisible subgroup G0 generated by⋃

a∈A Ka (which is easily embeddable in
∑

A Ka) and then extending
the embedding to larger subgroups formed by adding one element at
a time.
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Integer parts in G

To define an “integer part” in G , fix g ∈ G with g > 0G . Ig ⊆ G is an
integer part of G relative to g if

• Ig is an ordered subgroup of G with least positive element g , and

• for all h ∈ G , there is a z ∈ Ig such that z ≤ h < z + g .

Using the truncation closed embedding from Hahn’s Theorem, it follows
that ACA0 can prove that Ig exists for every positive g ∈ G . However, the
proof of Hahn’s Theorem uses several jumps.

Theorem (Lange and Solomon)

Let G be a countable divisible ordered abelian group. For every positive
g ∈ G, G has an integer part relative to g which is ∆0

2(G ).
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Thank you!
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