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Computable categoricity

Computable model M is computably categorical (or autostable) if any
computable model N isomorphic to M is computably isomorphic to it.

Number of computable copies of M that are not computably isomorphic
to it is called the computable dimension of M.

Natural examples of computably categorical structures are quite rare.

Example 1.1
〈Q,6〉 is computably categorical.

Theorem 1.1 (A. Maltsev)
Any finitely generated computable model is computably categorical.



Computable categoricity

Theorem 1.2
〈N,6〉 is not computably categorical.

Theorem 1.3 (A. Fröhlich, J. Shepherdson)
There exists a computable field that is not computably categorical.

Theorem 1.4 (A. Maltsev)
There exists a computable abelian group that is not computably
categorical.



Computable categoricity

Theorem 1.5 (A. Nurtazin)
A decidable structure either has computable dimension 1 or ω.

Theorem 1.6 (A. Nurtazin; G. Metakides, A. Nerode;
S. Goncharov; S. Goncharov, V. Dzgoev; P. LaRoche;
J. Remmel)
Structures of the following classes either have computable dimension 1 or
ω: algebraically closed fields; real closed fields; abelian groups; linear
orderings; Boolean algebras; Δ0

2-categorical structures.

Theorem 1.7 (S. Goncharov)
For all n > 1, there exists a computable structure of computable
dimension n.



d-computable categoricity

Computable model M is d-computably categorical if any computable
N isomorphic to M is d-computably isomorphic to it.

The autostability spectrum of M is the set

AutSpec(M) = {d |M is d-computably categorical}.

Theorem 1.8 (D. Hirschfeldt, B. Khoussainov, R. Shore,
A. Slinko)
For any computable model M, there exist computable models of the
following classes that have the same autostability spectrum as M:
directed graphs; symmetric, irreflexive graphs; partial orderings; lattices;
rings (with zero-divisors); integral domains; commutative semigroups;
2-step nilpotent groups.



Computability theory in analysis

A. Turing, On computable numbers, with an application to the
“Entscheidungsproblem”, 1936-37:

Definition 1.1
Real number is computable if its decimal expansion is computable.

As it turns out, addition and multiplication are not computable with
respect to decimal representation of the reals.

Different representations (by Dedekind cuts, left or right Dedekind cuts,
quickly converging sequences of rationals, continued fractions) lead to
different notions of effectivity for real numbers.
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Computability theory in analysis

Applications of computability theory in analysis have been approached
from various points of view.

• Banach and Mazur’s computability
• Approach of Moschovakis
• Russian constructive school: Ceitin, Kushner, Shanin etc.
• Computability in Banach spaces by Pour-El and Richards
• Representation approach of Kreitz and Weihrauch
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Pour-El and Richards’s approach

Computability in Analysis and Physics, 1980

Pour-El and Richards studied the question of uniqueness of
“computability structure” (the system of all computable sequences) in
separable Banach space up to computable isometry.

Theorem 1.9
• All computability structures in Hilbert space are pairwise computably

isometric
• However, there exists a structure in the space l1 that is not

computably isometric to the standard structure of this space



Further results on uniqueness of computable structure

• A. Melnikov, Computably Isometric Spaces, 2013
l1 is not computably categorical as a metric space
There exists a structure in the space C [0, 1] that is not computably
isometric to the standard structure

• T. McNicholl, A note on the computable categoricity of lp spaces,
2015
lp is computably categorical iff p = 2

• Z. Iljazović, Isometries and Computability Structures, 2010
All countable dense structures in an effectively compact computable
metric space are pairwise computably isometric
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Further results on uniqueness of computable structure

• A. Melnikov, K. Ng, Computable structures and operations on the
space of continuous functions, 2015
C [0, 1] (as a metric space) has computable dimension ω.
C [0, 1] (as a Banach space) is not computably categorical.
C [0, 1] (as a Banach space with pointwise multiplication) is not
computably categorical.
C [0, 1] (as a Banach algebra) is not computably categorical.

• T. McNicholl, D. Stull, The isometry degree of a computable copy
of lp, 2016
lp has computable dimension ω.
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The main question

Another approach: for the space of real numbers, fix rationals as the
dense substructure and examine different metrics that induce the
standard topology.

The main question can be stated as follows:

Is it possible to construct a metric on R such that:
• It is computable
• It induces the usual topology on R
• R equipped with this metric is computably inequivalent to the

standard real line?

• There are infinitely many such metrics
• There are infinitely many metrics such that copies of R equipped

with them are not computably homeomorphic to each other
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Representations

Definition 2.1
A computable functional is a function Φ: ωω → ωω such that for some
oracle computable function Φe

Φ(f ) = g iff Φf
e(n) = g(n)



Representations

Definition 2.2
A representation of a set X is a partial surjection δ : ωω → X.

Definition 2.3
A partial function F : X → Y is (δX , δY )-computable if there exists a
computable functional Φ such that

FδX (f ) = δY Φ(f ) for f ∈ dom(FδX ).



Reducibility of representations

K. Weihrauch, Computable analysis. An Introduction, 2000

Definition 2.4
Let δ1, δ2 be representations. δ1 is computably reducible to δ2
(δ1 ≤c δ2) if there exists a computable functional Φ such that

δ1(f ) = δ2Φ(f ) for f ∈ dom(δ1)

or, equivalently, if the identity function idX is (δ1, δ2)-computable.



Reducibility of representations

Theorem 2.1 (K. Weihrauch)
Representations of a set X form a lattice under the ordering ≤c .
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Cauchy representations

Definition 2.5
Let (X , ρ) be a complete separable metric space with a dense countable
subset W ⊆ X, W = (wn)n∈ω.

The space X = (X , ρ,W ) is called an effective metric space.

If the distance function ρ(wn,wm) ∈ Rc is computable in n and m,
effective space X and metric ρ are called computable.



Cauchy representations

Definition 2.6
Cauchy representation δρ : ωω → X is defined as follows: for x ∈ X
and f ∈ ωω we say that f is a Cauchy name for x, or δρ(f ) = x, if

wf (n) → x and ρ(wf (n),wf (m)) 6 2−n for m > n.

Let (X , ρ1,W ) and (X , ρ2,W ) be effective metric spaces. We say
ρ1 ≤c ρ2 if δρ1 ≤c δρ2 .

Lemma 2.1
If ∃M > 0 ∀x , y ∈ X

ρ2(x , y) 6 M · ρ1(x , y)

(idX is Lipschitz continuous w.r.t. ρ2 and ρ1), then ρ1 ≤c ρ2.
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Convex metrics

Convex metric space is a space (X , ρ) for any two points of which there
exists an exact midpoint between them.

Theorem 3.1
All convex computable metrics on R are c-equivalent.

Proof.
Note that convex metrics respect the usual ordering of R. Let ρ1, ρ2 be
convex.
Given any sequence (xn)n∈ω of rationals effectively converging to x ∈ R
w.r.t. ρ1, we can construct a sequence (rn, sn)n∈ω of rational intervals
converging to x. Then ρ2(rn, sn) is an upper bound for ρ2(rn, x).
Measuring this distance, we find a subsequence of (rn)n∈ω that converges
to x effectively.

So, in order to construct computably inequivalent metrics, we should
consider non-convex metrics
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Inequivalent metrics

Theorem 3.2
There exists a computable metric ρ <c ρR.



Proof idea

We diagonalize against Φe on a distinct interval Ie in R

a
b

a
b

Ie Ie

Φe

1. Pick an element a ∈ Ie , δρR-name f for a and compute Φe(f̄ ), f̄
initial segment of f .

2. Pick b close to a so f̄ is initial segment of a name for b as well.
3. Make a continuous “peak” so that ρ(a, b) is large enough.



Proof idea

We diagonalize against Φe on a distinct interval Ie in R

a
b

a
b

Ie Ie

Φe

1. Pick an element a ∈ Ie , δρR-name f for a and compute Φe(f̄ ), f̄
initial segment of f .

2. Pick b close to a so f̄ is initial segment of a name for b as well.

3. Make a continuous “peak” so that ρ(a, b) is large enough.



Proof idea

We diagonalize against Φe on a distinct interval Ie in R

a
b

a
b

Ie Ie

Φe

1. Pick an element a ∈ Ie , δρR-name f for a and compute Φe(f̄ ), f̄
initial segment of f .

2. Pick b close to a so f̄ is initial segment of a name for b as well.
3. Make a continuous “peak” so that ρ(a, b) is large enough.



Iterating the construction

By properly combining intervals and peaks, it is also possible to define
countable sequences of incomparable metrics and construct metrics that
lie even lower in the ordering ≤c .

Theorem 3.3
ω<ω is isomorphically embeddable into the ordering ≤c of computable
metrics.

Theorem 3.4
Any constructive ordinal is isomorphically embeddable into the ordering
≤c of computable metrics.

Theorem 3.5
The class of c-inequivalent computable metrics is effectively infinite (i.e.
for any computable sequence ρi of computable metrics we can construct
metric ρ such that ρ 6≡c ρi for all i).
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Iterating the construction

However, it is not known how to construct metrics higher than the given
metric in ≤c .

In particular, lattice properties of this ordering are unknown.

Lemma 3.1
Ordering ≤c of computable metrics is downward closed.

Proof.
For computable ρ1, ρ2 their maximum ρ = max{ρ1, ρ2} is a computable
metric that induces the same topology and for all x , y

ρ1(x , y), ρ2(x , y) 6 ρ(x , y),

thus ρ ≤c ρ1, ρ2.
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Reducibility ≤ch

Let δ : ωω → X be a representation. The final topology of δ is the finest
topology τδ of X with respect to which δ is continuous.

Definition 3.1
Let representations X δ1 and δ2 have the same final topology. We say
that δ1 ≤ch δ2 if there exists a (δ1, δ2)-computable autohomeomorphism
of X.

Lemma 3.2
If δ1 ≤c δ2, then δ1 ≤ch δ2.

Proof.
δ1 ≤c δ2 means that idX is a (δ1, δ2)-computable homeomorphism.



Metrics that admit no computable homeomorphism

Theorem 3.6
There exists a computable metric ρ <ch ρR.

Informally:
• There exists a computable homeomorphism (R, ρ)→ (R, ρR)
• There is no computable homeomorphism (R, ρR)→ (R, ρ)



Proof idea

Now we try to capture arbitrary rationals’ images inside Ie

a
c
b

F(a)
F(c)

F(b)

somewhere Ie

Φe

1. Search for some rational a and b on the whole real line that are
mapped to Ie .

2. Make sure that a and b are mapped to different points in Ie .
3. Some c between a and b will then be mapped to the top of the peak.
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Metrics that admit no computable homeomorphism

Thus, proof heavily relies on the convexity of the standard real metric.

Also, it doesn’t permit constructing chains in the ordering ≤ch.

Theorem 3.7
There exists a countable anti-chain (ρi)i∈ω of computable metrics that
are incomparable to each other w.r.t ≤ch and c-reducible to ρR.

Real line (with rationals as a dense subset) has computable dimension ω.
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Construction in more general case

When establishing effective infinity, we had to deal with sequences of
arbitrary computable metrics on R that may have very little in common
with the standard metric from geometrical point of view. Hence question:
do our results extend to a whole class of “real-like” metric spaces?

An easy idea is to extend the results to path connected spaces. Given a
path between two points, one can effectively choose a countable
sequence of disjoint open balls along it and run similar diagonal
construction. Extra attention should be paid to making sure that
topology is preserved by the constructed metric.
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Construction in more general case

Hypothesis 1
For any path connected computable metric space (X , ρ,W ) the following
holds:

1. ω<ω is isomorphically embeddable into the ordering ≤c of
computable metrics that induce the same topology as ρ.

2. Any constructive ordinal is isomorphically embeddable into the
ordering ≤c of computable metrics that induce the same topology as
ρ.

3. The class of c-inequivalent computable metrics is effectively infinite.

Hypothesis 2
If computable metric space (X , ρ,W ) is convex, then there exists a
countable anti-chain (ρi)i∈ω of computable metrics that induce the same
topology as ρ, are incomparable to each other w.r.t ≤ch and c-reducible
to ρ.
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Going beyond path connectedness

Path connectedness is (almost) only needed to give us a sequence of balls
that can be used in diagonal construction.

Does the construction work in connected spaces?

Other classes of spaces?



Going beyond convexity

Convexity is a very unnatural condition for existence of ch-inequivalent
metrics.

Does there exist a construction independent from convexity?

Can chains in the ordering ≤ch be constructed?
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