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Infinite games played on Finite Graph

Given a directed graph (V,E), where each node has at
least one successor

Start node s, Anke starts the play

A function F mapping subsets of V to the player
Anke/Boris who wins

Players move alternately a marker through the graph
along the edges of the graph forever

Let U be the set of infinitely often visited nodes in the
play

The winner of the play is then given by F(U)

The winner of the game is one which has a winning
strategy.
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Parity and Muller Games

Parity Game: Each node has a value (natural number) and
F(U) depends only on max{val(u) : u ∈ U}

One can assume that F(U) depends on parity of
max{val(u) : u ∈ U} being odd/even

Coloured Muller game: Each node has some colours and F

does not depend on U directly but on
⋃

u∈UColour(u). This

permits a more compact representation in the case that
only few colours are used.
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Parity Games

A parity game (V,E, s,val) has a function val : V → N.
Anke wins a play v0,v1,v2, . . . iff limsup val(vk) is odd.

1start 2 3 4 5

Example of parity game, node q is labeled with val(q).
Play 1− 2− 3− 4− 1− 2− 3− 4− 1− 2− 3− 4− 1− 2− . . .
is won by Boris.

Deciding Parity Games in Quasipolynomial Time – p. 4/42



Anke’s Winning Strategy

1start 2 3 4 5

Node 1 2 3 4 5

Anke’s Move 1 3 3 5 5

If maxval is odd and one can always go from n to n and to
min{maxval,n+ 1} and to 1 then Anke has a winning
strategy.
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Parity and Muller Games

Observation

A parity game with n nodes and values from {1,2, . . . ,m}
can be translated into an isomorphic Muller game with n

nodes and m colours where node u has colour {val(u)}.
Anke wins play iff there is a k such that the union of colours
contains 2k+ 1, but no greater colour.
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Parity vs Muller Games

Theorem [Björklund, Sandberg and Vorobyov 2003]
Every coloured Muller game with n nodes and m colours
can be translated into parity game with m! · n nodes and 2m

values and the same winner in time polynomial in the size
of the target game.

Theorem [Hunter 2007]
A Muller game is also a parity game if F (for the Muller
game) satisfies that whenever F(U) = F(U′) then
F(U ∪U′) = F(U).
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Memoryless Strategies

A strategy is a function which tells a player how to move
after a certain sequence of moves has occurred;

A strategy is called a winning strategy iff a player wins
whenever following the strategy’s advice;

A strategy is memoryless if it only depends on the
current position;

A player who has a winning strategy is called the winner

of a game.
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Memoryless Strategies

Theorem [Zielonka 1998]
Player Anke has a memoryless winning strategy in a Muller
game (V,E, s,F) if (a) she has a winning strategy and (b)
for all U,U′ ⊆ V with F(U) = Boris and F(U′) = Boris it
holds that F(U ∪U′) = Boris.

Corollary [Allen and Jutla 1991, McNaughton 1993,
Mostowski 1991]
The winner of a parity game can use a memoryless winning
strategy.
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Complexity of Parity Game

NP ∩ coNP

UP ∩ coUP (Jurdzinski 1998)
Here UP is the class of all problems L which have
unique certificates, that is, there exists a
nondeterministic machine N accepting L such that for
all x ∈ L, there is exactly one path of N(x) which
accepts.

• Walukiewicz 2001: investigated relationship between
games and model-checking

• Bernet, Janin and Walukiewicz 2002: investigated
relationship between parity games and safety games
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Complexity of Parity Game

The following work provided algorithms to determine the
winner of parity games; the complexity is measured by the
number n of nodes and m of values.

• McNaughton 1993: O((kn)m+1) for some k.

• Browne, Clarke, Jah, Long and Marrero 1997:

O(n2 · (2n/m)(m+3)/2).

• Jurdinski, Patterson and Zwick 2006/2008: nk·√n for
some k.

• Schewe 2007/2016: n2 · (k · n ·m−2)m/3 for some k.

Deciding Parity Games in Quasipolynomial Time – p. 11/42



Complexity of Parity Game

• Calude, Jain, Khoussainov, Li and Stephan 2017:

O(nlog(m)+6); if m ≤ log(n) then O(n5).

• Jurdziński and Lazić 2017 and Fearnly et. al 2017:
Simultaneously quasi linear space and quasi
polynomial Time Algorithm.

• Open: Can parity games be decided in polynomial time?
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Complexity of Parity Games

Theorem

There exists an alternating polylogarithmic space algorithm
deciding which player has a winning strategy in a given
parity game. When the game has n nodes and the values
of the nodes are in the set {1,2, . . . ,m}, then the algorithm
runs in O(log(n) · log(m)) alternating space.

Thus, parity games can be solved in O(nc logm) time using Chandra,

Kozen and Stockmeyer simulation of Alternating Turing Machines.
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Idea

Consider the possible plays as infinite paths in a tree,
where the root is the starting node, and children denote
the next move

At any node, the play so far is the path from the root to
the node

Try to determine win/loss at the nodes, and then use an
alternating Turing machine

At any node, wish to track if the play has gone through
a loop, (same node with same player’s move) with the
highest valued node in the loop being of Anke (Boris)’s
parity
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Idea

The naive method is to archive the last 2n+1 nodes
visited

The naive method uses too much space

Maintain only some partial info; however this information
is enough to eventually determine a win for Anke (Boris)
if she (he) has a memoryless winning strategy; this may
delay detection of win i.e., require more depth than the
naive method, but space usage is reduced

The partial info is called winning statistics

Deciding Parity Games in Quasipolynomial Time – p. 15/42



Winning Statistics

For Anke:

i-sequence is a sequence of 2i nodes (not necessarily
consecutive, but in order) visited say a1, a2, . . . , a2i , in the

play so far such that for each k ∈ {1,2, . . . ,2i − 1}, the
maximum value of the nodes visited between ak and ak+1

(both inclusive) is of Anke’s parity.

Aim of Anke: To find a sequence as above of length at least

2n+ 1, that is i-sequence with 2i ≥ 2n+ 1.

i = ⌈logn⌉+ 2 suffices.

Such a sequence is built by combining smaller sequences
over time in the winning statistics.
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Winning Statistics

Winning statistics:

(b0,b1, . . . ,b⌈logn⌉+2), where each bi is in {0,1, . . . ,m}

bi > 0 indicates that some i-sequence is being tracked

bi = 0 indicates that no i-sequence is being tracked

Note that, for any i, there will be at most one i-sequence

which is tracked.

Property bi (for bi > 0): an i-sequence is being tracked,
and the largest value of a node visited at the end or
after this i-sequence is bi.

Winning statistics indicates a win (for Anke) if
b⌈logn⌉+2 > 0.

Deciding Parity Games in Quasipolynomial Time – p. 17/42



Winning Statistics

If a player plays a memoryless winning strategy then its
winning statistics will eventually indicate a win (mature)
while the opponent’s winning statistics will never do so.

The winning statistics can be kept small (O(logn logm)).

The winning statistics permit to translate the parity
game into a quasipolynomially sized reachability game
where Anke has to reach a state where her winning
statistics indicate a win; if she fails to do so, Boris wins.

The reachability game can be solved in time linear in
the number of its edges (well-known fact).

Closer examination of special cases in order to obtain
that parity games are fixed parameter tractable and to
obtain furthermore some bounds for Muller games.
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Winning Statistics: Invariants

Only bi with 0 ≤ i ≤ ⌈log(n)⌉+ 2 are considered and
each such bi is either zero or a value of a node which
occurs in the play so far. Let k = ⌈log(n)⌉+ 2.

An entry bi refers to an i-sequence which occurred in the
play so far iff bi > 0.

If bi,bj are both non-zero and i < j then bi ≤ bj.

If bi,bj are both non-zero and i < j, then in the play of

the game, the i-sequence starts only after a node with
value bj was visited at or after the end of the j-sequence.
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Update Algorithm for Winning Statistics

Initialisation: All bi are set to 0.

Update rule: For each node visited with value b, choose the
largest i which satisfies one of the following:

• (1a) b and b0,b1, . . . ,bi−1 have Anke’s parity and bi

does not;

• (1b) 0 < bi < b.

If found, then let bi = b and bj = 0 for all j < i, else no change.

Winning Condition: b⌈logn⌉+2 > 0.
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Example

Example for how i-sequences and bis work.
The example play used here is not using memoryless
strategy.
Consider a graph with nodes {1,2, . . . ,7}, with
value(v) = v, in which there is a directed edge from every
node to every other node including itself.
The example play used is:

1 6 7 5 1 4 5 3 2
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Move b4,...,b0 i-sequences in play so far rule

1 0,0,0,0,1 0:1 1.(a)

6 0,0,0,0,6 0:1 6 1.(b)

7 0,0,0,0,7 1 6 0:7 1.(a)

5 0,0,0,5,0 1 6 1:7 1:5 1.(a)

1 0,0,0,5,1 1 6 1:7 1:5 0:1 1.(a)

4 0,0,0,5,4 1 6 1:7 1:5 0:1 4 1.(b)

5 0,0,0,5,5 1 6 1:7 1:5 1 4 0:5 1.(a)

3 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 1.(a)

2 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 2
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Verification

Suppose Anke has a memoryless winning strategy.

Claim: If a player is declared a winner by the algorithm in a
play, then the play contains a loop with its maximum valued
node being a node of the player.

As 2k > 2n, there exists a node v which has appeared twice
with the same player having the next move. The maximum
valued node between these two occurences in the play has
the value of X’s parity, where X was declared a winner.
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Verification Continued

Claim: If the winner of the game plays a memoryless
winning strategy then the opponent is never declared a
winner.

Suppose Boris is declared a winner. Then by the earlier
claim, there exists a loop with maximum valued node
between these two occurences in the play having Boris’
parity.
But then Boris could repeat this loop forever (as Anke is
playing memoryless strategy) contradicting the assumption
that Anke has a memoryless winning strategy.
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Verification Continued

Claim: If a player follows a memoryless winning strategy
then it is eventually declared a winner.

Let bk(t) denote the value of bk at the end of t-th step
(after the updates for the t-th move). Let

Bc(t) = {i : bi(t) has Anke’s parity and bi(t) ≥ c}

count(c, t) =
∑

i∈Bc(t)

2i
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Verification Continued

If at steps t, t′, with t < t′, a move to a node with value c are
made and in between these times no moves to a node with
value ≥ c is made, then count(c, t) < count(c, t′).

To see this, let i be the largest index such that bi is updated
in some step t′′ with t < t′′ ≤ t′. Thus, (i) bi(t) < c or bi(t)
is of Boris’ parity, and (ii) 0 < bi(t

′′) ≤ c. Hence, if not
earlier, bi(t

′) would be made equal to c.
Hence,

count(c, t′)− count(c, t) ≥ 2i −
∑

j∈Bc(t):j<i

2j ≥ 1
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Verification Continued

If the lim sup value of the play is of Anke’s parity, say c,
then, count(c, t) will eventually keep going up, and thus
imply b⌈logn⌉+2 > 0.

If Boris has a memoryless winning strategy, this cannot
happen, as bk ≥ 1 indicates that the game goes through a
loop with the maximum value being Anke’s parity.
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Reachability Games

A directed graph (V′,E′).

A set T of target nodes.

A start node, and a starting player.

Anke wins a play if the play goes through a node in T

If the play goes on forever, then Boris wins.
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Reachability Game: Linear Time

Theorem [Well-Known]
The winner of a reachability game on a graph (V,E) with
set T to be reached from s can be found in time O(|V|+ |E|).

Assumption: The node says whether Anke or Boris moves or
node is in T; the algorithm marks winning nodes for Anke.

Algorithm

For all v ∈ T and all v ∈ V −T where Anke moves let
qv = 1; for all v ∈ V −T where Boris moves let qv be the
number of successors.

Call A(v) below for all v ∈ T.

A(v): If qv = 0 then return with no activity;
If qv = 1 then let qv = 0 and call A(w) for all w with v being
a successor of w and return;
If qv > 1 then let qv = qv − 1 and return.

Anke wins iff qs = 0 after running the algorithm.
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Reduction to Reachability Games

Parity games can be reduced to reachability game as
follows. Reachability game consists of:

All nodes (v,p,w) with node v of parity game, player p
to move and current winning statistics w of Anke.

Move from (v,p,w) to (v′,p′,w′) is possible iff there is
an edge from v to v′ in parity game, p 6= p′ and on
move to v′, winning statistics w of Anke are updated to
w′ and w is not already won for Anke.

T consists of all the nodes in which the winnings
statistics of Anke show a win for Anke.

Starting node can be chosen appropriately based on
starting node of the parity game.
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Main result

The winning statistics can be written down in ⌈log(n) + 3⌉
binary numbers of ⌈log(m) + 1⌉ bits,
the player to move needs one bit and
the position needs ⌈log(n)⌉ bits.

This gives an overall number of nodes in the reachability

game being bounded by O(nlog(m)+5) nodes with each node
having up to n outgoing edges.
Thus, the overall size of the reachability graph is at most

O(nlogm+6).

Theorem

Parity games can be solved in time O(nlogm+6).
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Fixed Parameter Tractability

A problem with parameters n,m, . . . is fixed parameter
tractable in m, if its complexity can be expressed in the form
O(g(m) + poly(n, . . .)), where g(m) does not depend on
n, . . ., and the degree of n, . . . do not depend on m.
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Fixed Parameter Tractability

Theorem

If m ≤ log(n) then the winner of a parity game with n nodes

and m values can be found in time O(n5).

We need to count the number of possible values of bi’s.
Let b′

0 = max(b0,1); b
′
i+1 = max(b′

i,bi+1).

Let b′′
i = b′

i + i.

Now, b′′
i are strictly increasing functions from

{0,1, . . . , ⌈log n⌉+ 2} to {1,2, . . . ,2⌈log n⌉+ 2}, and thus

there are at most O(n2) many possibilities for them.
b′
i can be recovered from b′′

i , and then bi can be recovered

by knowing which of the bi’s are 0.
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Thus, the overall number of possibilities for bi is bounded

by O(n3).
This gives that in the corresponding reachability game,

there are at most O(n4) nodes and at most O(n5) edges.

Corollary

Parity games are fixed parameter tractable when
parameterised by the number of values.
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Remark

For constant m, the number of possible values of the

winning statistics can be given by O(n2) and the number of

nodes in the reachability game by O(n3) and the overall

running time is O(n4). Furthermore, in the case of graphs
of constant out-degree, say out-degree 2, the overall

running time is O(n3).
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More careful bounds

The winning statistics of ⌈log(n) + 3⌉ numbers b0,b1, . . . ,bk

from 0, . . . ,m can be coded by b̂0, b̂1, . . . , b̂k with

b̂0 = b0

if bi+1 = 0 then b̂i+1 = b̂i + 1 else

b̂i+1 = b̂i + 2+max{bi+1 − bj : j ≤ i}.

So b̂k ≤ bk + 2 · k.
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For h = ⌈m/ log(n)⌉, one has that the b̂0, . . . , b̂k select
⌈log(n) + 3⌉ numbers out of ⌈log(n) + 3⌉ · (h+ 2).
Number of ways to do this, for all h ∈ N, can be given by

O(h4 · n1.45+log(h+2)).

So the number of nodes in the reachability game is

O(h4 · n2.45+log(h+2)) and it has O(h4 · n3.45+log(h+2)) edges.

Time O(⌈m/ log(n)⌉4 · n3.45+log(⌈m/ log(n)⌉+2)) is sufficient to
determine the winner of a parity game.
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Bounds for Coloured Muller Games

The reduction of coloured Muller games to parity games by
Björklund, Sandberg and Vorobyov from 2003 gives the
following application; note that for almost all (m,n),
2m ≤ log(m! · n).

Theorem

A Muller game with m colours and n nodes can be solved in

time O((mm · n)5).

Theorem [Björklund, Sandberg and Vorobyov 2003]
Parity games are FPT iff Muller games are FPT.

Deciding Parity Games in Quasipolynomial Time – p. 38/42



Bounds for Coloured Muller Games

However, there is a limitation.

Theorem

If W[1] 6= FPT then coloured Muller games with m colours

and n nodes are not solvable in 2o(m·log(m)) · nO(1) time.

Theorem

Solving memoryless coloured Muller games with four
colours is NP-hard.
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Multi-Dimensional Parity Games

Definition A k-dimensional parity game has for every node a
k-dimensional vector of values from {1,2, . . . ,m}. A play is

win for Anke iff for all coordinates k̃, the limit superior of the

k̃-th value of the vectors is an odd number; a play is a win
for Boris iff for some coordinate the limit superior of the
values in that coordinate is even. Note that k,m ≥ 2.

Theorem

The k-dimensional parity games with m values per
dimension and n nodes can be solved in time
O((2k·log(k)·m · n)5.45).
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Theorem

The k-dimensional parity games with m values per
dimension and n nodes cannot be solved in time
2o(k·log(k)·m) · nO(1) unless W[1] = FPT; even if k is fixed to
a constant.
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Summary

The winner of a parity game can be found in
quasipolynomial time where the exponent depends only
logarithmically on the number of values used in the parity
game.

Parity games are fixed parameter tractable in the case that
the number of values is fixed. If m ≤ log(n) then the parity

game can be solved in O(n5) and one can give a general

formula of the type O(2m · n4) which works for all n and m

[Krishnendu Chatterjee].

The bounds transfer to Muller games and show that these

can be decided in O((mm · n)5). The bound cannot be

improved to 2o(m·log(m)) · nO(1) unless FPT = W[1].
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