National University of Singapore, September 11–15, 2017 Workshop on Computable Structures and Reverse Mathematics Honoring Rod Downey's numerous contributions to the field

The automorphisms of the lattice of x-computably enumerable vector spaces

Valentina Harizanov Department of Mathematics George Washington University, USA harizanv@gwu.edu http://home.gwu.edu/~harizanv/ Computably enumerable (c.e.) sets and their lattice

• \mathcal{E} is the lattice of c.e. sets: $W_0, W_1, ..., W_e, ...$ \mathcal{E}^* is the lattice of c.e. sets modulo finite sets.

 \mathcal{E} and \mathcal{E}^* are distributive lattices under \subseteq , \cap , \cup .

Computable sets consist of complemented elements and form a Boolean algebra.

- (Post) $C \subseteq \omega$ is immune iff $|C| = \infty$ and $(\forall e)[W_e \subseteq C \Rightarrow |W_e| < \infty]$
- S is simple iff (S is c.e. and co-immune)

• D_n is the finite set with canonical index n

Consider a strong array (of finite sets), $(D_{g(i)})_{i \in \omega}$ where g is computable, such that $i \neq j \Rightarrow D_{g(i)} \cap D_{g(j)} = \emptyset$

- C is hyperimmune (h-immune) iff $|C| = \infty$ and there is no such $(D_{g(i)})_{i \in \omega}$ with $(\forall i)[D_{g(i)} \cap C \neq \emptyset]$
- S is **h**-simple iff (S is c.e. and co-hyperimmune)
- Similarly, define hh-*immune* and hh-*simple* sets when a strong array $(D_{g(i)})_{i \in \omega}$ is replaced by a weak array of finite sets $(W_{g(i)})_{i \in \omega}$.

• \mathbf{hh} -simple \Rightarrow \mathbf{h} -simple \Rightarrow simple

The implications are not reversible.

- (Dekker) Every nonzero c.e. Turing degree contains an h-simple set.
- (Martin) The c.e. Turing degrees that are degrees of hh-simple sets are exactly the high degrees.

 $\mathbf{a} ext{ is high } \Leftrightarrow_{def} \mathbf{a}' = \mathbf{0}''$

• For $A \in \mathcal{E}$, define its principal filter

$$\mathcal{E}(A,\uparrow) = \{E \in \mathcal{E} : A \subseteq E\}$$

• A is hh-simple iff $\mathcal{E}^*(A,\uparrow)$ is a Boolean algebra.

Cohesive and maximal sets

• A set $C \subseteq \omega$ is *cohesive* iff $|C| = \infty$ and for every c.e. set W, either $W \cap C$ or $\overline{W} \cap C$ is finite.

 $(W \cap C \text{ is infinite} \Rightarrow C \subseteq^* W$ $\overline{W} \cap C \text{ is infinite} \Rightarrow C \subseteq^* \overline{W})$

- $\bullet\,$ Cohesive sets are $hh\mathchar`-immune.$ The converse is not true.
- A set $M \subseteq \omega$ is *maximal* iff M is c.e. and \overline{M} is cohesive.

Equivalently, M is c.e., \overline{M} is infinite, and for every c.e. set E with $M \subseteq E \subseteq \omega$, either $\omega - E$ or E - M is finite.

- (Friedberg) Maximal sets exist. Hence \mathcal{E}^* has co-atoms.
- X is atomless if it has no maximal superset.
 (Lachlan) There is an atomless hh-simple set H.
 E^{*}(H, ↑) is an atomless Boolean algebra.
- (Martin) The c.e. Turing degrees that are degrees of maximal sets are exactly the high degrees.
- (Soare) For any two maximal sets, M₁ and M₂, there is an automorphism Φ of E (E*) such that Φ(M₁) = M₂ (Φ(M₁*) = M₂*).

- Both \mathcal{E} and \mathcal{E}^* have 2^{\aleph_0} automorphisms.
- A set C ⊆ ω is r-cohesive iff |C| = ∞ and if for every computable set W either W ∩ C or W ∩ C is finite.
 A set M is r-maximal iff M is c.e. and M is r-cohesive.
- Every cohesive set is *r*-cohesive; hence every maximal set is *r*-maximal. The converse is not true.
- M is r-maximal and \mathbf{hh} -simple $\Rightarrow M$ is maximal

Proof. $\mathcal{E}^*(M,\uparrow)$ contains no nontrivial complemented elements. Every element is complemented, so $\mathcal{E}^*(M,\uparrow)$ is a 2-element Boolean algebra.

- A set B ⊆ ω is quasimaximal iff it is the intersection of finitely many maximal sets: B = ∩ M_i. If M_i ≠* M_j for i ≠ j, the number n is called the rank of B.
- Quasimaximal sets are hh-simple. The converse is not true.
- The principal filter *E*^{*}(*B*, ↑) is isomorphic to the Boolean algebra B_n of size 2ⁿ.
- (Soare) For any two quasimaximal sets of the same rank, B_1 and B_2 , there is an automorphism Φ of \mathcal{E} such that $\Phi(B_1) = B_2$.

C.e. vector spaces and their lattice

- V_∞: computable ℵ₀-dimensional vector space over a computable field (will assume infinite, say Q) with uniformly computable dependence relations (D_n)_{n∈ω} (dependence algorithm)
- Can think of the elements of V_{∞} , the vectors, as infinite sequences of elements of \mathbb{Q} with only finitely many nonzero components.
- Pointwise vector addition and scalar multiplication.
 (a₁, a₂, a₃, 0, 0, ...) + (b₁, b₂, 0, 0, 0, ...) = (a₁ + b₁, a₂ + b₂, a₃, 0, 0, ...)
 c(a₁, a₂, a₃, a₄, 0, ...) = (ca₁, ca₂, ca₃, ca₄, 0, ...)
- (1, 0, 0, 0, ...), (0, 1, 0, 0, ...), ... a standard (computable) basis for V_{∞} .

- A (sub)space V ⊆ V_∞ is c.e. if V is a c.e. set. U + W = cl(U ∪ W) (L(V_∞), ⊆, ∩, +) is the lattice of c.e. vector subspaces of V_∞: nondistributive, modular: x ≤ b ⇒ [x ∨ (a ∧ b) = (x ∨ a) ∧ b]
- I₀, I₁, I₂, ... a computable enumeration of all
 c.e. independent subsets of V_∞
 V_e = cl(I_e)
 V₀, V₁, V₂, ... a computable enumeration of all spaces in L(V_∞)
- V ∈ L(V_∞) is complemented iff there is a dependence algorithm mod V (^{V_∞}/_V has a dependence algorithm) iff V is generated by a computable subset of a computable basis for V_∞.

• Let
$$V \in \mathcal{L}(V_{\infty})$$
.
 $D_n(V) = \{ \langle v_1, \dots, v_n \rangle : v_1, \dots, v_n \text{ are dependent over } V \}$
 $D(V) = \bigcup_{n \ge 1} D_n(V)$
 $D_n(V) \text{ is c.e.}$
 $[D_n(V) \le_T D_{n+1}(V)] \land [D_n(V) \le_T D(V)],$
uniformly in n .

- (Shore) Assume that V_∞ is over an infinite field.
 Let C₁, C₂, C₃, ..., C be a sequence of c.e. sets with
 C_n ≤_T C_{n+1} and C_n ≤_T C, uniformly in n. Then there is V ∈ L(V_∞) such that for n ≥ 1, D_n(V) ≡_T C_n and D(V) ≡_T C.
- (Dimitrov, Harizanov, and Morozov) If C noncomputable and C_1 computable, we can also obtain that $\frac{V_{\infty}}{V}$ has trivial computable automorphism group.

Maximal vector spaces

• Let $V \in \mathcal{L}(V_{\infty})$.

The space V is maximal iff dim $\frac{V_{\infty}}{V} = \infty$ and for every $W \in \mathcal{L}(V_{\infty})$, $V \subseteq W \subseteq V_{\infty} \Rightarrow [\dim \frac{W}{V} < \infty \lor \dim \frac{V_{\infty}}{W} < \infty]$

- (Metakides and Nerode) There are maximal subspaces of V_{∞} .
- Assume that Ω is a computable basis of V_∞.
 Identify Ω with ω.

- (Shore) Every maximal subset M of Ω spans a maximal subspace of V_{∞} .
- An independent set $J \subseteq V_{\infty}$ is *nonextendible* if

dim
$$rac{V_\infty}{cl(J)} = \infty$$
 and $(orall e)[J \subseteq I_e \Rightarrow |I_e - J| < \infty]$

• (Metakides and Remmel)

There exists a maximal subspace V such that no c.e. basis of V is extendible.

k-thin vector spaces

• Let $V \in \mathcal{L}(V_{\infty})$ and $k \in \omega$.

The space V is called is k-thin iff dim $\frac{V_{\infty}}{V} = \infty$, $(\forall e)[V \subseteq V_e \Rightarrow (\dim \frac{V_e}{V} < \infty \lor \dim \frac{V_{\infty}}{V_e} \le k)],$ $(\exists e_0)[V \subseteq V_{e_0} \land \dim \frac{V_{\infty}}{V_{e_0}} = k]$

• (Kalantari and Retzlaff) For $k \ge 0$, there exists a k-thin space \mathcal{T}_k .

There exists an infinite sequence of maximal spaces, $(\mathcal{T}_k)_{k \in \omega}$, such that for every automorphism Φ of $\mathcal{L}(V_{\infty})$: $i \neq j \Rightarrow \Phi(\mathcal{T}_i) \neq \mathcal{T}_j$.

• Question: Is there an $\mathcal{L}(V_{\infty})$ -analogue of Soare's theorem?

Supermaximal vector spaces

• 0-thin space V is also called supermaximal: for every $W \in \mathcal{L}(V_{\infty})$,

$$V \subseteq W \subseteq V_{\infty} \Rightarrow [\dim \frac{W}{V} < \infty \lor W = V_{\infty}]$$

- (Kalantari and Retzlaff) Supermaximal subspaces exist.
- (Hird) A space V is called strongly supermaximal iff dim ^{V∞}/_V = ∞ and for every c.e. subset X ⊆ V∞ - V:

$$(\exists a_0,\ldots,a_{n-1}\in V_\infty)[X\subseteq cl(V\cup\{a_0,\ldots,a_{n-1}\})]$$

- (Downey and Hird) Strongly supermaximal subspaces exist.
- Every strongly supermaximal space V is supermaximal. The converse is not true.
- (Downey and Hird)
 Every nonzero c.e. Turing degree contains two strongly supermaximal subspaces, U and V, such that for every automorphism Φ of L(V_∞):

 $\Phi(U) \neq V$

Principal filters of quasimaximal spaces

• Let Ω be a computable basis of V_{∞} .

Let B be a quasimaximal subset of Ω of rank n > 1. Let V = cl(B).

(Dimitrov) L*(B,↑) is isomorphic to one of the following:
 (1) Boolean algebra B_n,

(2) the lattice of all subspaces of an n-dimensional space over a corresponding field (to be described later),

(3) a finite product of structures from the previous two cases.

- "Suitable fields" are of independent interest and related to effective products previously studied by:
 - S. Feferman, D. Scott, and S. Tennenbaum
 - M. Lerman
 - Y. Hirshfeld and W. Wheeler
 - T. McLaughlin

Cohesive powers of computable structures

 Let A be a computable structure for L with domain A, and let C ⊆ ω be a cohesive set.

The cohesive power of \mathcal{A} over C, denoted by $\prod_{C} \mathcal{A}$, is a structure \mathcal{B} for L with domain $B = (D / =_{C})$, where

 $D = \{ \varphi \mid \varphi : \omega \to A \text{ is partial computable and } C \subseteq^* dom(\varphi) \}.$ For $\varphi_1, \varphi_2 \in D$:

$$\varphi_1 =_C \varphi_2 \quad \text{iff} \quad C \subseteq^* \{x : \varphi_1(x) \downarrow = \varphi_2(x) \downarrow\}$$

The equivalence class of φ is denoted by $[\varphi]_C$, or simply by $[\varphi]$.

• If $f \in L$ is an *n*-ary function symbol, then

$$f^{\mathcal{B}}([\varphi_1],\ldots,[\varphi_n])=[\varphi],$$

where for every $x \in \omega$,

$$\varphi(x) \simeq f^{\mathcal{A}}(\varphi_1(x), \ldots, \varphi_n(x))$$

- If $P \in L$ is an *m*-ary predicate symbol, then $P^{\mathcal{B}}([\varphi_1], \dots, [\varphi_m])$ iff $C \subseteq^* \{x \in \omega \mid P^{\mathcal{A}}(\varphi_1(x), \dots, \varphi_m(x))\}$
- If $c \in L$ is a constant symbol, then $c^{\mathcal{B}}$ is the equivalence class of the computable function with constant value $c^{\mathcal{A}}$.

- If C is co-c.e., then for every $[\varphi] \in \prod_{C} \mathcal{A}$ there is a computable function f such that $f =_{C} \varphi$.
- For a finite structure \mathcal{A} , we have $\prod_{C} \mathcal{A} \cong \mathcal{A}$.

Proof. Let $[\varphi] \in \prod_{C} \mathcal{A}$. For $a \in A$, let $X_a = \{x \in dom(\varphi) : \varphi(x) = a\}$. Since A is finite and $C \subseteq^* dom(\varphi)$, for some $a_0 \in A$, $X_{a_0} \cap C$ is infinite. Since C is cohesive and X_{a_0} is c.e., we have $C \subseteq^* X_{a_0}$. Thus, $[\varphi] = [\varphi_{a_0}]$, where $(\forall x)[\varphi_a(x) =_{def} a]$.

The canonical embedding: $a \rightarrow [\varphi_a]$ is an isomorphism.

• Theorem (Dimitrov)

(i) If $\alpha(y_1, \ldots, y_n)$ is a formula in L, which is a Boolean combination of Σ_1^0 (or Π_1^0) formulas, then

$$\prod_{C} \mathcal{A} \vDash \alpha([\varphi_{1}], \dots, [\varphi_{n}]) \text{ iff } C \subseteq^{*} \{x : \mathcal{A} \vDash \alpha(\varphi_{1}(x), \dots, \varphi_{n}(x))\}$$

(ii) If σ is a Π_2^0 (or Σ_2^0) sentence in L, then

$$\prod_{C} \mathcal{A} \vDash \sigma \quad \text{iff} \quad \mathcal{A} \vDash \sigma$$

(iii) If σ is a Π_3^0 sentence in L, then

$$\text{if } \prod_{C} \mathcal{A} \vDash \sigma \quad \text{then} \quad \mathcal{A} \vDash \sigma$$

• The structures $\prod_{C} \mathbb{Q}$ and \mathbb{Q} are not elementary equivalent.

Proof idea. Consider the sentence

$$\forall x \exists s \forall e \leq x \; [\varphi_e(x) \downarrow \Rightarrow \varphi_{e,s}(x) \downarrow]$$

• The transcendence degree of $\prod_C \mathbb{Q}$ over \mathbb{Q} is infinite.

Proof idea. Let $2 = p_1 < p_2 < \cdots$ be the sequence of all primes. Define $\psi_i : \omega \to \mathbb{Q}$ for $i \ge 1$ by:

$$\psi_i(n) = p_i^n$$

Then the set $\{[\psi_i] : i \ge 1\}$ of elements of $\prod_C \mathbb{Q}$ is algebraically independent over \mathbb{Q} .

• $X \leq_m Y$ if there is a computable function $f: \omega \to \omega$ such that

 $x \in X \Leftrightarrow f(x) \in Y$

 $f(X) \subseteq Y \land f(\overline{X}) \subseteq \overline{Y}$

- $X \leq_1 Y$ if there is such 1-1 function f.
- The sets X and Y have the same *m*-degree, denoted by

$$X \equiv_m Y$$

```
iff X \leq_m Y and Y \leq_m X.
```

Similarly, 1-degree: $X \equiv_1 Y$

- $X \equiv_1^* Y$ iff there are $P =^* X$ and $R =^* Y$ such that $P \equiv_1 R$.
- (Myhill's Isomorphism Theorem)

 $X \equiv_1^* Y$ iff there is a computable permutation σ of ω such that $\sigma(X) =^* Y$.

• Fact. $M_1 \equiv_m M_2$ iff $M_1 \equiv_1^* M_2$ where M_1, M_2 are maximal sets.

Isomorphisms of cohesive powers

(Dimitrov, Harizanov, R. Miller, and Mourad)

Let $M_1, M_2 \subseteq \omega$ be maximal sets. Consider field \mathbb{Q} .

• Theorem.
$$\prod_{\overline{M}_1} \mathbb{Q} \cong \prod_{\overline{M}_2} \mathbb{Q}$$
 iff $deg_m(M_1) = deg_m(M_2)$

• **Theorem.** The cohesive power $\prod_{\overline{M}_1} \mathbb{Q}$ has only the trivial automorphism (i.e., it is rigid).

The proof uses a recent result by Koenigsmann that \mathbb{Z} is \forall -definable in \mathbb{Q} (in the language of rings $\{+, \cdot, 0, 1\}$).

• Koenigsmann proved that there is a polynomial $k \in \mathbb{Z}[t, x_1, \dots, x_{418}]$ such that

$$t \in \mathbb{Z} \Leftrightarrow \mathbb{Q} \vDash \forall x_1 \cdots \forall x_{418} [k(t, x_1, \dots, x_{418}) \neq 0]$$

- Previously, Poonen had a ∀∃-definition with 2 universal and 7 existential quantifiers.
- It is still open whether $\mathbb Z$ is existentially definable in $\mathbb Q.$

Application of cohesive power results to $\mathcal{L}^*(V_\infty)$ (assuming V_∞ is over \mathbb{Q})

- Let V be spanned by a rank n quasimaximal subset of a computable basis of V_∞. Assume n ≥ 3.
 Consider an isomorphism type of L*(V, ↑), which is the lattice L(n, ∏ Q) of all subspaces of an n-dimensional space over a cohesive power of Q.
- These principal filters fall into infinitely many non-isomorphic classes, even when the filters are isomorphic to the lattices of subspaces of finite dimensional vector spaces of the same dimension.

- Every automorphism of L^{*}(V, ↑) ≅ L(n, ∏CQ) can be extended to an automorphism of L^{*}(V∞), which is of Ash type (see below).
- (Guichard) The automorphisms of L(V∞) are induced by 1 − 1 and onto computable semilinear transformations. Hence there are countably many automorphisms of L(V∞).
- (μ, σ) is a *semilinear* transformation if $\mu : V_{\infty} \to V_{\infty}$, σ is an automorphism of F, and for every $u, v \in V_{\infty}$ and $a, b \in F$:

$$\mu(au+bv) = \sigma(a)\mu(u) + \sigma(b)\mu(v)$$

Conjecture (Ash) The automorphisms of L^{*}(V_∞) are induced by semilinear transformations with finite dimensional kernels and co-finite dimensional images in V_∞.

Automorphism results for $\mathcal{L}^*(V_{\infty})$ (Dimitrov and Harizanov)

- Theorem. Let M₁ and M₂ be maximal subsets of computable bases Ω₁ and Ω₂ of V_∞, respectively. Then there is an automorphism Φ of L^{*}(V_∞) such that: Φ(cl(M₁)^{*}) = cl(M₂)^{*} iff deg_m(M₁) = deg_m(M₂).
- We introduce the notion of a *type* of a quasimaximal set $B = \bigcap_{i=1}^{n} M_i$, which captures the number and the *m*-degrees of the maximal sets M_i 's.
- Theorem. Let B₁ and B₂ be quasimaximal subsets of computable bases Ω₁ and Ω₂ of V_∞, respectively. There is an automorphism Φ of L^{*}(V_∞) such that: Φ(cl(B₁)^{*}) = cl(B₂)^{*} iff type_{Ω1}(B₁) = type_{Ω2}(B₂).

• **Theorem**. If a modular lattice 1 - 3 - 1 is a principal filter in $\mathcal{L}^*(V_{\infty})$, then either all co-atoms in the filter have c.e. extendable bases, or no co-atom has a c.e. extendable basis.

The same dichotomy holds if the modular lattice $1 - \infty - 1$ is a principal filter.

• Corollary. If V_1 and V_2 are two maximal spaces such that V_1 has an extendable c.e. basis, while no c.e. basis of V_2 is extendable, then

 $\mathcal{L}^*(V_1 \cap V_2, \uparrow) \cong \mathbf{B_2}$

Lattice $\mathcal{L}_{\mathbf{d}}(V_{\infty})$ and its automorphisms

- Let \mathcal{L} denote the lattice of all subspaces of V_{∞} .
- Let $\mathcal{L}_{\mathbf{d}}(V_{\infty}) = \{ V \in \mathcal{L} : V \text{ is } \mathbf{d}\text{-computably enumerable} \}.$
- By GSL_d we denote the group of 1-1 and onto semilinear transformations (μ, σ) such that $deg(\mu) \leq d$ and $deg(\sigma) \leq d$.
- Every $\Phi \in Aut(\mathcal{L}_{\mathbf{d}}(V_{\infty}))$ is induced by some $(\mu, \sigma) \in GSL_{\mathbf{d}}$.

• If $\Phi \in Aut(\mathcal{L}_{\mathbf{d}}(V_{\infty}))$ is induced by $(\mu, \sigma) \in GSL_{\mathbf{d}}$ and by some other $(\mu_1, \sigma_1) \in GSL_{\mathbf{d}}$, then there is $\gamma \in F$ such that

$$(\forall v \in V_{\infty})[\mu(v) = \gamma \mu_1(v)]$$

• (Dimitrov, Harizanov and Morozov)

For any pair \mathbf{a}, \mathbf{b} of Turing degrees we have

 $(Aut(\mathcal{L}_{\mathbf{a}}(V_{\infty})) \hookrightarrow Aut(\mathcal{L}_{\mathbf{b}}(V_{\infty}))) \Leftrightarrow \mathbf{a} \leq \mathbf{b}$

Turing degree spectrum of GSL_d

• Turing degree spectrum of a structure \mathcal{A} :

$$DgSp(\mathcal{A}) = \{ deg(\mathcal{B}) : \mathcal{B} \cong \mathcal{A} \}$$

- (Knight) Turing degree spectrum of a structure is either a singleton or is closed upward in the set \mathcal{D} of all Turing degrees.
- (Dimitrov, Harizanov and Morozov)

$$DgSp(GSL_{\mathbf{d}}) = {\mathbf{c} \in \mathcal{D} : \mathbf{c} \ge \mathbf{d}''}$$

THANK YOU!