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Computably enumerable (c.e.) sets and their lattice

� E is the lattice of c.e. sets: W0;W1; :::;We; :::

E� is the lattice of c.e. sets modulo �nite sets.

E and E� are distributive lattices under �, \, [.

Computable sets consist of complemented elements
and form a Boolean algebra.

� (Post) C � ! is immune i¤ jCj =1 and

(8e)[We � C ) jWej <1]

� S is simple i¤ (S is c.e. and co-immune)



� Dn is the �nite set with canonical index n

Consider a strong array (of �nite sets), (Dg(i))i2! where g is computable,

such that i 6= j ) Dg(i) \Dg(j) = ;

� C is hyperimmune (h-immune) i¤ jCj =1 and
there is no such (Dg(i))i2! with

(8i)[Dg(i) \ C 6= ;]

� S is h-simple i¤ (S is c.e. and co-hyperimmune)

� Similarly, de�ne hh-immune and hh-simple sets when a strong array
(Dg(i))i2! is replaced by a weak array of �nite sets (Wg(i))i2!.



� hh-simple ) h-simple ) simple

The implications are not reversible.

� (Dekker) Every nonzero c.e. Turing degree contains an h-simple set.

� (Martin) The c.e. Turing degrees that are degrees of hh-simple sets
are exactly the high degrees.

a is high ,def a
0 = 000

� For A 2 E , de�ne its principal �lter

E(A; ") = fE 2 E : A � Eg

� A is hh-simple i¤ E�(A; ") is a Boolean algebra.



Cohesive and maximal sets

� A set C � ! is cohesive i¤ jCj =1 and for every c.e. set W ,
either W \ C or W \ C is �nite.

(W \ C is in�nite ) C �� W
W \ C is in�nite ) C �� W )

� Cohesive sets are hh-immune. The converse is not true.

� A set M � ! is maximal i¤M is c.e. and M is cohesive.

Equivalently, M is c.e., M is in�nite, and for every
c.e. set E with M � E � !, either ! � E or E �M is �nite.



� (Friedberg) Maximal sets exist. Hence E� has co-atoms.

� X is atomless if it has no maximal superset.
(Lachlan) There is an atomless hh-simple set H.
E�(H; ") is an atomless Boolean algebra.

� (Martin) The c.e. Turing degrees that are degrees of maximal sets
are exactly the high degrees.

� (Soare) For any two maximal sets, M1 and M2, there is
an automorphism � of E (E�) such that �(M1) =M2

(�(M�
1 ) =M�

2 ).



� Both E and E� have 2@0 automorphisms.

� A set C � ! is r-cohesive i¤ jCj =1 and
if for every computable set W
either W \ C or W \ C is �nite.
A set M is r-maximal i¤M is c.e. and M is r-cohesive.

� Every cohesive set is r-cohesive; hence every maximal set is r-maximal.
The converse is not true.

� M is r-maximal and hh-simple )M is maximal

Proof. E�(M; ") contains no nontrivial complemented elements.
Every element is complemented, so E�(M; ") is a
2-element Boolean algebra.



� A set B � ! is quasimaximal i¤ it is the intersection of

�nitely many maximal sets: B =
nT
i=1

Mi.

If Mi 6=� Mj for i 6= j, the number n is called the rank of B.

� Quasimaximal sets are hh-simple. The converse is not true.

� The principal �lter E�(B; ") is isomorphic to
the Boolean algebra Bn of size 2n.

� (Soare) For any two quasimaximal sets of the same rank, B1 and B2,
there is an automorphism � of E such that �(B1) = B2.



C.e. vector spaces and their lattice

� V1: computable @0-dimensional vector space over a computable
�eld (will assume in�nite, say Q) with uniformly computable
dependence relations (Dn)n2! (dependence algorithm)

� Can think of the elements of V1, the vectors, as in�nite sequences
of elements of Q with only �nitely many nonzero components.

� Pointwise vector addition and scalar multiplication.
(a1; a2; a3; 0; 0; :::)+ (b1; b2; 0; 0; 0; :::) = (a1+ b1; a2+ b2; a3; 0; 0; :::)

c(a1; a2; a3; a4; 0; :::) = (ca1; ca2; ca3; ca4; 0; :::)

� (1; 0; 0; 0; :::); (0; 1; 0; 0; :::); ::: a standard (computable) basis for V1.



� A (sub)space V � V1 is c.e. if V is a c.e. set.
U +W = cl(U [W )

(L(V1);�;\;+) is the lattice of c.e. vector subspaces of V1:
nondistributive, modular: x � b) [x _ (a ^ b) = (x _ a) ^ b]

� I0; I1; I2; : : : a computable enumeration of all
c.e. independent subsets of V1
Ve = cl(Ie)

V0; V1; V2; : : : a computable enumeration of all spaces in L(V1)

� V 2 L(V1) is complemented i¤
there is a dependence algorithm mod V
(V1V has a dependence algorithm) i¤
V is generated by a computable subset of a computable basis for V1.



� Let V 2 L(V1).

Dn(V ) = fhv1; : : : ; vni : v1; : : : ; vn are dependent over V g
D(V ) =

S
n�1

Dn(V )

Dn(V ) is c.e.
[Dn(V ) �T Dn+1(V )] ^ [Dn(V ) �T D(V )],
uniformly in n.

� (Shore) Assume that V1 is over an in�nite �eld.
Let C1; C2; C3; : : : ; C be a sequence of c.e. sets with
Cn �T Cn+1 and Cn �T C, uniformly in n. Then there is V 2 L(V1)
such that for n � 1, Dn(V ) �T Cn and D(V ) �T C:

� (Dimitrov, Harizanov, and Morozov)
If C noncomputable and C1 computable, we can also obtain
that V1V has trivial computable automorphism group.



Maximal vector spaces

� Let V 2 L(V1).

The space V is maximal i¤ dim V1
V =1 and for every W 2 L(V1),

V �W � V1 ) [dim
W

V
<1_ dim V1

W
<1]

� (Metakides and Nerode) There are maximal subspaces of V1.

� Assume that 
 is a computable basis of V1.
Identify 
 with !.



� (Shore) Every maximal subset M of 
 spans
a maximal subspace of V1.

� An independent set J � V1 is nonextendible if

dim V1
cl(J)

=1 and

(8e)[J � Ie ) jIe � J j <1]

� (Metakides and Remmel)

There exists a maximal subspace V such that
no c.e. basis of V is extendible.



k-thin vector spaces

� Let V 2 L(V1) and k 2 !.

The space V is called is k-thin i¤ dim V1
V =1,

(8e)[V � Ve ) (dim Ve
V <1 _ dim V1

Ve
� k)],

(9e0)[V � Ve0 ^ dim V1
Ve0

= k]

� (Kalantari and Retzla¤) For k � 0, there exists a k-thin space Tk.

There exists an in�nite sequence of maximal spaces, (Tk)k2!,
such that for every automorphism � of L(V1): i 6= j ) �(Ti) 6= Tj.

� Question: Is there an L(V1)-analogue of Soare�s theorem?



Supermaximal vector spaces

� 0-thin space V is also called supermaximal: for every W 2 L(V1),

V �W � V1 ) [dim
W

V
<1_W = V1]

� (Kalantari and Retzla¤) Supermaximal subspaces exist.

� (Hird) A space V is called strongly supermaximal i¤ dim V1
V = 1 and

for every c.e. subset X � V1 � V :

(9a0; : : : ; an�1 2 V1)[X � cl(V [ fa0; : : : ; an�1g)]



� (Downey and Hird) Strongly supermaximal subspaces exist.

� Every strongly supermaximal space V is supermaximal.
The converse is not true.

� (Downey and Hird)
Every nonzero c.e. Turing degree contains two
strongly supermaximal subspaces, U and V , such that
for every automorphism � of L(V1):

�(U) 6= V



Principal �lters of quasimaximal spaces

� Let 
 be a computable basis of V1.

Let B be a quasimaximal subset of 
 of rank n > 1.
Let V = cl(B).

� (Dimitrov) L�(B; ") is isomorphic to one of the following:
(1) Boolean algebra Bn,

(2) the lattice of all subspaces of an n-dimensional space over a
corresponding �eld (to be described later),

(3) a �nite product of structures from the previous two cases.



� �Suitable �elds�are of independent interest and related to e¤ective
products previously studied by:

S. Feferman, D. Scott, and S. Tennenbaum

M. Lerman

Y. Hirshfeld and W. Wheeler

T. McLaughlin



Cohesive powers of computable structures

� Let A be a computable structure for L with domain A,
and let C � ! be a cohesive set.

The cohesive power of A over C, denoted by
Q
C
A, is

a structure B for L with domain B = (D = =C), where

D = f' j ' : ! ! A is partial computable and C �� dom(')g.

For '1; '2 2 D:

'1 =C '2 i� C �� fx : '1(x) #= '2(x) #g

The equivalence class of ' is denoted by [']C , or simply by ['].



� If f 2 L is an n-ary function symbol, then

fB(['1]; : : : ; ['n]) = ['];

where for every x 2 !,

'(x) ' fA('1(x); : : : ; 'n(x))

� If P 2 L is an m-ary predicate symbol, then

PB(['1]; : : : ; ['m]) i� C �� fx 2 ! j PA('1(x); : : : ; 'm(x))g

� If c 2 L is a constant symbol, then cB is the equivalence class of
the computable function with constant value cA.



� If C is co-c.e., then for every ['] 2 Q
C
A there is a

computable function f such that f =C '.

� For a �nite structure A, we have Q
C
A �= A.

Proof. Let ['] 2 Q
C
A.

For a 2 A, let Xa = fx 2 dom(') : '(x) = ag.
Since A is �nite and C �� dom('), for some a0 2 A,
Xa0 \ C is in�nite.
Since C is cohesive and Xa0 is c.e., we have C �� Xa0.
Thus, ['] = ['a0], where (8x)['a(x) =def a].

The canonical embedding: a! ['a] is an isomorphism.



� Theorem (Dimitrov)
(i) If �(y1; : : : ; yn) is a formula in L, which is a Boolean
combination of �01 (or �

0
1) formulas, thenY

C

A � �(['1]; : : : ; ['n]) i� C �� fx : A � �('1(x); : : : ; 'n(x))g

(ii) If � is a �02 (or �
0
2) sentence in L, thenY

C

A � � i� A � �

(iii) If � is a �03 sentence in L, then

if
Y
C

A � � then A � �



� The structures Q
C
Q and Q are not elementary equivalent.

Proof idea. Consider the sentence

8x9s8e � x ['e(x) #) 'e;s(x) #]

� The transcendence degree of Q
C
Q over Q is in�nite.

Proof idea. Let 2 = p1 < p2 < � � � be the sequence of all primes.
De�ne  i : ! ! Q for i � 1 by:

 i(n) = pni

Then the set f[ i] : i � 1g of elements of
Q
C
Q is

algebraically independent over Q.



� X �m Y if there is a computable function f : ! ! ! such that

x 2 X , f(x) 2 Y

f(X) � Y ^ f(X) � Y

� X �1 Y if there is such 1� 1 function f .

� The sets X and Y have the same m-degree,
denoted by

X �m Y

i¤ X �m Y and Y �m X.

Similarly, 1-degree: X �1 Y



� X ��1 Y i¤ there are P =� X and R =� Y such that P �1 R.

� (Myhill�s Isomorphism Theorem)

X ��1 Y i¤ there is a computable permutation � of !
such that �(X) =� Y .

� Fact. M1 �m M2 i� M1 ��1 M2

where M1;M2 are maximal sets.



Isomorphisms of cohesive powers
(Dimitrov, Harizanov, R. Miller, and Mourad)

Let M1;M2 � ! be maximal sets. Consider �eld Q.

� Theorem. Q
M1

Q �=
Q
M2

Q i� degm(M1) = degm(M2)

� Theorem. The cohesive power Q
M1

Q has only the trivial automorphism

(i.e., it is rigid).

The proof uses a recent result by Koenigsmann that Z is 8-de�nable in Q
(in the language of rings f+;�; 0; 1g).



� Koenigsmann proved that there is a polynomial k 2 Z[t; x1; : : : ; x418]
such that

t 2 Z, Q �8x1 � � � 8x418 [k(t; x1; : : : ; x418) 6= 0]

� Previously, Poonen had a 89-de�nition with 2 universal and 7 existential
quanti�ers.

� It is still open whether Z is existentially de�nable in Q.



Application of cohesive power results to L�(V1)
(assuming V1 is over Q)

� Let V be spanned by a rank n quasimaximal subset of a computable
basis of V1. Assume n � 3.
Consider an isomorphism type of L�(V; "), which is the lattice L(n;Q

C
Q)

of all subspaces of an n-dimensional space over a cohesive power of Q.

� These principal �lters fall into in�nitely many non-isomorphic classes,
even when the �lters are isomorphic to the lattices of subspaces of
�nite dimensional vector spaces of the same dimension.



� Every automorphism of L�(V; ") �= L(n;
Q
C
Q) can be extended to

an automorphism of L�(V1), which is of Ash type (see below).

� (Guichard) The automorphisms of L(V1) are induced by 1� 1 and onto
computable semilinear transformations.
Hence there are countably many automorphisms of L(V1).

� (�; �) is a semilinear transformation if � : V1 ! V1,
� is an automorphism of F , and for every u; v 2 V1 and a; b 2 F :

�(au+ bv) = �(a)�(u) + �(b)�(v)

� Conjecture (Ash) The automorphisms of L�(V1) are induced by
semilinear transformations with �nite dimensional kernels and
co-�nite dimensional images in V1.



Automorphism results for L�(V1)
(Dimitrov and Harizanov)

� Theorem. Let M1 and M2 be maximal subsets of computable bases 
1
and 
2 of V1, respectively. Then there is an automorphism � of L�(V1)
such that: �(cl(M1)

�) = cl(M2)
� i� degm(M1) = degm(M2).

� We introduce the notion of a type of a quasimaximal set B =
nT
i=1

Mi,

which captures the number and the m-degrees of the maximal sets Mi�s.

� Theorem. Let B1 and B2 be quasimaximal subsets of computable bases

1 and 
2 of V1, respectively. There is an automorphism � of L�(V1)
such that: �(cl(B1)

�) = cl(B2)
� i� type
1(B1) = type
2(B2).



� Theorem. If a modular lattice 1 � 3 � 1 is a principal �lter in L�(V1),
then either all co-atoms in the �lter have c.e. extendable bases, or no
co-atom has a c.e. extendable basis.

The same dichotomy holds if the modular lattice 1�1� 1 is a principal
�lter.

� Corollary. If V1 and V2 are two maximal spaces such that V1 has an
extendable c.e. basis, while no c.e. basis of V2 is extendable, then

L�(V1 \ V2; ") �= B2



Lattice Ld(V1) and its automorphisms

� Let L denote the lattice of all subspaces of V1.

� Let Ld(V1) = fV 2 L : V is d-computably enumerable}.

� ByGSLd we denote the group of 1�1 and onto semilinear transformations
(�; �) such that deg(�) � d and deg(�) � d.

� Every � 2 Aut(Ld(V1)) is induced by some (�; �) 2 GSLd.



� If � 2 Aut(Ld(V1)) is induced by (�; �) 2 GSLd and by some other
(�1; �1) 2 GSLd, then there is  2 F such that

(8v 2 V1)[�(v) = �1(v)]

� (Dimitrov, Harizanov and Morozov)

For any pair a;b of Turing degrees we have

(Aut(La(V1)) ,! Aut(Lb(V1))), a � b



Turing degree spectrum of GSLd

� Turing degree spectrum of a structure A:

DgSp(A) = fdeg(B) : B �= Ag

� (Knight) Turing degree spectrum of a structure is either a singleton
or is closed upward in the set D of all Turing degrees.

� (Dimitrov, Harizanov and Morozov)

DgSp(GSLd) = fc 2 D : c � d00g



THANK YOU!


