National University of Singapore, September 11-15, 2017
Workshop on Computable Structures and Reverse Mathematics Honoring Rod Downey's numerous contributions to the field

The automorphisms of the lattice of x-computably enumerable vector spaces

> Valentina Harizanov
> Department of Mathematics
> George Washington University, USA
> harizanv@gwu.edu
> http://home.gwu.edu/~harizanv/

Computably enumerable (c.e.) sets and their lattice

- \mathcal{E} is the lattice of c.e. sets: $W_{0}, W_{1}, \ldots, W_{e}, \ldots$ \mathcal{E}^{*} is the lattice of c.e. sets modulo finite sets.
\mathcal{E} and \mathcal{E}^{*} are distributive lattices under \subseteq, \cap, \cup.
Computable sets consist of complemented elements and form a Boolean algebra.
- (Post) $C \subseteq \omega$ is immune iff $|C|=\infty$ and $(\forall e)\left[W_{e} \subseteq C \Rightarrow\left|W_{e}\right|<\infty\right]$
- S is simple iff (S is c.e. and co-immune)
- D_{n} is the finite set with canonical index n

Consider a strong array (of finite sets), $\left(D_{g(i)}\right)_{i \in \omega}$ where g is computable, such that $i \neq j \Rightarrow D_{g(i)} \cap D_{g(j)}=\emptyset$

- C is hyperimmune (h-immune) iff $|C|=\infty$ and there is no such $\left(D_{g(i)}\right)_{i \in \omega}$ with
$(\forall i)\left[D_{g(i)} \cap C \neq \emptyset\right]$
- S is h-simple iff (S is c.e. and co-hyperimmune)
- Similarly, define hh-immune and hh-simple sets when a strong array $\left(D_{g(i)}\right)_{i \in \omega}$ is replaced by a weak array of finite sets $\left(W_{g(i)}\right)_{i \in \omega}$.
- hh-simple \Rightarrow h-simple \Rightarrow simple

The implications are not reversible.

- (Dekker) Every nonzero c.e. Turing degree contains an h-simple set.
- (Martin) The c.e. Turing degrees that are degrees of hh-simple sets are exactly the high degrees.
\mathbf{a} is high $\Leftrightarrow_{d e f} \mathbf{a}^{\prime}=\mathbf{0}^{\prime \prime}$
- For $A \in \mathcal{E}$, define its principal filter

$$
\mathcal{E}(A, \uparrow)=\{E \in \mathcal{E}: A \subseteq E\}
$$

- A is hh-simple iff $\mathcal{E}^{*}(A, \uparrow)$ is a Boolean algebra.

Cohesive and maximal sets

- A set $C \subseteq \omega$ is cohesive iff $|C|=\infty$ and for every c.e. set W, either $W \cap C$ or $\bar{W} \cap C$ is finite.
($W \cap C$ is infinite $\Rightarrow C \subseteq^{*} W$
$\bar{W} \cap C$ is infinite $\left.\Rightarrow C \subseteq \subseteq^{*} \bar{W}\right)$
- Cohesive sets are hh-immune. The converse is not true.
- A set $M \subseteq \omega$ is maximal iff M is c.e. and \bar{M} is cohesive.

Equivalently, M is c.e., \bar{M} is infinite, and for every c.e. set E with $M \subseteq E \subseteq \omega$, either $\omega-E$ or $E-M$ is finite.

- (Friedberg) Maximal sets exist. Hence \mathcal{E}^{*} has co-atoms.
- X is atomless if it has no maximal superset. (Lachlan) There is an atomless hh-simple set H. $\mathcal{E}^{*}(H, \uparrow)$ is an atomless Boolean algebra.
- (Martin) The c.e. Turing degrees that are degrees of maximal sets are exactly the high degrees.
- (Soare) For any two maximal sets, M_{1} and M_{2}, there is an automorphism Φ of $\mathcal{E}\left(\mathcal{E}^{*}\right)$ such that $\Phi\left(M_{1}\right)=M_{2}$ $\left(\Phi\left(M_{1}^{*}\right)=M_{2}^{*}\right)$.
- Both \mathcal{E} and \mathcal{E}^{*} have $2^{\aleph_{0}}$ automorphisms.
- A set $C \subseteq \omega$ is r-cohesive iff $|C|=\infty$ and if for every computable set W either $W \cap C$ or $\bar{W} \cap C$ is finite. A set M is r-maximal iff M is c.e. and \bar{M} is r-cohesive.
- Every cohesive set is r-cohesive; hence every maximal set is r-maximal. The converse is not true.
- M is r-maximal and hh-simple $\Rightarrow M$ is maximal

Proof. $\mathcal{E}^{*}(M, \uparrow)$ contains no nontrivial complemented elements.
Every element is complemented, so $\mathcal{E}^{*}(M, \uparrow)$ is a 2-element Boolean algebra.

- A set $B \subseteq \omega$ is quasimaximal iff it is the intersection of finitely many maximal sets: $B=\bigcap_{i=1}^{n} M_{i}$.
If $M_{i} \not{ }^{*} M_{j}$ for $i \neq j$, the number n is called the rank of B.
- Quasimaximal sets are hh-simple. The converse is not true.
- The principal filter $\mathcal{E}^{*}(B, \uparrow)$ is isomorphic to the Boolean algebra \mathbf{B}_{n} of size 2^{n}.
- (Soare) For any two quasimaximal sets of the same rank, B_{1} and B_{2}, there is an automorphism Φ of \mathcal{E} such that $\Phi\left(B_{1}\right)=B_{2}$.

C.e. vector spaces and their lattice

- V_{∞} : computable \aleph_{0}-dimensional vector space over a computable field (will assume infinite, say \mathbb{Q}) with uniformly computable dependence relations $\left(D_{n}\right)_{n \in \omega}$ (dependence algorithm)
- Can think of the elements of V_{∞}, the vectors, as infinite sequences of elements of \mathbb{Q} with only finitely many nonzero components.
- Pointwise vector addition and scalar multiplication. $\left(a_{1}, a_{2}, a_{3}, 0,0, \ldots\right)+\left(b_{1}, b_{2}, 0,0,0, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}, 0,0, \ldots\right)$ $c\left(a_{1}, a_{2}, a_{3}, a_{4}, 0, \ldots\right)=\left(c a_{1}, c a_{2}, c a_{3}, c a_{4}, 0, \ldots\right)$
- $(1,0,0,0, \ldots),(0,1,0,0, \ldots), \ldots$ a standard (computable) basis for V_{∞}.
- A (sub)space $V \subseteq V_{\infty}$ is c.e. if V is a c.e. set. $U+W=c l(U \cup W)$ $\left(\mathcal{L}\left(V_{\infty}\right), \subseteq, \cap,+\right)$ is the lattice of c.e. vector subspaces of V_{∞} : nondistributive, modular: $x \leq b \Rightarrow[x \vee(a \wedge b)=(x \vee a) \wedge b]$
- $I_{0}, I_{1}, I_{2}, \ldots$ a computable enumeration of all
c.e. independent subsets of V_{∞}
$V_{e}=c l\left(I_{e}\right)$
$V_{0}, V_{1}, V_{2}, \ldots$ a computable enumeration of all spaces in $\mathcal{L}\left(V_{\infty}\right)$
- $V \in \mathcal{L}\left(V_{\infty}\right)$ is complemented iff there is a dependence algorithm mod V ($\frac{V_{\infty}}{V}$ has a dependence algorithm) iff V is generated by a computable subset of a computable basis for V_{∞}.
- Let $V \in \mathcal{L}\left(V_{\infty}\right)$.
$D_{n}(V)=\left\{\left\langle v_{1}, \ldots, v_{n}\right\rangle: v_{1}, \ldots, v_{n}\right.$ are dependent over $\left.V\right\}$
$D(V)=\bigcup_{n \geq 1} D_{n}(V)$
$D_{n}(V)$ is c.e.
$\left[D_{n}(V) \leq_{T} D_{n+1}(V)\right] \wedge\left[D_{n}(V) \leq_{T} D(V)\right]$,
uniformly in n.
- (Shore) Assume that V_{∞} is over an infinite field.

Let $C_{1}, C_{2}, C_{3}, \ldots, C$ be a sequence of c.e. sets with $C_{n} \leq_{T} C_{n+1}$ and $C_{n} \leq_{T} C$, uniformly in n. Then there is $V \in \mathcal{L}\left(V_{\infty}\right)$ such that for $n \geq 1, D_{n}(V) \equiv_{T} C_{n}$ and $D(V) \equiv_{T} C$.

- (Dimitrov, Harizanov, and Morozov)

If C noncomputable and C_{1} computable, we can also obtain that $\frac{V_{\infty}}{V}$ has trivial computable automorphism group.

Maximal vector spaces

- Let $V \in \mathcal{L}\left(V_{\infty}\right)$.

The space V is maximal iff $\operatorname{dim} \frac{V_{\infty}}{V}=\infty$ and for every $W \in \mathcal{L}\left(V_{\infty}\right)$,

$$
V \subseteq W \subseteq V_{\infty} \Rightarrow\left[\operatorname{dim} \frac{W}{V}<\infty \vee \operatorname{dim} \frac{V_{\infty}}{W}<\infty\right]
$$

- (Metakides and Nerode) There are maximal subspaces of V_{∞}.
- Assume that Ω is a computable basis of V_{∞}. Identify Ω with ω.
- (Shore) Every maximal subset M of Ω spans a maximal subspace of V_{∞}.
- An independent set $J \subseteq V_{\infty}$ is nonextendible if $\operatorname{dim} \frac{V_{\infty}}{c l(J)}=\infty$ and

$$
(\forall e)\left[J \subseteq I_{e} \Rightarrow\left|I_{e}-J\right|<\infty\right]
$$

- (Metakides and Remmel)

There exists a maximal subspace V such that no c.e. basis of V is extendible.

k-thin vector spaces

- Let $V \in \mathcal{L}\left(V_{\infty}\right)$ and $k \in \omega$.

The space V is called is k-thin iff $\operatorname{dim} \frac{V_{\infty}}{V}=\infty$, $(\forall e)\left[V \subseteq V_{e} \Rightarrow\left(\operatorname{dim} \frac{V_{e}}{V}<\infty \vee \operatorname{dim} \frac{V_{\infty}}{V_{e}} \leq k\right)\right]$, $\left(\exists e_{0}\right)\left[V \subseteq V_{e_{0}} \wedge \operatorname{dim} \frac{V_{\infty}}{V_{e_{0}}}=k\right]$

- (Kalantari and Retzlaff) For $k \geq 0$, there exists a k-thin space \mathcal{T}_{k}.

There exists an infinite sequence of maximal spaces, $\left(\mathcal{T}_{k}\right)_{k \in \omega}$, such that for every automorphism Φ of $\mathcal{L}\left(V_{\infty}\right): i \neq j \Rightarrow \Phi\left(\mathcal{T}_{i}\right) \neq \mathcal{T}_{j}$.

- Question: Is there an $\mathcal{L}\left(V_{\infty}\right)$-analogue of Soare's theorem?

Supermaximal vector spaces

- 0-thin space V is also called supermaximal: for every $W \in \mathcal{L}\left(V_{\infty}\right)$,

$$
V \subseteq W \subseteq V_{\infty} \Rightarrow\left[\operatorname{dim} \frac{W}{V}<\infty \vee W=V_{\infty}\right]
$$

- (Kalantari and Retzlaff) Supermaximal subspaces exist.
- (Hird) A space V is called strongly supermaximal iff $\operatorname{dim} \frac{V_{\infty}}{V}=\infty$ and for every c.e. subset $X \subseteq V_{\infty}-V$:

$$
\left(\exists a_{0}, \ldots, a_{n-1} \in V_{\infty}\right)\left[X \subseteq \operatorname{cl}\left(V \cup\left\{a_{0}, \ldots, a_{n-1}\right\}\right)\right]
$$

- (Downey and Hird) Strongly supermaximal subspaces exist.
- Every strongly supermaximal space V is supermaximal. The converse is not true.
- (Downey and Hird) Every nonzero c.e. Turing degree contains two strongly supermaximal subspaces, U and V, such that for every automorphism Φ of $\mathcal{L}\left(V_{\infty}\right)$:

$$
\Phi(U) \neq V
$$

Principal filters of quasimaximal spaces

- Let Ω be a computable basis of V_{∞}.

Let B be a quasimaximal subset of Ω of rank $n>1$. Let $V=\operatorname{cl}(B)$.

- (Dimitrov) $\mathcal{L}^{*}(B, \uparrow)$ is isomorphic to one of the following:
(1) Boolean algebra \mathbf{B}_{n},
(2) the lattice of all subspaces of an n-dimensional space over a corresponding field (to be described later),
(3) a finite product of structures from the previous two cases.
- "Suitable fields" are of independent interest and related to effective products previously studied by:
S. Feferman, D. Scott, and S. Tennenbaum
M. Lerman
Y. Hirshfeld and W. Wheeler
T. McLaughlin

Cohesive powers of computable structures

- Let \mathcal{A} be a computable structure for L with domain A, and let $C \subseteq \omega$ be a cohesive set.

The cohesive power of \mathcal{A} over C, denoted by $\prod_{C} \mathcal{A}$, is
a structure \mathcal{B} for L with domain $B=\left(D /=_{C}\right)$, where $D=\left\{\varphi \mid \varphi: \omega \rightarrow A\right.$ is partial computable and $\left.C \subseteq^{*} \operatorname{dom}(\varphi)\right\}$.

For $\varphi_{1}, \varphi_{2} \in D$:

$$
\varphi_{1}=C \varphi_{2} \quad \text { iff } \quad C \subseteq^{*}\left\{x: \varphi_{1}(x) \downarrow=\varphi_{2}(x) \downarrow\right\}
$$

The equivalence class of φ is denoted by $[\varphi]_{C}$, or simply by $[\varphi]$.

- If $f \in L$ is an n-ary function symbol, then

$$
f^{\mathcal{B}}\left(\left[\varphi_{1}\right], \ldots,\left[\varphi_{n}\right]\right)=[\varphi],
$$

where for every $x \in \omega$,

$$
\varphi(x) \simeq f^{\mathcal{A}}\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)
$$

- If $P \in L$ is an m-ary predicate symbol, then

$$
P^{\mathcal{B}}\left(\left[\varphi_{1}\right], \ldots,\left[\varphi_{m}\right]\right) \quad \text { iff } \quad C \subseteq^{*}\left\{x \in \omega \mid P^{\mathcal{A}}\left(\varphi_{1}(x), \ldots, \varphi_{m}(x)\right)\right\}
$$

- If $c \in L$ is a constant symbol, then $c^{\mathcal{B}}$ is the equivalence class of the computable function with constant value $c^{\mathcal{A}}$.
- If C is co-c.e., then for every $[\varphi] \in \prod_{C} \mathcal{A}$ there is a computable function f such that $f={ }_{C} \varphi$.
- For a finite structure \mathcal{A}, we have $\prod_{C} \mathcal{A} \cong \mathcal{A}$.

Proof. Let $[\varphi] \in \prod_{C} \mathcal{A}$.
For $a \in A$, let $X_{a}=\{x \in \operatorname{dom}(\varphi): \varphi(x)=a\}$.
Since A is finite and $C \subseteq^{*} \operatorname{dom}(\varphi)$, for some $a_{0} \in A$, $X_{a_{0}} \cap C$ is infinite.
Since C is cohesive and $X_{a_{0}}$ is c.e., we have $C \subseteq^{*} X_{a_{0}}$.
Thus, $[\varphi]=\left[\varphi_{a_{0}}\right]$, where $(\forall x)\left[\varphi_{a}(x)={ }_{\operatorname{def}} a\right]$.
The canonical embedding: $a \rightarrow\left[\varphi_{a}\right]$ is an isomorphism.

- Theorem (Dimitrov)
(i) If $\alpha\left(y_{1}, \ldots, y_{n}\right)$ is a formula in L, which is a Boolean combination of Σ_{1}^{0} (or Π_{1}^{0}) formulas, then

$$
\prod_{C} \mathcal{A} \vDash \alpha\left(\left[\varphi_{1}\right], \ldots,\left[\varphi_{n}\right]\right) \text { iff } C \subseteq^{*}\left\{x: \mathcal{A} \vDash \alpha\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)\right\}
$$

(ii) If σ is a Π_{2}^{0} (or Σ_{2}^{0}) sentence in L, then

$$
\prod_{C} \mathcal{A} \vDash \sigma \quad \text { iff } \quad \mathcal{A} \vDash \sigma
$$

(iii) If σ is a Π_{3}^{0} sentence in L, then

$$
\text { if } \prod_{C} \mathcal{A} \vDash \sigma \quad \text { then } \quad \mathcal{A} \vDash \sigma
$$

- The structures $\prod_{C} \mathbb{Q}$ and \mathbb{Q} are not elementary equivalent.

Proof idea. Consider the sentence

$$
\forall x \exists s \forall e \leq x\left[\varphi_{e}(x) \downarrow \Rightarrow \varphi_{e, s}(x) \downarrow\right]
$$

- The transcendence degree of $\prod_{C} \mathbb{Q}$ over \mathbb{Q} is infinite.

Proof idea. Let $2=p_{1}<p_{2}<\cdots$ be the sequence of all primes. Define $\psi_{i}: \omega \rightarrow \mathbb{Q}$ for $i \geq 1$ by:

$$
\psi_{i}(n)=p_{i}^{n}
$$

Then the set $\left\{\left[\psi_{i}\right]: i \geq 1\right\}$ of elements of $\prod_{C} \mathbb{Q}$ is algebraically independent over \mathbb{Q}.

- $X \leq_{m} Y$ if there is a computable function $f: \omega \rightarrow \omega$ such that

$$
x \in X \Leftrightarrow f(x) \in Y
$$

$f(X) \subseteq Y \wedge f(\bar{X}) \subseteq \bar{Y}$

- $X \leq_{1} Y$ if there is such $1-1$ function f.
- The sets X and Y have the same m-degree, denoted by

$$
X \equiv_{m} Y
$$

iff $X \leq_{m} Y$ and $Y \leq_{m} X$.
Similarly, 1-degree: $X \equiv{ }_{1} Y$

- $X \equiv_{1}^{*} Y$ iff there are $P={ }^{*} X$ and $R={ }^{*} Y$ such that $P \equiv{ }_{1} R$.
- (Myhill's Isomorphism Theorem)
$X \equiv{ }_{1}^{*} Y$ iff there is a computable permutation σ of ω such that $\sigma(X)=^{*} Y$.
- Fact. $M_{1} \equiv{ }_{m} M_{2}$ iff $M_{1} \equiv_{1}^{*} M_{2}$ where M_{1}, M_{2} are maximal sets.

Isomorphisms of cohesive powers

(Dimitrov, Harizanov, R. Miller, and Mourad)

Let $M_{1}, M_{2} \subseteq \omega$ be maximal sets. Consider field \mathbb{Q}.

- Theorem. $\prod_{M_{1}} \mathbb{Q} \cong \prod_{M_{2}} \mathbb{Q} \quad$ iff $\quad \operatorname{deg}_{m}\left(M_{1}\right)=\operatorname{deg}_{m}\left(M_{2}\right)$
- Theorem. The cohesive power $\frac{\prod}{M_{1}} \mathbb{Q}$ has only the trivial automorphism (i.e., it is rigid).

The proof uses a recent result by Koenigsmann that \mathbb{Z} is \forall-definable in \mathbb{Q} (in the language of rings $\{+, \cdot, 0,1\}$).

- Koenigsmann proved that there is a polynomial $k \in \mathbb{Z}\left[t, x_{1}, \ldots, x_{418}\right]$ such that

$$
t \in \mathbb{Z} \Leftrightarrow \mathbb{Q} \vDash \forall x_{1} \cdots \forall x_{418}\left[k\left(t, x_{1}, \ldots, x_{418}\right) \neq 0\right]
$$

- Previously, Poonen had a $\forall \exists$-definition with 2 universal and 7 existential quantifiers.
- It is still open whether \mathbb{Z} is existentially definable in \mathbb{Q}.

Application of cohesive power results to $\mathcal{L}^{*}\left(V_{\infty}\right)$

 (assuming V_{∞} is over \mathbb{Q})- Let V be spanned by a rank n quasimaximal subset of a computable basis of V_{∞}. Assume $n \geq 3$. Consider an isomorphism type of $\mathcal{L}^{*}(V, \uparrow)$, which is the lattice $L\left(n, \prod_{C} \mathbb{Q}\right)$ of all subspaces of an n-dimensional space over a cohesive power of \mathbb{Q}.
- These principal filters fall into infinitely many non-isomorphic classes, even when the filters are isomorphic to the lattices of subspaces of finite dimensional vector spaces of the same dimension.
- Every automorphism of $\mathcal{L}^{*}(V, \uparrow) \cong L\left(n, \prod_{C} \mathbb{Q}\right)$ can be extended to an automorphism of $\mathcal{L}^{*}\left(V_{\infty}\right)$, which is of Ash type (see below).
- (Guichard) The automorphisms of $\mathcal{L}\left(V_{\infty}\right)$ are induced by $1-1$ and onto computable semilinear transformations. Hence there are countably many automorphisms of $\mathcal{L}\left(V_{\infty}\right)$.
- (μ, σ) is a semilinear transformation if $\mu: V_{\infty} \rightarrow V_{\infty}$, σ is an automorphism of F, and for every $u, v \in V_{\infty}$ and $a, b \in F$:

$$
\mu(a u+b v)=\sigma(a) \mu(u)+\sigma(b) \mu(v)
$$

- Conjecture (Ash) The automorphisms of $\mathcal{L}^{*}\left(V_{\infty}\right)$ are induced by semilinear transformations with finite dimensional kernels and co-finite dimensional images in V_{∞}.

Automorphism results for $\mathcal{L}^{*}\left(V_{\infty}\right)$

(Dimitrov and Harizanov)

- Theorem. Let M_{1} and M_{2} be maximal subsets of computable bases Ω_{1} and Ω_{2} of V_{∞}, respectively. Then there is an automorphism Φ of $\mathcal{L}^{*}\left(V_{\infty}\right)$ such that: $\Phi\left(\operatorname{cl}\left(M_{1}\right)^{*}\right)=\operatorname{cl}\left(M_{2}\right)^{*} \quad$ iff $\quad \operatorname{deg}\left(M_{1}\right)=\operatorname{deg}\left(M_{2}\right)$.
- We introduce the notion of a type of a quasimaximal set $B=\bigcap_{i=1}^{n} M_{i}$, which captures the number and the m-degrees of the maximal sets M_{i} 's.
- Theorem. Let B_{1} and B_{2} be quasimaximal subsets of computable bases Ω_{1} and Ω_{2} of V_{∞}, respectively. There is an automorphism Φ of $\mathcal{L}^{*}\left(V_{\infty}\right)$ such that: $\Phi\left(c l\left(B_{1}\right)^{*}\right)=\operatorname{cl}\left(B_{2}\right)^{*} \quad$ iff type $_{\Omega_{1}}\left(B_{1}\right)=t y p e \Omega_{2}\left(B_{2}\right)$.
- Theorem. If a modular lattice $1-3-1$ is a principal filter in $\mathcal{L}^{*}\left(V_{\infty}\right)$, then either all co-atoms in the filter have c.e. extendable bases, or no co-atom has a c.e. extendable basis.

The same dichotomy holds if the modular lattice $1-\infty-1$ is a principal filter.

- Corollary. If V_{1} and V_{2} are two maximal spaces such that V_{1} has an extendable c.e. basis, while no c.e. basis of V_{2} is extendable, then

$$
\mathcal{L}^{*}\left(V_{1} \cap V_{2}, \uparrow\right) \cong \mathbf{B}_{2}
$$

Lattice $\mathcal{L}_{\mathbf{d}}\left(V_{\infty}\right)$ and its automorphisms

- Let \mathcal{L} denote the lattice of all subspaces of V_{∞}.
- Let $\mathcal{L}_{\mathbf{d}}\left(V_{\infty}\right)=\{V \in \mathcal{L}: V$ is \mathbf{d}-computably enumerable $\}$.
- By $G S L_{\mathbf{d}}$ we denote the group of 1-1 and onto semilinear transformations (μ, σ) such that $\operatorname{deg}(\mu) \leq \mathbf{d}$ and $\operatorname{deg}(\sigma) \leq \mathbf{d}$.
- Every $\Phi \in \operatorname{Aut}\left(\mathcal{L}_{\mathbf{d}}\left(V_{\infty}\right)\right)$ is induced by some $(\mu, \sigma) \in G S L_{\mathbf{d}}$.
- If $\Phi \in \operatorname{Aut}\left(\mathcal{L}_{\mathbf{d}}\left(V_{\infty}\right)\right)$ is induced by $(\mu, \sigma) \in G S L_{\mathbf{d}}$ and by some other $\left(\mu_{1}, \sigma_{1}\right) \in G S L_{\mathbf{d}}$, then there is $\gamma \in F$ such that

$$
\left(\forall v \in V_{\infty}\right)\left[\mu(v)=\gamma \mu_{1}(v)\right]
$$

- (Dimitrov, Harizanov and Morozov)

For any pair \mathbf{a}, \mathbf{b} of Turing degrees we have

$$
\left(\operatorname{Aut}\left(\mathcal{L}_{\mathbf{a}}\left(V_{\infty}\right)\right) \hookrightarrow \operatorname{Aut}\left(\mathcal{L}_{\mathbf{b}}\left(V_{\infty}\right)\right)\right) \Leftrightarrow \mathbf{a} \leq \mathbf{b}
$$

Turing degree spectrum of $G S L_{\mathbf{d}}$

- Turing degree spectrum of a structure \mathcal{A} :

$$
\operatorname{DgSp}(\mathcal{A})=\{\operatorname{deg}(\mathcal{B}): \mathcal{B} \cong \mathcal{A}\}
$$

- (Knight) Turing degree spectrum of a structure is either a singleton or is closed upward in the set \mathcal{D} of all Turing degrees.
- (Dimitrov, Harizanov and Morozov)

$$
\operatorname{DgSp}\left(G S L_{\mathbf{d}}\right)=\left\{\mathbf{c} \in \mathcal{D}: \mathbf{c} \geq \mathbf{d}^{\prime \prime}\right\}
$$

THANK YOU!

