

Real-space local 3D structure of disordered matter from fluctuation diffraction

Dr. Andrew V. Martin

• Background: disordered matter and pair-distribution analysis

• Extracting real-space angular distributions from diffraction data of disordered matter

• Early experimental results

We live in a disordered world!

Metallic glass

Metallic glass ceiling may be smashed with improved technique to treat contaminated water

Amorphous Materials

Glassy carbon (High T crucibles; electrochemistry)

Liquids

Airborne particles (soot) (pollution/respiratory health)

Workship on Computational Methods in the Bio-imaging Sciences, Singapore

SAXS and the Pair-distribution function [g(r)]

Fluctuation diffraction

Centre for Advanced Molecular Imaging

3D analysis of intensity correlations

Step 1 - obtain $B_l(q, q')$ by numerical inversion

$$\int d\theta \langle I(q,\theta) I(q',\theta+\Delta\theta) \rangle = \sum_{l} \frac{1}{4\pi} P_l \left(\frac{\boldsymbol{q} \cdot \boldsymbol{q}'}{|\boldsymbol{q}||\boldsymbol{q}'|} \right) B_l(q,q')$$

• P_l : Legendre polynomials

Step 2 – transform to real space with a spherical Bessel transform

$$S_{q'r'} \left[S_{qr} \left[B_l(q,q') \right] \right] = B_l(r,r') \qquad \hat{S}_{qr} \left[f(q) \right] = 4\pi \int_0^{q_{\text{max}}} f(q) j_l(2\pi qr) q^2 dq$$

Step 3 – recover angular dependence

$$\Theta(\mathbf{r},\mathbf{r}',\theta) \equiv 2\pi N_{\rm a} \sum_{l} P_{l}(\cos\theta) \langle B_{l}^{\alpha}(\mathbf{r},\mathbf{r}') \rangle_{\alpha}$$
$$= \int \int N_{\rm a} \langle g^{\alpha}(\mathbf{r}) g^{\alpha}(\mathbf{r}') \rangle_{\alpha} \delta\left(\cos\theta - \frac{\mathbf{r} \cdot \mathbf{r}'}{|\mathbf{r}||\mathbf{r}'|}\right) \mathrm{d}\Omega_{r} \mathrm{d}\Omega_{r'},$$

Molecular dynamics : Nickel

Radial correlations

Resolution filter

At the highest radial resolution, angular resolution is poor.

Sources of noise: shot-noise, diffraction from uncorrelated atoms, background scattering.

XFEL pulses are generated by positive feedback between an electron beam and spontaneously emitted undulator radiation.

Highly intense: up to **10²⁰ W cm⁻²**

Ultrafast: 5 – 100 fs pulse duration

High resolution: **0.1 nm – 40 nm** wavelength

Highly coherent

High repetition rates: up to **100 Hz - 27000Hz**

Serial XFEL data collection

Chapman, et al. *Nature* **470**, 73 (2011)

Data from Loh et al. Nature (2012) 486, 513.

(D = diameter)

Simulated sphere clusters

160

180

Nano sphere clusters measured at LCLS

Data from Loh et al. Nature (2012) 486, 513.

Turkey (1LJN) vs Hen (1vds) Lysozyme differ by a few residues

Full protein structure : >10¹³ photons @ LCLS; 10:1 water:protein (Kirian et al.) Not currently feasible (?)

Angular SAXS: >10¹⁰ photons

 $l_{max} = 12$ 10:1 H₂O:GroEL 20 12 10 = r' (nm) 60 10¹⁰ photons 80 100 120 0 20 40 60 80 100 120 140 160 180 θ (degrees)

Currently feasible with an XFEL

10k protein

molecules

Beam width:

100 nm

Transient electronic structure in C₆₀ crystals

Abbey et al. Sci. Adv. 2016; 2 : e1601186

C₆₀ 100% XFEL data

"Fluctuation powder diffraction"

10% vs 100% XFEL power

Future application: Lipidic cubic phase

With Peter, Berntsen, Connie Darmanin (La Trobe), Charlotte Conn, Tamar Greaves (RMIT)

+ Dopamine 2 receptor (D2L) Note: lattice is disrupted

Doped LCP Buffer SAXS Australian Synchrotron *Note: angular structure!*

Acknowledgements

University of Melbourne (Physics)

Les Allen Harry Quiney Alex Kozlov Saumitra Saha Tim Gureyev Justine Corso Sophie Williams

Uppsala University

Carl Caleman Nic Timneanu Christofer Ostlin

La Trobe University

Keith Nugent Brian Abbey Connie Darmanian Leonie Flueckiger Peter Berntsen

Monash University Amelia Liu

Tim Petersen Espen Bojesen

Singapore National University Duane Loh

Electrons:

amorphous solids

Synchrotrons:

nano-scale disorder, soft matter

X-ray free-electron lasers:

Liquids, proteins