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Image Restoration Model

> Image Restoration Problems

f=Au+n

e Denoising, when A is identity operator

e Deblurring, when A is some blurring operator

* Inpainting, when A is some restriction operator
« CT/MR Imaging, when A is partial Radon/Fourier

transform
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Image Restoration Models: A Quick Review

> Image restoration: f = Au+7

> Variational and Optimization Models
min AR(u) + ||Au — f]|?
= Total variation (TV) :nd generalizations:  R(u) = ||Vul||; or |[Dul;
= Wavelet frame based:  R(u) = [|[Wu||;, or |Wul

= Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.

> PDEs and Iterative Algorithms

= Perona-Malik equation, shock-filtering (Rudin & Osher), etc

L o ) _ P oPsL
Ut = /=1 IS A et (I)Q(DU,U) — A (Au _ f)* with D = (m’ Y m)

= lterative shrinkage algorithm
u=WTS o (Wub ) — AT (A1 = ), k=12,

> vMbﬁé: 919 §h&),’lb)%§9 rggt&gfmdaga-driven perspective, Proceedings of the
Interngiiarin feapaEeRs RPasE dl SRR KrtbpRAiTOHHAtidR! >




Bridging discrete and continuum

WAVELET FRAME TRANSFORMS
AND DIFFERENTIAL OPERATORS

¢ J. Cai, B. Dong, S. Osher and Z. Shen, Image restoration: total variation;
wavelet frames; and beyond, Journal of American Mathematical
Society, 25(4), 1033-1089,2012.

¢ B.Dong, Q. Jiang and Z. Shen, Image restoration: wavelet frame shrinkage,
nonlinear evolution PDEs, and beyond, MMS, 15(1), 606-660,2017.

% Jian-Feng Cai, B. Dong and Zuowei Shen, Image restorations: a wavelet
frame based model for piecewise smooth functions and beyond, Applied
and Computational Harmonic Analysis, 41 (1), 94-138,2016.

¢ Bin Dong, Zuowei Shen and Peichu Xie, Image restoration: a general

wavelet frame based model and its asymptotic analysis, SIAM Journal
on Mathematical Analysis, 49(1),421-445,2017.



MRA-Based Tight Wavelet Frames

» Refinable and wavelet functions
o=2"Y " aolklp(2-—k) ve=2") alklo2 —k), (=12, ...4q.
> Unltary extension prlnC|pIe (UEP)

Z|ag =1 and Zap Jae(E+v) =

=0 =0 = {O,W}‘I\{O} and & € [—, 7
> Discrete 2D transformation: Wu = {W,;u:0 <1 <L —1,0 <iy,is <7}

[ Wi = a;;|—] ® u.

CL,L[IC} = Qg []fl]a,jg [/CQ] 0 S ”1:1, iQ S . (k’l, k’Q) & Zz.

e .= z a;[27'k], ke 272
ai=a;®a_10®...0apo with ay;[k]= 0, k¢?2'72

> Perfect reconstruction: W' W =TI

> Further reading: [Dong and Shen, MRA-Based Wavelet Frames and
Applications, |AS Lecture Notes Series,201 1]



Connections: Motivation

» Difference operators in wavelet frame transform:

Haar Fikers hot =~ © L ) omo==( 1 Y na=i( t 7
aar Filters 071—4 1 —1 ,11,0—4 1 1 :'1.1_4 —1 1

Transform |}y = {ho 1{ } &0 U; hl 0[ ] 5 U; hl,l[_'] ® ’LL}

Approximation
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4 4
> More rigorously [Choi, Dong and Zhang, preprint, 2017]

Proposition 2.2. Let a tensor product framelet function 1o € L2(R?) have vanishing moments of order

with |a| < s, and let supp(te) = [a1,as] x [by,b2]. Forn € N and k € Z* with supp(Ve.n—1.1) C Q, we
have

<u:wa.n*1.k> = (*1)|a‘2|a‘(1_”)<aau: Qa.n,fl.k>

for every u € W (). ng Podx # 0, supp(Pa) = supp(ta)



Connections: Analysis Based Model and

Variational Model
» [Cai, Dong, Osher and Shen, JAMS, 2012]:

Converges

1 1
) wulh+5lAu =I5 —= AD)l: + 3l 4u~ 10

For any differential operator when proper parameter is chosen.

Gheorem. Let the objective functionals of the analysis based 1110(13

and the variational model be E,,(u) and E(u) respectively, then:
(1) E,(u) = E(u) for each u € W (£2);
- (2) E.(u,) — E(u) for every sequence u,, — u. Consequently, E,, ;

[-converges to F; )
(3) If w) is an e-optimal solution to E,,, i.e. E,(w)) < inf, E,(u)+e,
then |
\ limsup E,(uv)) < inf E(u) + €. /
%" = m i b - o b —

~ % Image segmentation: [Dong, Chien and Shen, 2010]
% Surface reconstruction from péiRdeldudisfPB#sIand Shen, 20 Pigcewise Linear WFT



Relations:Wavelet Shrinkage and Nonlinear
PDEs

» [Dong, Jiang and Shen, MMS, 2017]

—~—

k

u=W' 'S (Wurh), k=12,
< L e . OB HBL ):

Z —®(Du,u), with Du = (

-----

» Theoretical justification available for quasilinear parabolic equations.
» Lead to new PDE models such as:

L

508 HB1y, 9BL N B
_ 1+|8¢| - _ T _
;Ltt + Cuy = ;( 1) pywe [gf( 928 DB ) pyCE u} kA (Au— f)

~7 ~7

uf =T - pATAW'S i (Wulh=1) + nAT f

where
St (Wur 1) ={S, ,  wur-y (W) 0<I<Lev—-11</(<L}

4t di )% + 4(do.p )
Seav (@) dim.don) =din (1 _ ﬁg( (din) (d2.n) ))




Summary
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+* J. Cai, B. Dong, S. Osher and Z. Shen, Image restoration: total variation;
wavelet frames; and beyond, Journal of American Mathematical Society,
25(4), 1033-1089, 2012.

+#Jian-Feng Cai, B. Dong and Z. Shen, Image restorations: a wavelet frame based
model for piecewise smooth functions and beyond, Applied and
Computational Harmonic Analysis, 41(1), 94-138, 2016.

+ B. Dong, Z. Shen and P. Xie, Image restoration: a general wavelet frame
based model and its asymptotic analysis, SIAM Journal on Mathematical
Analysis, 49(1), 421-445, 2017.

Discrete

Optimization

Iterative

Algorithms

“+B. Dong, Q. Jiang and Z. Shen, Image restoration: wavelet frame
shrinkage, nonlinear evolution PDEs, and beyond, Multiscale
Modeling & Simulation, I5(1), 606-660, 2017.




INFORMATION

PROCESSINC MODELS COMPUTER

3 ROJE . cm
| ‘\\ |

ANALYTICS ' DATA MINING

DATA SCIENCE

Zf‘/l AC } \N LEARNING V FT‘S EARCH

IG w “‘ i uM PUTING

O
_ I\TTFP“.-m \ S :
" ENGINEERING & PPV -P:VISUALIZATION o] e

s COMF UTING
MEDIA 5

JILE .
SEGMENTATIC HS
.

- F G
STATISTICS ) . ‘:“ o ;sum Bz

INFORMATT

© morganimation - Fololia.com

SPARSE APPROXIMATION IN
HIGH-DIMENSIONAL DATA
CLASSIFICATION

“* Ning Hao, Bin Dong and Jianqing Fan, Sparsifying the Fisher Linear

Discriminant by Rotation, Journal of the Royal Statistical Society
Series B,2015.

* Bin Dong, Sparse Representation on Graphs by Tight Wavelet Frames
and Applications, Applied and Computational Harmonic

Analysis, 2015.
** Bin Dong and Ning Hao, Semi-supervised high dimensional clustering
by tight wavelet frames, Proceedings of SPIE,2015.



Introduction

What is data science? Extracting knowledge from
data to make intelligent observations and decisions.

1.Broad applications 2. Variety

) e Network data
Astronomical data

@ I e Webpage data
Envi ronme}r\al - e Text
Data 2 Sales data ° |mage
e Video
/ —_——
% @ e Audio
Game data Webpage data



Introduction

l Data Science \
l Ma::r]:':l;:?cs \ lOptlmnzatlon\ l Statistics \ l LMeaacrhnl|nneg \

Deep Theory

— Different area has different focus. Some
has tight |link with another.

— Broader |inks?



Introduction

l Data Science \

Importance of the merge:
e Combining merits

e New insights on classical problems



Introduction

> Typical big data set: with n X p huge

X e K™, K=2ZR,C, etc.
» Classical v.s. modern p

P

Classical: n<p

Modern: n>p



Introduction

> Typical big data set: with n X p huge
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Introduction

> Sparsity is key

O What is sparsity for general data sets!?

Essential information is of much lower dimension than the dimension
of the data itself.

O How do we harvest sparsity?

Sparse under certain (nonlinear) transformation.

O Examples:

PCA and its siblings

Low rank approximation
Wavelet frame transform
Dictionary learning
Isomaps, LLE, diffusion maps
Autoencoder

.. etc.

Reduce The o |

s FatIn Your
-, Data

.'?/
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Nonlinear Classification

- MODERN SCENARIO

¢ Bin Dong, Sparse Representation on Graphs by Tight Wavelet Frames
and Applications, Applied and Computational Harmonic
Analysis, 2015.

¢ Bin Dong and Ning Hao, Semi-supervised high dimensional clustering
by tight wavelet frames, Proceedings of SPIE,2015.



Nonlinear Classifier

> When we have enough observations, nonlinear
classifier leads to more accurate classification.

Erplicit Classifier



PDE Method

e Ginzburg-Landau (GL) functional [Andrea and Flenner, 201 1]

e L
o o .9 o I'g N 0 foriely.

T - T — Y1 e s
e o Ty 1 toriely.

e GL model

€ 1 (L
E(u) = 5(“:Esu>+4—6HU2_1Hg,GJFgHUIF—fH%,G

1

K P
L,=I-D'2AD™'2  |[fllpc = (Z |f[/f]|pf/[/f])
k=1

where



PDE Method

o Splitting E to a sum of convex and concave parts

E(u) = E1(u) — F2(u)

Bi(u) = £ / Vu(e) P + / u(e) 2de,

1 c [ AN
Es(u) = I (u(x)? — 1)%*dx + 5/ u(z)|?dx — /%(u(m) — ugp(2))?dz.
e Convex splitting scheme

n+1 n
U — U B 3E1 atl 8E2 &
= ——— (") + ——=(u")
dt ou ou
¢ At each iteration, we need to solve a Laplace equation
on graph.

¢ Fast graph Laplacian solver is needed, such as Nystrom’s
method.



Wavelet Frame Method

e Key idea: Eigenfunctions of Laplace-Beltrami
operator (graph Laplacian in discrete setting) are
understood as Fourier basis on manifolds (graphs in
discrete setting) and the associated eigenvalues as
frequency components.

e Spectrum of Laplace-Beltrami operator on {M, g}
Au+ Au =0, ug=0.

Eigenvalues and eigenfunctions: 0 < Ag < A; <Xy < -

(Upy Ut ) Ly (M) = / Uy (T )ty (1)dx = 5) 1
=N M
e Fourier transform f[p] = (f.up)L,(m)

e Plancherel and Parseval’s identities
oD Lamty = (Fr D@y for frg € Loy(M)
117ty = 1112, 2ty



Wavelet Frame Method

e Asymptotic properties of eigenfunctions and
eigenvalues:

2
e Weyl’s asymptotic formula (1912) : A, < p™

m—1

e Uniform bound (Grieser, 2002): |[upllo vy < CAp

e Wavelet system (semi-continuous) on manifold M:

X(W) ={vit, €Ly(M): 1<j<rnelye M},
where M e Ly(M) is generated by U = {¢; : 1 < j <r} C Lyo(R)
as Eigenvalues Eigenfunctions

o0
Jm, :Z ”)\ l\pr) withneZ, re M, ye M,

D11at10n Translation
where 1/} denotes that Fourier transform of 1, € Ly(RR).

e Question: how to construct v’; so that X (¥) 1s a tight
frame on M?



Wavelet Frame Method

e Further restriction on ¢;:

Given (26 =a(6)o(¢) and  a;j € (H(Z)

A A

et 0;(2) == a;()0(), 1<ji<r

* Question: how to construct @; so that X (V) is
a tight frame on M !

* Benefits of such restriction
e Grants a natural transition from continuum to discrete setting
» Makes construction of tight frames on manifolds/graphs painless

e Grants fast decomposition and reconstruction algorithms
(Chebyshev polynomial approximation)



Wavelet Frame Method

> Sparsity based semi-supervised learning models
|

ModelL2: min_[[v- Wulli g+ =|lur — fll5.6.
u€[0,1] 2
. . 0 foriel,
Exact Model: 1N, c[0,1] v - WUHLG fli] = {l S e FU
St ur = f or 1 1+
Robust Model: Mmin HV : WUHl,G T HU|F - le,G
ue(0,1] _
° : |
o '.:_- ’- ‘
o 6. % ° Iy
‘fQ,f‘ o o o[y

» Transform W is the fast tight wavelet frame transform
on graphs [B. Dong, ACHA, 2015].



Wavelet Frame Method

» Classification — Real D
VSRR O [ L) 4
) s b784

o Banknote authentication dataset @@H @
(UCI machine learning repository)
> Results: Model L2 [Dong, ACHA, 2015] ~3-5% label

Errors (%) | Our Method | Max-Flow | PAL | Binary MBO | GL
MNIST | 2.76 (8.5 sec.) 1.52 1.56 1.64 1.75
Banknote | 1.64 (2.9 sec.) 17 | i | 6.52 3.90

* Max-Flow & PAL : [Merkurjev, Bae, Bertozzi, and Tai, preprint, 2014]
 Binary MBO: [Merkurjeyv, Kostic, and Bertozzi, 201 3]
» GL: [Bertozzi and Flenner, 2012]



Further Studies of Wavelet Frame Transform
on Graphs

» High dimensional classification [Dong and Hao, SPIE 2015]
V.S. LDA methods: Leukemia (n=72, p=7129) and Lung (n=181,

p=12533)

T I I N N
Leukemia 851 (3.0) 427 (8.4) 6.35 (6.0) 4.46 (3.1) 5.57 (4.2)
Lung Cancer 10.44 (1.4)  3.47 (7.3) 1.37 (1.1) 0.93 (0.9) 0.59 (0.6)

> Application in super-resolution diffusion MRI ['Yap, Dong, Zhang,

Leukemia Lung

Colored FA




- CONCLUDING
REMARKS



Conclusions and Future Work

» Conclusions

o Bridging wavelet frame transforms and differential operators
o New insights, models/algorithms and applications

o Sparse approximation for general data analysis

> Future work

o ldea of “end-to-end” in classical problems such as imaging

o Learning PDEs from data
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