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Image Restoration Model
 Image Restoration Problems

 Challenges: large-scale & ill-posed

• Denoising, when      is identity operator

• Deblurring, when      is some blurring operator

• Inpainting, when      is some restriction operator

• CT/MR Imaging, when      is partial Radon/Fourier

transform 
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Image Restoration Models: A Quick Review

 Image restoration:

 Variational and Optimization Models

 Total variation (TV) and generalizations: 

 Wavelet frame based:

 Others: total generalized variation, low rank, NLM, BM3D, dictionary learning, etc.

 PDEs and Iterative Algorithms
 Perona-Malik equation, shock-filtering (Rudin & Osher), etc

 Iterative shrinkage algorithm

 What do they have in common? 

Shrinkage in sparse domain under transformation!
“Dong and Shen, Image restoration: a data-driven perspective, Proceedings of the 
International Congress of Industrial and Applied Mathematics (ICIAM), 2015”
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WAVELET FRAME TRANSFORMS 

AND DIFFERENTIAL OPERATORS

Bridging discrete and continuum
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MRA-Based Tight Wavelet Frames
 Refinable and wavelet functions

 Unitary extension principle (UEP)

 Discrete 2D transformation:

 Perfect reconstruction:
 Further reading: [Dong and Shen, MRA-Based Wavelet Frames and 

Applications, IAS Lecture Notes Series,2011]
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Connections: Motivation

 Difference operators in wavelet frame transform:

 Thus,

 More rigorously [Choi, Dong and Zhang, preprint, 2017]

Haar Filters

Transform

Approximation
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Connections: Analysis Based Model and 
Variational Model
 [Cai, Dong, Osher and Shen, JAMS, 2012]:

 The connections give us

 Leads to new applications of wavelet frames:

Converges

• Geometric interpretations of the wavelet frame transform (WFT)

• WFT provides flexible and good discretization for differential operators

• Different discretizations affect reconstruction results

• Good regularization should contain differential operators with varied orders (e.g., total 

generalized variation [Bredies, Kunisch, and Pock, 2010])

 Image segmentation: [Dong, Chien and Shen, 2010]
 Surface reconstruction from point clouds: [Dong and Shen, 2011]

For any differential operator when proper parameter is chosen.

Standard Discretization Piecewise Linear WFT
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Relations: Wavelet Shrinkage and Nonlinear 
PDEs
 [Dong, Jiang and Shen, MMS, 2017]

 Theoretical justification available for quasilinear parabolic equations.
 Lead to new PDE models such as:

 Lead to new wavelet frame shrinkage algorithms:

where
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Summary
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SPARSE APPROXIMATION IN 

HIGH-DIMENSIONAL DATA 

CLASSIFICATION
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Discriminant by Rotation, Journal of the Royal Statistical Society 
Series B, 2015.
 Bin Dong, Sparse Representation on Graphs by Tight Wavelet Frames 
and Applications,  Applied and Computational Harmonic 
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by tight wavelet frames, Proceedings of SPIE,2015.
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• Network data

• Webpage data

• Text

• Image

• Video

• Audio
Game data Webpage data

1.Broad applications

Environmental

Data Sales data

Astronomical data

2.Variety

What is data science? Extracting knowledge from 
data to make intelligent observations and decisions.

Introduction



- Different area has different focus. Some 
has tight link with another.

- Broader links?

Data Science

Applied 
Mathematics

Optimization Statistics
Machine 
Learning

Deep Theory Applications

Introduction



Importance of the merge：

 Combining merits

 New insights on classical problems

Introduction

Data Science

Applied 
Mathematics

Optimization Statistics
Machine 
Learning

Deep Theory Applications

Algorithms for Data Science
Thinking in depth, aiming for the best.



Introduction

Typical big data set: with huge

Classical v.s. modern

Classical: n<p

Modern: n>p

n

p

p

n
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Introduction
 Sparsity is key
 What is sparsity for general data sets?

 How do we harvest sparsity?

 Examples:
 PCA and its siblings

 Low rank approximation

 Wavelet frame transform

 Dictionary learning

 Isomaps, LLE, diffusion maps

 Autoencoder

 … etc.

Essential information is of much lower dimension than the dimension 
of the data itself.

Sparse under certain (nonlinear) transformation.
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MODERN SCENARIO
Nonlinear Classification

 Bin Dong, Sparse Representation on Graphs by Tight Wavelet Frames 
and Applications,  Applied and Computational Harmonic 
Analysis, 2015.
 Bin Dong and Ning Hao, Semi-supervised high dimensional clustering 
by tight wavelet frames, Proceedings of SPIE,2015.
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Nonlinear Classifier
When we have enough observations, nonlinear 

classifier leads to more accurate classification.

Explicit ClassifierImplicit Classifier

20



PDE Method
 Ginzburg–Landau (GL) functional [Andrea and Flenner, 2011]

 GL model 

where



PDE Method
 Splitting E to a sum of convex and concave parts

 Convex splitting scheme

At each iteration, we need to solve a Laplace equation 
on graph.
 Fast graph Laplacian solver is needed, such as Nystrom’s
method.



 Key idea: Eigenfunctions of Laplace-Beltrami 
operator (graph Laplacian in discrete setting) are 
understood as Fourier basis on manifolds (graphs in 
discrete setting) and the associated eigenvalues as 
frequency components.

 Spectrum of Laplace-Beltrami operator on 

 Fourier transform
 Plancherel and Parseval’s identities

Eigenvalues and eigenfunctions:

Wavelet Frame Method



Wavelet Frame Method
 Asymptotic properties of eigenfunctions and 

eigenvalues:

 Wavelet system (semi-continuous) on manifold      :

 Question: how to construct      so that          is a tight 
frame on     ?

Eigenvalues Eigenfunctions

Dilation Translation

• Weyl’s asymptotic formula（1912）：

• Uniform bound (Grieser, 2002):



Wavelet Frame Method
 Further restriction on     :

 Question: how to construct      so that          is 
a tight frame on     ?

 Benefits of such restriction
 Grants a natural transition from continuum to discrete setting

 Makes construction of tight frames on manifolds/graphs painless

 Grants fast decomposition and reconstruction algorithms 
(Chebyshev polynomial approximation)

Given                                     and

let



Wavelet Frame Method
 Sparsity based semi-supervised learning models

 Transform W is the fast tight wavelet frame transform 
on graphs [B. Dong, ACHA, 2015].

Model L2:

Exact Model:

Robust Model:
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Wavelet Frame Method
 Classification – Real Datasets

o MNIST data set 
(http://yann.lecun.com/exdb/

mnist/)
o Banknote authentication dataset 
(UCI machine learning repository)

 Results: Model L2 [Dong, ACHA, 2015]

• Max-Flow & PAL :  [Merkurjev, Bae, Bertozzi, and Tai, preprint, 2014]
• Binary MBO:  [Merkurjev, Kostic, and Bertozzi, 2013]
• GL:  [Bertozzi and Flenner, 2012]
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Further Studies of Wavelet Frame Transform 
on Graphs
 High dimensional classification [Dong and Hao, SPIE 2015]

 V.S. LDA methods: Leukemia (n=72, p=7129) and Lung (n=181, 
p=12533)

 Application in super-resolution diffusion MRI [Yap, Dong, Zhang, 
Shen, MICCAI 2016]

Error % (Std %) NSC IR ROAD RS-ROAD Exact Model

Leukemia 8.51 (3.0) 4.27 (8.4) 6.35 (6.0) 4.46 (3.1) 5.57 (4.2)

Lung Cancer 10.44 (1.4) 3.47 (7.3) 1.37 (1.1) 0.93 (0.9) 0.59 (0.6)
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CONCLUDING 
REMARKS
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Conclusions and Future Work
 Conclusions

o Bridging wavelet frame transforms and differential operators

o New insights, models/algorithms and applications

o Sparse approximation for general data analysis

 Future work
o Idea of “end-to-end” in classical problems such as imaging

o Learning PDEs from data
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Thanks for Your Attention
and 

Questions?

http://bicmr.pku.edu.cn/~dongbin
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