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Sparseland CNN’

Sparse Convolutional
Representation Neural
Theory Networks

The Underlying Idea

Modeling

data sources enables a theoretical * Only CNN?

What about other
architectures ?

analysis of algorithms’ performance
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Our Starting Point: Image Denoising

Original Image White Gaussian Noise Noisy Image

Published Iltems in Each Year

Many (thousands) image denoising algorithms
Topic=image and

noise and (removal
or denoising)

have been proposed over the years, some of
which are extremely effective
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Leading Image Denoising Methods...

are built upon powerful patch-based local models:
. ,.-l‘_l W

Popular local models: GMM

Sparse-Representation
Example-based
Low-rank
Field-of-Experts &
Neural networks
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Patch-Based Image Denoising

0 K-SVD: sparse representation modeling of image patches
[Elad & Aharon, ‘06]

0 BM3D: combines sparsity and self-similarity
[Dabov, Foi, Katkovnik & Egiazarian ‘07]

O EPLL: uses GMM of the image patches
[Zoran & Weiss ‘11]

O MLP: multi-layer perceptron
[Burger, Schuler & Harmeling ‘12]

O NCSR: non-local sparsity with centralized coefficients
[Dong, Zhang, Shi & Li ‘13]

0 WNNM: weighted nuclear norm of image patches
[Gu, Zhang, Zuo & Feng ‘14]

0 SSC—-GSM: nonlocal sparsity with a GSM coefficient model
[Dong, Shi, Ma & Li ‘15]
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The SparselLand Model for Patches

0 Assumes that every patch is a linear combination of a few atoms,
from a dictionary

O The operator R; extracts g B
r_'>

the i-th n-dimensional patch
from X € RV r(

0 Model assumption:
Vi , RIX = le
where |lyillo K n
A

i-th location
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Patch Denoising

Given a noisy patch R;Y, solve (P§): ¥; = argmin ||y;ll,
Yi

» Clean patch: Q¥; s.t. |IRiY —Qy;ll, <€

(Py) is hard to solve

Greedy methods such as
Orthogonal Matching Pursuit as Basis Pursuit (BP)

(OMP) or Thresholding  (Pf): min [|y;ll; + &|IR;Y — Qy;ll5
Yi
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Recall K-SVD Denoising [Elad & Aharon, ‘06]

Initial Dictionary Using K-SVD

Update the
dictionary

Noisy Image

Denoise
each patch

Using OMP

O Despite its simplicity, this is a very well-performing algorithm

O Its origins can be traced back to Guleryuz’s local DCT recovery

O A small modification of this method leads to state-of-the-art
results [Mairal, Bach, Ponce, Spairo, Zisserman, "09]
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What is Missing?

0 Over the years, many kept revisiting this algorithm
and its line of thinking, with a clear feeling that key
features are still lacking

0 What is missing? Here is what WE thought of...

= A multi-scale treatment [Ophir, Lustig & Elad ‘11] [Sulam, Ophir & Elad ‘14]
[Papyan & Elad ‘15]

= Exploiting self-similarities [Ram & Elad ‘13] [Romano, Protter & Elad ‘14]

= Pushing to better agreement on the overlaps [Romano & Elad ‘13]
[Romano & Elad ‘15]

= Enforcing the local model on the final patches (EPLL) [Sulam & Elad ‘15]

O Eventually, we realized that the key part that is missing is

A Theoretical Backbone
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Missing Theoretical Backbone?

0 The core global-local model assumption on X € R¥:

Vi R;X=Qy; where |yillp <k

» Every patch in the unknown signal is expected to have a
sparse representation w.r.t. the same dictionary Q
O Questions to consider:
= Who are the signals belonging to this model? Do they exist?
= How should we project a signal on this model (pursuit)?
= Could we offer theoretical guarantees for this model/algorithms?
= Could we offer a global pursuit algorithm that operates locally?
= How should we learn Q if this is indeed the model?

0 As we will see, all these questions are very relevant to recent
developments in signal processing and machine learning

o= L]
W | Technion




N\

A
— .

£

» .«

Coming Up
Limitations of Convolutional Sparse
patch averaging Coding (CSC) model
Multi-Layer Convolutional « Theoretical
Sparse Coding (ML-CSC) study of CSC
Convolutional neural Fresh view of CNN through
networks (CNN) the eyes of sparsity
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Convolutional
Sparse Coding

Working Locally Thinking Globally:

Theoretical Guarantees for Convolutional Sparse Coding
Vardan Papyan, Jeremias Sulam and Michael Elad

Convolutional Dictionary Learning via Local Processing
Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad
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Convolutional Sparse Coding (CSC)

m filters convolved with their i-th feature-map:
sparse representations An image of the

\L same size as X
holding the sparse

representation

related to the i-filter

m

An image held as

a column vector Ii " . ;
of length N éf;'} The j-th tilter o

/=l small supportn
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Intuitively ...

i |\ J
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The first filter The second filter




CSC in Matrix Form

O Here is an alternative global sparsity-based model formulation

m
X = z Cr! =pr
=

0C' € RV*VN js a banded and Circulant matrix containing a single
atom with all of its shifts I
n

> ci-

oI'' € RY are the corresponding coefficients
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Two Interpretations

[Cl CZ CS] —

o= L]
W | Technion




stripe vector —/

X - Every patch has a sparse
I representation w.r.t. to the

same local dictionary (),
— i just as we have assumed

N N N N N N N N N N N I I O
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CSC Relation to Our Story

0 A clear global model: every patch has a sparse representation
w.r.t. to the same local dictionary 2, just as we have assumed

0 No notion of disagreement on the patch overlaps

O Related to the current common practice of patch averaging (RiT
- put the patch Qy; back in the i-th location of the global vector)

1 T
X=DF=EZRiQyi
i

0What about the Pursuit?
= “Patch averaging”: independent sparse coding for each patch
= CSC: should seek all the representations together

Ols there a bridge between the two? We’ll come back to this later ...
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O This model has been used in the past [Lewicki & Sejnowski ‘99]
[Hashimoto & Kurata, ‘00]

0 Most works have focused on solving efficiently its associated
pursuit, called convolutional sparse coding, using the BP algorithm

(Pf): min [IT|l; +AlY — Dr||5 Convolutional
r dictionary

O Several applications were demonstrated:

= Pattern detection in images and the analysis of instruments in music
signals [Mgrup, Schmidt & Hansen '08]

® |npainting [Heide, Heidrich & Wetzstein ‘15]
= Super-resolution [Gu, Zuo, Xie, Meng, Feng & Zhang ‘15]

O However, little is known regrading its theoretical aspects. Why?
Perhaps because the regular SparsLand theory is sufficient?
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Classical Sparse Theory (Noiseless)
(Py): mrin IT|l, s.t. X=DrI

Definition: Mutual Coherence: u(D) = max |dde]-|
17] [Donoho & Elad ‘03]
Theorem: For a signal X = DT, if ||T][, < %(

then this solution is necessarily the sparsest
[Donoho & Elad ‘03]

Theorem: The OMP and BP are guaranteed to recover the

true sparse code assuming that ||T||, < %

[Tropp ‘04], [Donoho & Elad ‘03]
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The Need for a Theoretical Study

0 Assuming that m = 2 and n = 64 we have that [Welch, '74]
w(D) = 0.063

0 As a result, unigueness and success of pursuits is guaranteed
as long as

Tl Al )<if4 2 8
072 w(D)/) = 2 0.063)

O Less than 8 non-zeros GLOBALLY are allowed!!!
This is a very pessimistic result!

O Repeating the above for the noisy case leads to
even worse performance predictions

0 Bottom line: Classic SparseLand Theory cannot
provide good explanations for the CSC model
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Moving to Local Sparsity: Stripes

£0 00 Norm: ||IT|[3 o = max lvillo
(Pg.0): min IT|I5 o s-t. X=Dr

IT|[3, 0 is low —> all y; are sparse — every
patch has a sparse representation over )

The Main Questions we Aim to Address:

|. Is the solution to this problem unique ?

II. Can we recover the solution via a global OMP/BP ?

Technion - A
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Stripe-Spark and Unigueness
(Pg.c0): min IT|IS o s.t. X=Dr

{DA = O}

e e, . . —_ 1 S
Definition: Stripe Spark N (D) = min [[Allge s.t. A %~ 0

A

Theorem: If a solution I' is found for (P ) such that:

1
)~ 4 Il < M

then it is necessarily the optimal solution to this problem

Theorem: The relation between the

» Stripe-Spark and the Mutual Coherence is:
1
No(D) =1+ ——

u(D)

Technion - A
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Unigueness via Mutual Coherence

(Pg.c0): min IT|IS o s.t. X=Dr

Theorem: If a solution I' is found for (Py ) such
that:

» " e
||r||0,oo<§( +m>

then this is necessarily the unique optimal solution to
this problem

: : " : For k non-zeros per
This result is exciting: This and later results stripe, and filters of

pose a constraint for a global guarantee, length n, we get
and as such, they are far more optimistic 1Tl = N
0= '
compared to the global guarantees 2n —1

non-zeros globally
Technion | A
T INALNLN




Recovery Guarantees

(P o ): min IT|I§ o s-t. X=DI

Lets solve this problem via OMP or BP, applied globally

Theorem: If a solution I' of (Pg o, ) satisfies:

» e
| ||O,oo<§( +m>

then global OMP and BP are guaranteed to find it

Both OMP and BP do not assume sparsity but
still guaranteed to succeed. One could propose
algorithms that rely on this assumption

* How about variants that would exploit the local sparsity?

v Techni k
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Phase Transition Experiment

0 We construct a dictionary with a low mutual coherence:
m=2n=64 N = 640

O We generate random sparse vectors in which the non-zero entries
are drawn as random i.i.d Gaussians

O Given a sparse vector, we compute its global signal and attempt to
recover it using the global OMP and BP

O The theoretical 1
bound allows 0.8
~ 0.05:-N
global non-zeros

Experimental Data BP
— Experimental Data OMP |-
= = = Theoretical Bound

0.6

0.4

Probability
of Success

E

0.2

(4,,‘ -
30 40 50 60 70 80 90

Maximal Stripe Sparsity ||F||(S),oo

o
[
o
b
S
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From Ideal to Noisy Signals

0 So far, we have assumed an ideal signal X = DI'

O However, in practice we usually have Y = DI' 4+ E where E is due to
noise or model deviations

O To handle this, we redefine our problem as:

(PS’OO): mrin ITN3 e s.t. [[Y=DT; <€
O The Main Questions We Aim to Address:
|.  Stability of the solution to this problem ?
Il.  Stability of the solution obtained via global OMP/BP ?
Ill. Could the same recovery be done via local (patch) operations ?

Technion | A
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[Candes & Tao ‘05]

Stability of via Stripe-RIP

(PSe): min [ITI§e s.t. [Y—Drl; <ec @m» T

Definition: D is said to satisfy Stripe-RIP with constant oy if
(1—80lIAll3 < lIDAJIZ < (1 + §)llAllZ
for any vector A with [|A][5 . = K

Theorem: If the true representation I' satisfies
IT|[3 0 =k < 1(1 + L)
= 2 u(D)
» then a solution T for (Pg o) must be close to it

/l-\‘ . > _ 4‘62 _ 462
“ B ”2 —1—8, i 1—-(2k—-1)u(D)

Technion - ok < (k—1)u(D)
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Local Noise Assumption

O Thus far, our analysis relied on the local sparsity of the underlying
solution I', which was enforced through the £ ., norm

O In what follows, we present stability guarantees for both OMP and
BP that will also depend on the local energy in the noise vector E

O This will be enforced via the ¢, o, norm, defined as:

IEIIS., = max Rl

o= L]
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Stability of OMP

Theorem: If Y = DI’ + E where

1 1 1 EN .,
T3 00 < §<1 + —) :

i)/ (D) [Tyl
» then OMP run for ||T||, iterations will

1. Find the correct support
IE||5

—T||% <
2. |[[Tomp F||2—1_(||r||g’°o—1)u(n)
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Stability of Lagrangian BP

»

Technion

Israel Institute of Technology

|
(Pf): Tgp =min Z[Y = DIJI3 + AllT,

Theorem: ForY =DI' + E, if A =

T
1
2
3
4

|
I3, < 5(1 +-
| convolutional sparse coding

hen we are guaranteed that

A|E|P

~1a¥a

Theoretical foundation for
recent works tackling the

problem via BP

The support of I'gp is contain{ [Bristow, Eriksson & Lucey “13]

ITgp — Tl < 7.51IEl; o
Every entry greater than 7.5

[Wohlberg ‘14]
[Kong & Fowlkes ‘14]
[Bristow & Lucey ‘14]
[Heide, Heidrich & Wetzstein ‘15]

I'gp is unique

[Sorel & Sroubek “16]

'sil‘

Proof relies on the work of [Tropp ‘06]




Phase Transition - Noisy

0 We use the same dictionary as in the noiseless case

O We generate random sparse vectors in which the non-zero entries
are drawn randomly in the range [—a, a] for different a values

O Given a sparse vector, we compute its global signal and attempt to
recover it using the global OMP and BP

RIK uRX KRS BIEUACS BOXH

- Succesfull Support Recovery [ 2

1 X  Unsuccesfull Support Recovery {8
s ' heoretical Bound i iE
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Global Pursuit via Local Processing

1
(PD): Tgp=min —[IY—DI|I3 +|ITll;

While CSC is a global model, - ,, %ﬂ
its theoretical guarantees E

rely on local properties

We aim to show

that this

global-local

relation can also

be exploited for 7 Dy
solving the global BP

problem using only local operations

Technion | A
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Global Pursuit via Local Processing (1)
1
(PD): Tgp=min —[IY—DI|I3 +|ITll;

O Recall: Iterative Soft Thresholding is an appealing method for
handling the above minimization task

1
Projection  T'' =38z (Ft_l +-D'(Y-Drt? )

_ C y
Y
Gradient step

onto L, ball

O This algorithm is guaranteed to solve the above problem
[Daubechies, Defrise, De-Mol, 2004] [Blumensath & Davies ‘08]

O Proposal: We shall manipulate this algorithm to an equivalent

form that operates locally > 0.5 Apax(DTD)
*C 2 Amax

Technion - A s
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Global Pursuit via Processing (1)

1
(Pr):  Tgp = min S IY = DI|13 + &lITll4

1
It =S¢/ (rt—l +-DT(Y - DFt‘1)>

This can be equally

written as
global aggregation

vi ol This algorithm operates t—l))
while guaranteeingto y—

S residual
Pl solve the global problem

Technion - A
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Simulation

Details:

o Signal length: N = 300
O Patchsize:n = 25

O Unique atoms:p = 5

O Local sparsity (k) is 11

O Global sparsity: k = 40
O Number of iterations: 400
O Lagrangian: & = 4||E||12)’OO
O Noise level: PSNR=0.03

True Sparse Code
—e— |terative Soft Thresholding
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Global Pursuit via Processing (2)

1
(PD): Tgp=min —[IY—DI|I3 +|ITll;

O Here is an alternative
approach, based on a
different interpretation
of this linear system

0 s; are slices — local patches
that overlap to form the
full image

X =DrI = z R'D a; = z Rs;
1 1

Technion - A
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Global Pursuit via Local Processing (2)

R |
(Pf): Tgp =min = [IY = DIII3 + Al

Turning to the local form
and using the Augmented
Lagrangian

2

min ZRTSI Z(Analul llsi-Dra + wilI3)

O These two problems are equivalent, and convex w.r.t their variables

O The new formulation targets the local slices, and their sparse
representations

O The vectors u; are the Lagrange multipliers for the constraints s;=D «;

v Techni *
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Global Pursuit via Processing (2)

2

ZRTSI Z(Aualul llsi-Dya + wil13)

ADMM

Comment: One
iteration of this
procedure
amounts to ...
the very same
patch-averaging

algorithm we
Separable and local LARS problems started with

Technion )
’ " MANLN




Two Comments About this Scheme
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Partial Summary of CSC

0 What we have seen so far is a new way to analyze the global
CSC model using local sparsity constraints. We proved:

%@ Uniqueness of the solution for the noiseless problem
% Stability of the solution for the noisy problem

% Guarantee of success and stability of both OMP and BP

% We obtained guarantees and algorithms that operate locally
while claiming global optimality

%% We mentioned briefly the mater of learning the model (i.e.
dictionary learning for CSC), and presented our competitive
approach which is based on simple local steps

Technion | A
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Going Deeper

Convolutional Neural Networks
Analyzed via
Convolutional Sparse Coding

Vardan Papyan, Yaniv Romano and Michael Elad




CSC and CNN

O There is an analogy between CSC and CNN:
= Convolutional structure
= Data driven models
= RelU is a sparsifying operator

0 We propose a principled way to analyze CNN

O But first, a short review of CNN...

Technion
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[LeCun, Bottou, Bengio and Haffner ‘98]

[Krizhevsky, Sutskever & Hinton ‘12]

[Simonyan & Zisserman ‘14]

[He, Zhang, Ren & Sun ‘15] ReLU(z) = max(Thr, z)

_~w
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VN

N
Vg

/// /

Notice that we do not include a pooling stage:

O Can be replaced by a convolutional layer with increased stride without
loss in performance [Springenberg, Dosovitskiy, Brox & Riedmiller ‘14]

O The current state-of-the-art in image recognition does not use it
[He, Zhang, Ren & Sun ‘15]

W,
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Mathematically...
f(Y,{W;},{b;}) = ReLU(b, + W; ReLU(b; + W/X))

N N T N N
Z, e R"™z b, e RV™2 W, € RV"2XN
nym b, e RV™ W, € RV™MxN

(e )

no

Y e_]RN

= ReLU«< : 2

\ L

_~w
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Training Stage of CNN

0 Consider the task of classification

O Given a set of signals {Yj}j and their corresponding labels
{h(Yj)}j, the CNN learns an end-to-end mapping

- (Y, {wg}, {bj})

—

True label Classifier Output of last layer

Technion

Israel Institute of Technology




Back to CSC

XeRVN D, eRV*Nm1 T, € RN™

mq

B

Convolutional sparsity
(CSC) assumes an
inherent structure is
present in natural
signals

We propose to impose the
same structure on the
representations themselves

l"l E Rle D2 E RNm1XNm2

m;

nimq

 —
 m—

L]

Multi-Layer CSC (ML-CSC)

ZEPTTEY)
’ " MANLN
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Intuition: From Atoms to Molecules

XeRY D, eRV'™ T, € BY"E RV™MN™2 T, € RV™
_ - i

—
 —

O One could chain the multiplication
of all the dictionaries into one effective

diCtionary Deff —_ D1D2D3 DK
and then X = D¢ I'k as in SparselLand

O However:
O A key property in this model is the
sparsity of each representation (

O The effective atoms are combinations
of the original atoms - molecules

V. Technion - A &
M Israel Institute of Technology _‘ ) ‘ ‘
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A Small Taste

MNIST Dictionary:




A Small Taste: Pursuit

I
94.51 % sparse
(213 nnz)

[
99.52% sparse

99.51% sparse
(5 nnz)
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A Small Taste: Pursuit

92.20 % sparse
(302 nnz)

99.41 % sparse
(6 nnz)

99.25 % sparse

o= L]




A Small Taste: Model Training (CFAR)

D1 (5)(5)(3) D1D2 (13)(13) D1D2D3 (32)(32)
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ML-CSC: Pursuit

0 Deep—Coding Problem (DCP, ) (dictionaries are known):
([ X=D,I} IT1 15,00 < 24 )

— S <
Find {Fj}jK=1 st. 1 I .DZFZ ”FZHO"?"_}‘Z

k-1 = DglIk ITkll5 0 < Ak )

O Or, more realistically for noisy signals,
(IY =D Ly, < € IT1 115,00 < A

— S <
Find {Fj}]il st. 1 D .Dzrz ”FZHO"."’_}\Z

| Tk-1 = Dklk ITk I3 00 < Ak
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ML-CSC: Dictionary Learning

O Deep-Learning Problem (DLP,):
( j j
|Y-purj|| <& |}

I} = D,I? r)

Find {D;}X, s.t. <

r) = .DKI‘I]% Ik

S
0,00

\

O While the above is an _ N
unsupervised DL, a {Dr_gl%n . z ¢ (h(Yj)' U, DCP*(Y, {Di}))
supervised version can = J t

be envisioned The deepest representation I'y
[Mairal, Bach & Ponce ‘12] obtained by solving the DCP

o= °

j=1




ML-CSC: The Simplest Pursuit

O The simplest pursuit algorithm (single-layer case) is
the THR algorithm, which operates on a given input signal Y by:

Y = DI + E and T is sparse » I = Ps(DTY)

10

| ="Hﬁl(z) - Hard
Sp(z) - Soft

O ReStrICtlng the 1 * 84(2) - Soft Nonnegative .
coefficients to be . RelLU = Soft
nonnegative does S R R N S S Nonnegative

not rest_rlct the Thresholding
expressiveness of

the model

—10 -8 -6 -4 -2 0 2 4 6 8 10

canim o 634§
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Consider this for Solving the DCP

O Layered thresholding (LT): (DCP{): Find {L}  s.t.
j=1
Estimate I'; via the THR algorithm (Y =D Iy, < € TS o < A

A S
I =D,I, IT2 115,00 < Az >

s I
T — T T
I, = Pg, (DI P, (DIY))
- e \
Estimate I, via the THR algorithm

I'k-1 = Dxlk ITk15,00 < Ak )

O Forward pass of CNN:
f(X) = ReLU(b, + W, ReLU(b; + W/Y))

The layered (soft nonnegative)
thresholding and the forward pass
algorithm are the very same things !!!

ZEPTTEY)
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Consider this for Solving the DLP

0 DLP (supervised’):

The thresholds for
min Z £ (h(Y]), U, DCP*(Y., {D;} ) the DCP should
U &=
)

K
{Diki= B also learned

~
Estimate via the layered THR algorithm

O CNN training:

min 2 £ (h(Yj), U, £ (Y, {W;3}, {bi}))
j

{Wj}L{bi},U

The problem solved by the .tralnlng stage  Recall that for the ML-CSC.
of CNN and the DLP are equivalent as well, there exists an unsupervised
assuming that the DCP is approximated via avenue for training the

the layered thresholding algorithm dictionaries that has no

simple parallel in CNN
e o4 ) 4
) " MANLN




Theoretical Path

9‘/1 WMMW’MMWWWW 1

X = DI ‘ I ‘ (DCPY) ‘ {f*}l(
I = D Ir 1):_
! ane Layered THR 1=1

[, = DKFK (Forward Pass)

Other?
I is Ly o Sparse

Armed with this view of a generative source model, we
may ask new and daring questions

ZEPTIAY
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Theoretical Path: Possible Questions

O Having established the importance of the ML-CSC model and its
associated pursuit, the DCP problem, we now turn to its analysis

O The main questions we aim to address:

|.  Unigqueness of the solution (set of representations) to the (DCP;)?
Il. Stability of the solution to the (DCPf) problem ?

lll. Stability of the solution obtained via the hard and soft layered THR
algorithms (forward pass) ?

IV. Limitations of this (very simple) algorithm and alternative pursuit?

V. Algorithms for training the dictionaries {D;}i=; vs. CNN ?
VI. New insights on how to operate on signals via CNN ?

caner o4 § R
’ " MANLN




Unigueness of (DCP;)

(DCP,): Find a set of representations satisfying
X=DI} IT1 5,00 <24

Is this set
Fl —_ Dzrz “I‘Z”S,oo S }\2

unique?

I'k1 = DxIk  ITkll5 0 < Ak

Theorem: If a set of solutions {I}}i~, is found for
(DCP,) such that:

1 1
||F-||Soos7\-<—<1+ )
» AN

then these are necessarily the unique solution to
the DCP problem

The feature maps CNN aims to recover are unique

o g4 4
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Stability of (DCPy)

O The problem we aim to solve is this
s this set

(DCP;f): Find a set of representations satisfying ctable?

IY=DiIhll; <€ [IRllge =N
Ih = D,I, IT2115 00 < A7

I'k-1 = Dxlk ITk 15,00 < Ak

O Suppose that we manage to solve the

(DCP;f) and find a feasible set of » {fl}il

representations satisfying all the conditions

The question we pose is How close is T to I}?

O
W | Techni A
ecnnion '
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Stability of (DCPy)

Theorem: If the true representations {I}};~, satisfy

1 1
Ll SA<=(1+
” 1“0, 1 2( U(D1)>

~K
» then the set of solutions {Fi}i=1 obtained by solving

this problem (somehow) must obey
||f‘i — I‘i“z < 812 for

£2
2 =42 g% = 11
: ' 1— (20— Dp(Dy)

The problem CNN aims to solve is Observe this annoying effect
. .. of error magnification as we
stable under certain conditions 8

dive into the model
PN
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Stability of Layered-THR

min s
Theorem: If [|T}]|3 o < [ —— |rrinax| S S:I;Ialx
' 2 u(D;) || p(D;)  [r]

» then the layered hard THR (with the proper thresholds) will
find the correct supports* and

IriT -5, <l

where we have defined &} = ||E||123,oo and

el = J INIE - (7% + p(D) (T e — 1)ITM2%))

The stability of the forward pass is guaranteed if
the underlying representations are sparse * Least-Squares
ying rep e P update of the
and the noise is bounded non-zeros?

SEPTIY,
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Limitations of the Forward Pass

O The stability analysis reveals several inherent limitations of
the forward pass (a.k.a. Layered THR) algorithm:

%@ Even in the noiseless case, the forward pass is incapable of
recovering the perfect solution of the DCP problem

\Y .
(’% Its success depends on the ratio [T™"|/|T™@X|. This is a direct
consequence of relying on a simple thresholding operator

%% The distance between the true sparse vector and the estimated
one increases exponentially as a function of the layer depth

0 We now turn to propose a new algorithm that attempts to solve
some of these problems

o= L]
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Special Case — Sparse Dictionaries

O Throughout the theoretical study we assumed that the
representations in the different layers are L o,-sparse

0 Do we know of a simple example of a set of dictionaries {D;}}-,
and their corresponding signals X that will obey this property?

s, e ..

0 Assuming the dictionaries are sparse:

S K /\Maximal number of
IGIS < WTlise | [IDille ronzerosinan

i=j+1 atom in D;

O In the context of CNN, the above happens if a sparsity promoting
regularization, such as the L4, is employed on the filters

Technion
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Better Pursuit ?

o (DCP, ) Noiseless: Find a set of representations satisfying

X=DI} IT1 15,00 <24
Fl — Dzrz ||F2”(S),oo S )\2

I'k1 = DxIx  ITkll5 e < Ak

0 So far we proposed the Layered THR:

Ty = Pg, (Dﬁ . Pg, (DT Pgl(DIx)))
O The motivation is clear — getting close to what CNN use

0 However, this is the simplest and weakest pursuit known in
the field of sparsity — Can we offer something better?

Technion
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Layered Basis Pursuit (Noiseless)

O Our Goal: (DCP,): Find a set of representations satisfying

X=DI} IT1 15,00 <24
Fl — Dzrz ||F2”(S),oo S }\2

I'k1 = DxIx  ITkll5 e < Ak

O We can propose a Layered Basis Pursuit Algorithm:

riBP = nﬂn I, s.t. X=D;I

Deconvolutional

}5P = min ||G|l; s.t. TLBP =D,  TemerE
I; [Zeiler, Krishnan, Taylor

g ]
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Guarantee for Success of Layered BP

0 As opposed to prior work in CNN, we can do far more than just
proposing an algorithm — we can analyze its terms for success:

Theorem: If a set of representations {I}}i~, of the
» Multi-Layered CSC model satisfy

1 1
IT; 115,00 < A4 <—<1+ )

2 u(D;)
then the Layered BP is guaranteed to find them

O Consequences:

= The layered BP can retrieve the underlying representations in the noiseless
case, a task in which the forward pass fails to provide

= The Layered-BP’s success does not depend on the ratio |[T'™™"| /||

EEPTILY.
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Layered Basis Pursuit (Noisy)

1
FLBP — rrll,ln E “Y — Dll-‘l“% + }\1“1-‘1”1
1

FLBp_mm ~ (ITEBP = D, || + 2, 1T |,

| ForY=DI + E, if
We can invoke a 1 1
”r”Ooo < )

result we have seen 0 LT u(D)
already, referring to then we are guaranteed that

the BP for the CSC
model: 1A]l% ., < 7.5 €] ./”F”g,oo

tenion ¢ €44 3 A A
Y INA N LN




Stability of Layered BP

. - s 1 — )
Theorem: Assuming that ||Ti|[g e < (1 + D)

then For correctly chosen {Ai}ﬁl we are guaranteed that

1. The support of I‘{‘BP is contained in that of I

» 2. The erroris bounded: ||I‘{4BP — l“i||12)Oo < EiL, where

1
el =751 | | IS,
j=1

3. Every entry in I greater than si/\/ll[‘illgmwill be found

EEPTIALE
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Layered lterative Thresholding

%

Layered BP: [“BP = min o D]-I‘]-||z +5l5l,

Layered lterative Soft-Thresholding:

( : 1
t _ t—1 T/ t—1 .
t I =9y (Fj T C—ij (Ti—1 — DjT; )) j

Note that our suggestion
implies that groups of layers
share the same dictionaries

E Technion . *c¢; > 0.5 }\max(D'irDi)

Can be seen as a recurrent neural network
[Gregor & LeCun ‘10]
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Time to Conclude
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Current/Future Work

In general, we aim to leverage our theoretical insights
in order to get to practical implications

More specifically, we work on:

Developing alternative (local) pursuit methods for the CSC and ML-CSC
Could we propose an MMSE-driven pursuit

Training the dictionaries — So far our efforts are focused on the unsupervised
mode and the results are encouraging

Explaining theoretically “known” tricks in CNN (local normalization, batch-
normalization, the effect of stride, residual networks, dropout, ...

Better understanding this model by projecting true signals on to it to see
what kind of sparsities and dictionaries are obtained

Improving the corresponding performance bounds, and

Tying all the above to applications
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These slides will be shared in my webpage in few days

Questions?
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