
Michael Elad
The Computer Science Department
Technion – Israel Institute of Technology

Workshop on Frame Theory and 
Sparse Representation for Complex Data

Institute for Mathematical Sciences
May 29th – June 2nd

A Tale of Signal Modeling Evolution
SparseLand CSC CNN

The research leading to these results has been received funding from the 
European union's Seventh Framework Program (FP/2007-2013) ERC grant 

Agreement ERC-SPARSE- 320649

Joint work 
with

Vardan Papyan

Yaniv Romano

Jeremias Sulam



In This Talk
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CNN
Convolutional 

Neural 
Networks

SparseLand
Sparse 

Representation 
Theory

The Underlying Idea

Modeling 
data sources enables a theoretical 

analysis of algorithms’ performance 

*

* Only CNN?     
What about other 
architectures ?



Part I
Motivation and Background
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Our Starting Point: Image Denoising

Many (thousands) image denoising algorithms  
have been proposed over the years, some of 
which are extremely effective 
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Original Image
܆

White Gaussian Noise
۳

Noisy Image
܇

Denoising
Algorithm

܇ ෡܆

Topic=image and 
noise and (removal 
or denoising)



Leading Image Denoising Methods…
are built upon powerful patch-based local models:

Popular local models: GMM
Sparse-Representation
Example-based
Low-rank
Field-of-Experts & 
Neural networks 
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Patch‐Based Image Denoising
o K-SVD: sparse representation modeling of image patches

[Elad & Aharon, ‘06]

o BM3D: combines sparsity and self-similarity
[Dabov, Foi, Katkovnik & Egiazarian ‘07]

o EPLL: uses GMM of the image patches
[Zoran & Weiss ‘11]

o MLP: multi-layer perceptron
[Burger, Schuler & Harmeling ‘12]

o NCSR: non-local sparsity with centralized coefficients
[Dong, Zhang, Shi & Li ‘13]

o WNNM: weighted nuclear norm of image patches
[Gu, Zhang, Zuo & Feng ‘14]

o SSC–GSM: nonlocal sparsity with a GSM coefficient model
[Dong, Shi, Ma & Li ‘15]
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oAssumes that every patch is a linear combination of a few atoms, 
from a dictionary

o The operator ܀୧ extracts
the i-th ݊-dimensional patch
from ܆ ∈ Թே

oModel assumption:

where ઻୧ ଴ ≪ ݊

݊

݉ ൐ ݊

݊

∀i	, ܆୧܀ ൌ ષ઻୧

The SparseLand Model for Patches
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-th location

ܰ

݊

୧܀ * for 1D signals



Patch Denoising
Given a noisy patch ܀୧܇, solve
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Greedy methods such as 
Orthogonal Matching Pursuit 

(OMP) or Thresholding

଴஫۾ :			઻ො୧ ൌ argmin
઻౟

			 ઻୧ ଴

s. t. 			 ܇୧܀ െ ષ઻୧ ଶ ൑ ϵ

Convex relaxations such 
as Basis Pursuit (BP)

Clean patch: ષ઻ො୧
ሺ۾଴஫ሻ is hard to solve

ଵ஫۾ :		min઻౟
		 ઻୧ ଵ ൅ ξ ܇୧܀ െ ષ઻୧ ଶ

ଶ



Recall K‐SVD Denoising [Elad & Aharon, ‘06]
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Noisy Image Reconstructed Image

Denoise
each patch

Using OMP

Initial Dictionary Using K-SVD

Update the 
dictionary

o Despite its simplicity, this is a very well-performing algorithm 
o Its origins can be traced back to Guleryuz’s local DCT recovery  
o A small modification of this method leads to state-of-the-art 

results [Mairal, Bach, Ponce, Spairo, Zisserman, `09]



What is Missing?
o Over the years, many kept revisiting this algorithm 

and its line of thinking, with a clear feeling that key 
features are still lacking

o What is missing? Here is what WE thought of…
 A multi-scale treatment [Ophir, Lustig & Elad ‘11] [Sulam, Ophir & Elad ‘14] 

[Papyan & Elad ‘15]
 Exploiting self-similarities [Ram & Elad ‘13] [Romano, Protter & Elad ‘14]
 Pushing to better agreement on the overlaps [Romano & Elad ‘13] 

[Romano & Elad ‘15]
 Enforcing the local model on the final patches (EPLL) [Sulam & Elad ‘15] 

o Eventually, we realized that the key part that is missing is 

A Theoretical Backbone 
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Missing Theoretical Backbone?
o The core global-local model assumption on ܆ ∈ Թே:

oQuestions to consider:
 Who are the signals belonging to this model? Do they exist?  
 How should we project a signal on this model (pursuit)? 
 Could we offer theoretical guarantees for this model/algorithms? 
 Could we offer a global pursuit algorithm that operates locally?
 How should we learn ષ if this is indeed the model?

oAs we will see, all these questions are very relevant to recent 
developments in signal processing and machine learning
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Every patch in the unknown signal is expected to have a 
sparse representation w.r.t. the same dictionary ષ

∀i					܀୧܆ ൌ ષ઻୧					where					 ઻୧ ଴ ൑ k



Coming Up
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Limitations of 
patch averaging

Convolutional Sparse 
Coding (CSC) model

Theoretical 
study of CSC

Multi-Layer Convolutional 
Sparse Coding (ML-CSC)

Convolutional neural 
networks (CNN)

Fresh view of CNN through 
the eyes of sparsity
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Part II
Convolutional
Sparse Coding
Working Locally Thinking Globally:

Theoretical Guarantees for Convolutional Sparse Coding
Vardan Papyan, Jeremias Sulam and Michael Elad

Convolutional Dictionary Learning via Local Processing
Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad



Convolutional Sparse Coding (CSC) 
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݉ filters convolved with their 
sparse representations 

An image held as 
a column vector 
of length ܰ

i-th feature-map:   
An image of the 
same size as ܆
holding the sparse 
representation 
related to the i-filter

The ݆-th filter of 
small support ݊



Intuitively  …
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ൌ=    +   +   +   +    +   +   +

The first filter The second filter



oHere is an alternative global sparsity-based model formulation

o۱୧ ∈ Թேൈே is a banded and Circulant matrix containing a single 
atom with all of its shifts

oડ୧ ∈ Թே are the corresponding coefficients

܆ ൌ෍۱୧ડ୧
௠

୧ୀଵ

CSC in Matrix Form
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݊

ܰ

܆ ൌ෍۱୧ડ୧
௠

୧ୀଵ

ൌ ۲ડ



Two Interpretations
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۱ଵ	۱ଶ	۱ଷ ൌ

۲ ൌ
݊

۲୐

݉



= ݊

ሺ2݊ െ 1ሻ݉

୧ ݊

ሺ2݊ െ 1ሻ݉

୧ାଵ
୧୧ାଵ

Why CSC?
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stripe-dictionary
Every patch has a sparse 
representation w.r.t. to the 
same local dictionary ષ, 
just as we have assumed

stripe vector



CSC Relation to Our Story
oA clear global model: every patch has a sparse representation         

w.r.t. to the same local dictionary ષ, just as we have assumed

oNo notion of disagreement on the patch overlaps

oRelated to the current common practice of patch averaging (܀୧୘
- put the patch ષ઻୧ back in the i-th location of the global vector)

܆ ൌ ۲ડ ൌ
1
݊෍܀୧୘ષ઻୧

୧

oWhat about the Pursuit? 
 “Patch averaging”: independent sparse coding for each patch 
 CSC: should seek all the representations together 

o Is there a bridge between the two? We’ll come back to this later …

19



o This model has been used in the past [Lewicki & Sejnowski ‘99]
[Hashimoto & Kurata, ‘00]

oMost works have focused on solving efficiently its associated 
pursuit, called convolutional sparse coding, using the BP algorithm

o Several applications were demonstrated:
 Pattern detection in images and the analysis of instruments in music 

signals [Mørup, Schmidt & Hansen ’08]
 Inpainting [Heide, Heidrich & Wetzstein ‘15]
 Super-resolution [Gu, Zuo, Xie, Meng, Feng & Zhang ‘15]

oHowever, little is known regrading its theoretical aspects. Why? 
Perhaps because the regular SparsLand theory is sufficient? 
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ଵ஫۾ :			minડ 			 ડ ଵ ൅ λ ܇ െ ۲ડ ଶ
ଶ Convolutional

dictionary



Classical Sparse Theory (Noiseless)

21

Definition: Mutual Coherence: μ ۲ ൌ max
୧ஷ୨

|d୧୘d୨|
[Donoho & Elad ‘03]

Theorem: For a signal ܆ ൌ ۲ડ, if ડ ଴ ൏
ଵ
ଶ
1 ൅ ଵ

ஜ ۲
then this solution is necessarily the sparsest

[Donoho & Elad ‘03]

Theorem: The OMP and BP are guaranteed to recover the 

true sparse code assuming that ડ ଴ ൏
ଵ
ଶ
1 ൅ ଵ

ஜ ۲

[Tropp ‘04], [Donoho & Elad ‘03]

଴۾ :			minડ 			 ડ ଴			s. t. ܆		 ൌ ۲ડ



oAssuming that ݉ ൌ 2 and ݊ ൌ 64 we have that [Welch, ’74]

μ ۲ ൒ 0.063

oAs a result, uniqueness and success of pursuits is guaranteed 
as long as

ડ ଴ ൏
1
2 1 ൅

1
μሺ۲ሻ ൑

1
2 1 ൅

1
0.063 ൎ 8

o Less than 8 non-zeros GLOBALLY are allowed!!!
This is a very pessimistic result!

oRepeating the above for the noisy case leads to 
even worse performance predictions

oBottom line: Classic SparseLand Theory cannot 
provide good explanations for the CSC model

The Need for a Theoretical Study

22



The Main Questions we Aim to Address:
I. Is the solution to this problem unique ?

II. Can we recover the solution via a global OMP/BP ?

݉ ൌ 2 ୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧୧

Moving to Local Sparsity: Stripes
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଴,ஶ۾ :					min
ડ
		 ડ ଴,ஶ

ୱ 		s. t. ܆		 ൌ ۲ડ

ℓ଴,ஶ Norm:   ડ ଴,ஶ
ୱ ൌ max

୧
		 ઻୧ ଴

		 ડ ଴,ஶ
ୱ is low  all  ઻୧ are sparse  every 

patch has a sparse representation over ષ



Stripe‐Spark and Uniqueness
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Definition: Stripe Spark			ηஶ ۲ ൌ min
ઢ
			 ઢ ଴,ஶ

ୱ 			s. t. 			 ۲ઢ ൌ 0
ઢ ് 0

Theorem: If a solution ડ is found for ሺ۾଴,ஶሻ such that:

ડ ଴,ஶ
ୱ ൏

1
2ηஶ

then it is necessarily the optimal solution to this problem

଴,ஶ۾ :					min
ડ
		 ડ ଴,ஶ

ୱ 		s. t. ܆		 ൌ ۲ડ

Theorem: The relation between the
Stripe-Spark and the Mutual Coherence is:

ηஶ ۲ ൒ 1 ൅
1

μ ۲



Uniqueness via Mutual Coherence
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Theorem: If a solution ડ is found for ሺ۾଴,ஶሻ such 
that:

ડ ଴,ஶ
ୱ ൏

1
2 1 ൅

1
μ ۲

then this is necessarily the unique optimal solution to 
this problem

This result is exciting: This and later results 
pose a local constraint for a global guarantee, 

and as such, they are far more optimistic 
compared to the global guarantees 

For ݇ non-zeros per 
stripe, and filters of 

length ݊, we get  

ડ ଴ ≅
݇

2݊ െ 1 ⋅ ܰ
non-zeros globally

଴,ஶ۾ :					min
ડ
		 ડ ଴,ஶ

ୱ 		s. t. ܆		 ൌ ۲ડ



Recovery Guarantees

Lets solve this problem via OMP or BP , applied globally
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Both OMP and BP do not assume local sparsity but 
still guaranteed to succeed. One could propose 

algorithms that rely on this assumption

଴,ஶ۾ :					min
ડ
		 ડ ଴,ஶ

ୱ 		s. t. ܆		 ൌ ۲ડ

Theorem: If a solution ડ of ሺ۾଴,ஶሻ satisfies:

ડ ଴,ஶ
ୱ ൏

1
2 1 ൅

1
μ ۲

then global OMP and BP are guaranteed to find it

* How about variants that would exploit the local sparsity? 

*



Phase Transition Experiment
oWe construct a dictionary with a low mutual coherence:

݉ ൌ 2, ݊ ൌ 64,ܰ ൌ 640
oWe generate random sparse vectors in which the non-zero entries 

are drawn as random i.i.d Gaussians

oGiven a sparse vector, we compute its global signal and attempt to 
recover it using the global OMP and BP

o The theoretical 
bound allows 
ൎ 0.05 ⋅ ܰ
global non-zeros
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o So far, we have assumed an ideal signal ܆ ൌ ۲ડ
oHowever, in practice we usually have ܇ ൌ ۲ડ ൅ ۳ where ۳ is due to 

noise or model deviations

o To handle this, we redefine our problem as:

o The Main Questions We Aim to Address:
I. Stability of the solution to this problem ?
II. Stability of the solution obtained via global OMP/BP ?
III. Could the same recovery be done via local (patch) operations ?

଴,ஶ஫۾ :					min
ડ
			 ડ ଴,ஶ

ୱ 			s. t. 			 ܇ െ ۲ડ ଶ ൑ ϵ

From Ideal to Noisy Signals

28



Theorem: If the true representation ડ satisfies

ડ ଴,ஶ
ୱ ൌ k ൏

1
2 1 ൅

1
μ ۲

then a solution ડ෡ for ሺ۾଴,ஶ஫ ሻ must be close to it

ડ෡ െ ડ ଶ
ଶ ൑

4ϵଶ

1 െ δଶ୩
൑

4ϵଶ

1 െ 2k െ 1 μ ۲

Stability of via Stripe‐RIP
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Definition: ۲ is said to satisfy Stripe-RIP with constant δ୩ if

1 െ δ୩ ઢ ଶ
ଶ ൑ ۲ઢ ଶ

ଶ ൑ 1 ൅ δ୩ ઢ ଶ
ଶ

for any vector ઢ with ઢ ଴,ஶ
ୱ ൌ k

δ୩ ൑ ሺk െ 1ሻμሺ۲ሻ

൑
4ϵଶ

1 െ 2k െ 1 μ ۲

଴,ஶ஫۾ :					min
ડ
			 ડ ଴,ஶ

ୱ 			s. t. 			 ܇ െ ۲ડ ଶ ൑ ϵ ડ෡

[Candes & Tao ‘05]



Local Noise Assumption
o Thus far, our analysis relied on the local sparsity of the underlying 

solution ડ, which was enforced through the ℓ଴,ஶ norm

o In what follows, we present stability guarantees for both OMP and 
BP that will also depend on the local energy in the noise vector E

o This will be enforced via the ℓଶ,ஶ norm, defined as:
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۳ ଶ,ஶ
୮ ൌ max

୧
	 ୧۳܀ ଶ



Stability of OMP
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Theorem: If ܇ ൌ ۲ડ ൅ ۳ where

ડ ଴,ஶ
ୱ ൏

1
2 1 ൅

1
μ ۲ െ

1
μ ۲ ⋅

۳ ଶ,ஶ
୮

Γ୫୧୬
then OMP run for ડ ଴ iterations will

1. Find the correct support

2. ડ୓୑୔ െ ડ ଶ
ଶ ൑ ۳ మ

మ

ଵି ડ బ,ಮ
౩ ିଵ ஜ ۲



Stability of Lagrangian BP
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Theorem: For ܇ ൌ ۲ડ ൅ ۳, if	λ ൌ 4 ۳ ଶ,ஶ
୮ and

ડ ଴,ஶ
ୱ ൏

1
3 1 ൅

1
μ ۲

Then we are guaranteed that

1. The support of ડ୆୔ is contained in that of Γ
2. ડ୆୔ െ ડ ஶ ൑ 7.5 ۳ ଶ,ஶ

୮

3. Every entry greater than 7.5 ۳ ଶ,ஶ
୮ will be found

4. ડ୆୔ is unique

Theoretical foundation for 
recent works tackling the 

convolutional sparse coding 
problem via BP

[Bristow, Eriksson & Lucey ‘13]
[Wohlberg ‘14]

[Kong & Fowlkes ‘14]
[Bristow & Lucey ‘14]

[Heide, Heidrich & Wetzstein ‘15]
[Šorel & Šroubek ‘16]

Proof relies on the work of [Tropp ‘06]

ଵ஫۾ :					ડ୆୔ ൌ min
ડ
			
1
2 ܇ െ ۲ડ ଶ

ଶ ൅ λ ડ ଵ



BP

s

Phase Transition ‐ Noisy
oWe use the same dictionary as in the noiseless case

oWe generate random sparse vectors in which the non-zero entries 
are drawn randomly in the range ሾെܽ, ܽሿ for different ܽ values

oGiven a sparse vector, we compute its global signal and attempt to 
recover it using the global OMP and BP

33

OMP

s



Global Pursuit via Local Processing
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ଵ஫۾ :					ડ୆୔ ൌ min
ડ
			
1
2 ܇ െ ۲ડ ଶ

ଶ ൅ ξ ડ ଵ

=

݊

݉

݉୐ ୧

o While CSC is a global model, 
its theoretical guarantees 
rely on local properties

o We aim to show 
that this 
global-local
relation can also 
be exploited for 
solving the global BP 
problem using only local operations



oRecall: Iterative Soft Thresholding is an appealing method for 
handling the above minimization task

o This algorithm is guaranteed to solve the above problem 
[Daubechies, Defrise, De-Mol, 2004] [Blumensath & Davies ‘08]

oProposal: We shall manipulate this algorithm to an equivalent       
form that operates locally 

Global Pursuit via Local Processing (1)
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ଵ஫۾ :					ડ୆୔ ൌ min
ડ
			
1
2 ܇ െ ۲ડ ଶ

ଶ ൅ ξ ડ ଵ

* c ൐ 0.5	λ୫ୟ୶ሺ۲୘۲ሻ

ડ୲ ൌ ࣭ஞ/௖ ડ୲ିଵ ൅
1
c ۲

୘ ܇ െ ۲ડ୲ିଵડ୲ ൌ ࣭ஞ/௖ ડ୲ିଵ ൅
1
c ۲

୘ ܇ െ ۲ડ୲ିଵ

Gradient step

Projection 
onto ۺଵ ball

ડ୲ ൌ ࣭ஞ/௖ ડ୲ିଵ ൅
1
c ۲

୘ ܇ െ ۲ડ୲ିଵझ૆/܋



This can be equally 
written as

∀݅			હ୧୲ ൌ ࣭ஞ/௖ હ୧୲ିଵ ൅ ۲୐୘	܀୧ሺ܇ െ ۲ડ୲ିଵሻ

Global Pursuit via Local Processing (1)
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local residuallocal dictionary

ડ୲ ൌ ࣭ஞ/௖ ડ୲ିଵ ൅
1
c ۲

୘ ܇ െ ۲ડ୲ିଵ

ଵ஫۾ :					ડ୆୔ ൌ min
ડ
			
1
2 ܇ െ ۲ડ ଶ

ଶ ൅ ξ ડ ଵ

global aggregation

local sparse code

This algorithm operates 
locally while guaranteeing to 

solve  the global problem 

ડ

݉୧



Details:

o Signal length: ܰ	 ൌ 	300
oPatch size: ݊	 ൌ 	25
oUnique atoms: ݌	 ൌ 	5
o Local sparsity (k) is 11
oGlobal sparsity: ݇	 ൌ 	40
oNumber of iterations: 400
o Lagrangian: ξ ൌ 4 ۳ ଶ,ஶ

୮

oNoise level: PSNR= 0.03

Simulation

37



oHere is an alternative 
approach, based on a 
different interpretation 
of this linear system

o ୧ܛ are slices – local patches 
that overlap to form the 
full image

Global Pursuit via Local Processing (2)
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ଵ஫۾ :					ડ୆୔ ൌ min
ડ
			
1
2 ܇ െ ۲ડ ଶ

ଶ ൅ ξ ડ ଵ

܆ ൌ ۲ડ ൌ෍܀୧୘۲୐હ୧
୧

=

ൌ෍܀୧୘ܛ୧
୧
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ଵ஫۾ :					ડ୆୔ ൌ min
ડ
			
1
2 ܇ െ ۲ડ ଶ

ଶ ൅ λ ડ ଵ

min
હ౟,ܛ౟

			
1
2 ܇ െ෍܀୧୘ܛ୧

୧ ଶ

ଶ

൅෍ λ હ୧ ଵ ൅
ߩ
2 ୧−۲୐હ୧ܛ ൅ u௜ ଶ

ଶ

୧

Turning to the local form 
and using the Augmented 

Lagrangian

o These two problems are equivalent, and convex w.r.t their variables

o The new formulation targets the local slices, and their sparse 
representations

o The vectors u௜ are  the Lagrange multipliers for the constraints ܛ୧ൌ۲୐હ୧

Global Pursuit via Local Processing (2)



40

min
હ౟,ܛ౟

			
1
2 ܇ െ෍܀୧୘ܛ୧

୧ ଶ

ଶ

൅෍ λ હ୧ ଵ ൅
ߩ
2 ୧−۲୐હ୧ܛ ൅ u௜ ଶ

ଶ

୧

ADMM

min
౟ܛ

			
1
2 ܇ െ෍܀୧୘ܛ୧

୧ ଶ

ଶ

൅෍
ߩ
2 ୧−۲୐હ୧ܛ ൅ u௜ ଶ

ଶ

୧
o Slice-update:

Simple L2-based aggregation and averaging

o Sparse-Update:

Separable and local LARS problems

Global Pursuit via Local Processing (2)

min
હ౟	

		෍ λ હ୧ ଵ ൅
ߩ
2 ୧−۲୐હ୧ܛ ൅ u௜ ଶ

ଶ

୧

Comment: One 
iteration of this 

procedure 
amounts to … 
the very same 

patch-averaging 
algorithm we 
started with 
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Two Comments About this Scheme 

Patches
Slices

Patches
Slices

The Proposed Scheme can be 
used for Dictionary (۲୐) Learning

We work with Slices 
and not Patches 

Slice-based DL algorithm using 
standard patch-based tools, leading 

to a faster and simpler method, 
compared to  existing methods 

Patches extracted from natural 
images, and their corresponding 
slices. Observe how the slices are 

far simpler, and contained by 
their corresponding patches

[Wohlberg, 2016]                    Ours



Partial Summary of CSC
oWhat we have seen so far is a new way to analyze the global

CSC model using local sparsity constraints. We proved:

o Uniqueness of the solution for the noiseless problem

o Stability of the solution for the noisy problem

o Guarantee of success and stability of both OMP and BP

o We obtained guarantees and algorithms that operate locally
while claiming global optimality

o We mentioned briefly the mater of learning the model (i.e. 
dictionary learning for CSC), and presented our competitive 
approach which is based on simple local steps

42
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Part III
Going Deeper
Convolutional Neural Networks 

Analyzed via
Convolutional Sparse Coding

Vardan Papyan, Yaniv Romano and Michael Elad



CSC and CNN
o There is an analogy between CSC and CNN:
 Convolutional structure
 Data driven models
 ReLU is a sparsifying operator

oWe propose a principled way to analyze CNN

oBut first, a short review of CNN…

44



CNN
ReLU ReLU

ReLU z ൌ max Thr, z

[LeCun, Bottou, Bengio and Haffner ‘98]
[Krizhevsky, Sutskever & Hinton ‘12]
[Simonyan & Zisserman ‘14]
[He, Zhang, Ren & Sun ‘15]
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CNN

Notice that we do not include a pooling stage:
o Can be replaced by a convolutional layer with increased stride without 

loss in performance [Springenberg, Dosovitskiy, Brox & Riedmiller ‘14]

o The current state-of-the-art in image recognition does not use it
[He, Zhang, Ren & Sun ‘15]
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ܰ

ܰ

݉ଵ

ܰ

ܰ

݊଴

݊଴ ଵ

݉ଶ

ܰ

ܰ
݊ଵ
݊ଵ

ଶ



݂ ,܆ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘݂܆ ,܆ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘݂܆ ,܆ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘݂܇ ,܆ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘݂܇ ,܆ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘݂܇ ,܆ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘݂܇ ,܆ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘݂܇ ,܇ ୧܅ , ୧܊ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘܇

Mathematically...
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ଶ܈ ∈ Թே௠మ

݉ଵ

ReLU ReLU

ଶ܅
୘ ∈ Թே௠మൈே௠భ

݊ଵ݉ଵ
݉ଶ

ଵ܅
୘ ∈ Թே௠భൈே

݉ଵ
݊଴

ଵ܊ ∈ Թே௠భ

ଶ܊ ∈ Թே௠మ

܇ ∈ Թே



min
౟܅ , ౟܊ ܃,

෍ℓ h ୨܇ , ,܃ ݂ ,୨܇ ୧܅ , ୧܊
୨

min
౟܅ , ౟܊ ܃,

෍ℓ h ୨܇ , ,܃ ݂ ,୨܇ ୧܅ , ୧܊
୨

min
౟܅ , ౟܊ ܃,

෍ℓ h ୨܇ , ,܃ ݂ ,୨܇ ୧܅ , ୧܊
୨

min
౟܅ , ౟܊ ܃,

෍ℓ h ୨܇ , ,܃ ݂ ,୨܇ ୧܅ , ୧܊
୨

min
౟܅ , ౟܊ ܃,

෍ℓ h ୨܇ , ,܃ ݂ ,୨܇ ୧܅ , ୧܊
୨

oConsider the task of classification

oGiven a set of signals ܇୨ ୨ and their corresponding labels 

h ୨܇ ୨
, the CNN learns an end-to-end mapping

Training Stage of CNN
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Output of last layerClassifierTrue label



Back to CSC
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܆ ∈ Թே

݉ଵ
݊଴

۲ଵ ∈ Թேൈே௠భ

݊ଵ݉ଵ

݉ଶ

۲ଶ ∈ Թே௠భൈே௠మ

݉ଵ

ડଵ ∈ Թே௠భ

ડଵ ∈ Թே௠భ

ડଶ ∈ Թே௠మ

Convolutional sparsity 
(CSC) assumes an 

inherent structure is 
present in natural 

signals

We propose to impose the 
same structure on the 

representations themselves

Multi‐Layer CSC (ML‐CSC)



Intuition: From Atoms to Molecules
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܆ ∈ Թே ۲ଵ ∈ Թேൈே௠భ ۲ଶ ∈ Թே௠భൈே௠మ

ડଵ ∈ Թே௠భ

ડଶ ∈ Թே௠మ

o One could chain the multiplication 
of all the dictionaries into one effective 
dictionary ۲ୣ୤୤ ൌ ۲ଵ۲ଶ۲ଷ ∙∙∙ ۲୏
and then ܠ ൌ ۲ୣ୤୤ ડ୏ as in SparseLand

o However: 
o A key property in this model is the 

sparsity of each representation (feature-maps)

o The effective atoms are combinations 
of the original atoms - molecules

ડଵ ∈ Թே௠భ



A Small Taste: Model Training (MNIST)
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۲ଵ۲ଶ۲ଷ (28×28)

MNIST Dictionary:
•D1:  32 filters of size 7×7, with stride of 2 (dense)
•D2: 128 filters of size 5×5×32 with stride of 1 - 99.09 % sparse
•D3: 1024 filters of size 7×7×128 – 99.89 % sparse

۲ଵ۲ଶ (15×15)

۲ଵ (7×7)



A Small Taste: Pursuit
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Γଵ

Γଶ

Γଷ

Γ଴

Y

99.51% sparse
(5 nnz)

99.52% sparse
(30 nnz)

94.51 % sparse
(213 nnz)



A Small Taste: Pursuit
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Γଵ

Γଶ

Γଷ

Γ଴

Y

99.41 % sparse
(6 nnz)99.25 % sparse

(47 nnz)

92.20 % sparse
(302 nnz)



A Small Taste: Model Training (CFAR)
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۲ଵ۲ଶ۲ଷ (32×32)

CIFAR Dictionary:
• D1: 64 filters of size 5x5x3, stride of 2

dense
• D2: 256 filters of size 5x5x64, stride of 2 

82.99 % sparse
• D3: 1024 filters of size 5x5x256 

90.66 % sparse

۲ଵ۲ଶ (13×13)۲ଵ (5×5×3)



ML‐CSC: Pursuit
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o Deep–Coding Problem ۲۱۾஛ (dictionaries are known):

Find			 ડ୨ ୨ୀଵ
୏ .ݏ				 .ݐ 		

܆ ൌ ۲ଵડଵ ડଵ ଴,ஶ
ୱ ൑ λଵ

ડଵ ൌ ۲ଶડଶ ડଶ ଴,ஶ
ୱ ൑ λଶ

⋮ ⋮
ડ୏ିଵ ൌ ۲୏ડ୏ ડ୏ ଴,ஶ

ୱ ൑ λ୏

  

o Or, more realistically for noisy signals, 

Find			 ડ୨ ୨ୀଵ
୏ .ݏ				 .ݐ 		

܇ െ ۲ଵડଵ ଶ ൑ ࣟ ડଵ ଴,ஶ
ୱ ൑ λଵ

ડଵ ൌ ۲ଶડଶ ડଶ ଴,ஶ
ୱ ൑ λଶ

⋮ ⋮
ડ୏ିଵ ൌ ۲୏ડ୏ ડ୏ ଴,ஶ

ୱ ൑ λ୏



ML‐CSC: Dictionary Learning 
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o Deep-Learning Problem ۲۾ۺ஛ :

Find			 ۲୧ ୧ୀଵ୏ .ݏ				 .ݐ 		

୨܇ െ ۲ଵડ૚
୨

ଶ
൑ ࣟ ડ૚

୨
଴,ஶ

ୱ
൑ λଵ

ડଶ
୨ ൌ ۲ଶડ૚ଶ ડ૛

୨
଴,ஶ

ୱ
൑ λଶ

⋮ ⋮
ડ୏
୨ ൌ ۲୏ડ୏

୨ ડ୏
୨

଴,ஶ

ୱ
൑ λ୏

୨ୀଵ

௃

o While the above is an 
unsupervised DL, a 
supervised version can 
be envisioned 
[Mairal, Bach & Ponce ‘12]

The deepest representation ડ୏
obtained by solving the DCP

min
۲౟ ౟సభ

ే ܃,
	෍ℓ h ୨܇ , ,܃ ⋆۾۲۱ ,୨܇ ۲ܑ
୨



o The simplest pursuit algorithm (single-layer case)  is 
the THR algorithm, which operates on a given input signal ܇ by:

oRestricting the 
coefficients to be 
nonnegative does 
not restrict the 
expressiveness of 
the model
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ReLU = Soft
Nonnegative 
Thresholding

ડ෡ ൌ ࣪ఉ ۲୘܇

ML‐CSC: The Simplest Pursuit

܇ ൌ ۲ડ ൅ and ડ	ࡱ is sparse



o Layered thresholding (LT):

o Forward pass of CNN:

ડ෡ଶ ൌ ࣪ஒమ ۲ଶ୘	࣪ஒభ ۲ଵ୘܇ડ෡ଶ ൌ ࣪ஒమ ۲ଶ୘	࣪ஒభ ۲ଵ୘܇ડ෡ଶ ൌ ࣪ஒమ ۲ଶ୘	࣪ஒభ ۲ଵ୘܇

Consider this for Solving the DCP
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Estimate ડଵ via the THR algorithm

Estimate ડଶ via the THR algorithm

஛۾۲۱
ࣟ : 	Find			 ડ୨ ୨ୀଵ

୏ .ݏ				 		.ݐ

܇ െ ۲ଵડଵ ଶ ൑ ࣟ ડଵ ଴,ஶ
ୱ ൑ λଵ

ડଵ ൌ ۲ଶડଶ ડଶ ଴,ஶ
ୱ ൑ λଶ

⋮ ⋮
ડ୏ିଵ ൌ ۲୏ડ୏ ડ୏ ଴,ஶ

ୱ ൑ λ୏

The layered (soft nonnegative) 
thresholding and the forward pass 

algorithm are the very same things !!!

݂ ܆ ൌ ReLU ଶ܊ ൅܅ଶ
୘	ReLU ଵ܊ ൅܅ଵ

୘܇



oDLP (supervised  ):

min
۲౟ ౟సభ

ే ܃,
	෍ℓ h ୨܇ , ,܃ ⋆۾۲۱ ,୨܇ ۲ܑ
୨

oCNN training:

min
౟܅ , ౟܊ ,୙

෍ℓ h ୨܇ , ,܃ ݂ ,܇ ୧܅ , ୧܊
୨

min
۲౟ ౟సభ

ే ܃,
	෍ℓ h ୨܇ , ,܃ ⋆۾۲۱ ,୨܇ ۲ܑ
୨

Consider this for Solving the DLP
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Estimate via the layered THR algorithm

The problem solved by the training stage 
of CNN and the DLP are equivalent as well, 
assuming that the DCP is approximated via 

the layered thresholding algorithm

*

* Recall that for the ML-CSC, 
there exists an unsupervised 
avenue for training the 
dictionaries that has no 
simple parallel in CNN

The thresholds for 
the DCP should   

also learned



Theoretical Path
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M A
܆ ൌ ۲ଵડଵ
ડଵ ൌ ۲ଶડଶ

⋮
ડ୏ିଵ ൌ ۲୏ડ୏

ડ୧ is ۺ଴,ஶ sparse

஛۾۲۱
ࣟ

 

Layered THR
(Forward Pass)

Other?

Armed with this view of a generative source model, we 
may ask new and daring questions



Theoretical Path: Possible Questions
oHaving established the importance of the ML-CSC model and its 

associated pursuit, the DCP problem, we now turn to its analysis

o The main questions we aim to address:

I. Uniqueness of the solution (set of representations) to the ۲۱۾஛ ?

II. Stability of the solution to the ۲۱۾஛
ࣟ problem ?

III. Stability of the solution obtained via the hard and soft layered THR 
algorithms (forward pass) ?

IV. Limitations of this (very simple) algorithm and alternative pursuit?

V. Algorithms for training the dictionaries ۲୧ ୧ୀଵ୏ vs. CNN ?
VI. New insights on how to operate on signals via CNN ?
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Uniqueness of 
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Theorem: If a set of solutions ડ୧ ୧ୀଵ୏ is found for 
ሺ۲۱۾஛ሻ such that:

ડ୧ ଴,ஶ
ୱ ൑ λ୧ ൏

1
2 1 ൅

1
μ ۲୧

then these are necessarily the unique solution to 
the DCP problem

Is this set 
unique?

The feature maps CNN aims to recover are unique

஛۾۲۱ : Find a set of representations satisfying
܆ ൌ ۲ଵડଵ ડଵ ଴,ஶ

ୱ ൑ λଵ
ડଵ ൌ ۲ଶડଶ ડଶ ଴,ஶ

ୱ ൑ λଶ
⋮ ⋮

ડ୏ିଵ ൌ ۲୏ડ୏ ડ୏ ଴,ஶ
ୱ ൑ λ୏



o The problem we aim to solve is this

				 ஛۾۲۱
ࣟ :	Find a set of representations satisfying
܇ െ ۲ଵડଵ ଶ ൑ ࣟ ડଵ ଴,ஶ

ୱ ൑ λଵ
ડଵ ൌ ۲ଶડଶ ડଶ ଴,ஶ

ୱ ൑ λଶ
⋮ ⋮

ડ୏ିଵ ൌ ۲୏ડ୏ ડ୏ ଴,ஶ
ୱ ൑ λ୏

o Suppose that we manage to solve the 
஛۾۲۱

ࣟ 	 and find a feasible set of  
representations satisfying all the conditions

o The question we pose is How close is ડ෡୧ to ડ୧?

Stability of 
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୧ ୧ୀଵ
୏

Is this set 
stable?



Stability of 
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Theorem: If the true representations ડ୧ ୧ୀଵ୏ satisfy

ડ୧ ଴,ஶ
ୱ ൑ λ୧ ൏

1
2 1 ൅

1
μ ۲୧

then the set of solutions ડ෡୧ ୧ୀଵ
୏

obtained by solving 
this problem (somehow) must obey 

ડ෡୧ െ ડ୧ ଶ
ଶ ൑ ࣟ୧ଶ for 

ࣟ଴ଶ ൌ 4ࣟଶ, ࣟ୧ଶ ൌ
ࣟ୧ିଵଶ

1 െ 2λ୧ െ 1 μ ۲୧

The problem CNN aims to solve is 
stable under certain conditions

Observe  this annoying effect 
of error magnification as we 

dive into the model



Stability of Layered‐THR
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Theorem: If ડ୧ ଴,ஶ
ୱ ൏ ଵ

ଶ
1 ൅ ଵ

ஜ ۲౟
⋅
ડ	౟
ౣ౟౤

ડ	౟
ౣ౗౮ െ ଵ

ஜ ۲౟
⋅ கై

౟షభ

ડ	౟
ౣ౗౮

then the layered hard THR (with the proper thresholds) will  
find the correct supports  and 

ડ	୧୐୘ െ ડ୧ ଶ,ஶ
୮ ൑ ε୐୧

where we have defined ε୐଴ ൌ ۳ ଶ,ஶ
୮ and

ε୐୧ ൌ ડ୧ ଴,ஶ
୮ ⋅ ε୐୧ିଵ ൅ μ ۲୧ ડ୧ ଴,ஶ

ୱ െ 1 ડ	୧୫ୟ୶

The stability of the forward pass is guaranteed if    
the underlying representations are locally sparse 

and the noise is locally bounded

* Least-Squares 
update of the 
non-zeros? 

*



Limitations of the Forward Pass
o The stability analysis reveals several inherent limitations of             

the forward pass (a.k.a. Layered THR) algorithm:

• Even in the noiseless case, the forward pass is incapable of 
recovering the perfect solution of the DCP problem

• Its success depends on the ratio ડ	୧୫୧୬ / ડ	୧୫ୟ୶ . This is a direct 
consequence of relying on a simple thresholding operator

• The distance between the true sparse vector and the estimated       
one increases exponentially as a function of the layer depth

oWe now turn to propose a new algorithm that attempts to solve 
some of these problems
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Special Case – Sparse Dictionaries
o Throughout the theoretical study we assumed that the 

representations in the different layers are ۺ଴,ஶ-sparse

oDo we know of a simple example of a set of dictionaries ۲୧ ୧ୀଵ୏

and their corresponding signals ܆ that will obey this property?

oAssuming the dictionaries are sparse:

o In the context of CNN, the above happens if a sparsity promoting 
regularization, such as the ۺଵ, is employed on the filters
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ડ୨ ଴,ஶ
ୱ ൑ ડ୏ ଴,ஶ

ୱ ෑ ۲୧ ଴

୏

୧ୀ୨ାଵ

Maximal number of 
non-zeros in an 

atom in ۲୧



Better Pursuit ?
o ஛۾۲۱ Noiseless: Find a set of representations satisfying

܆ ൌ ۲ଵડଵ ડଵ ଴,ஶ
ୱ ൑ λଵ

ડଵ ൌ ۲ଶડଶ ડଶ ଴,ஶ
ୱ ൑ λଶ

⋮ ⋮
ડ୏ିଵ ൌ ۲୏ડ୏ ડ୏ ଴,ஶ

ୱ ൑ λ୏
o So far we proposed the Layered THR: 

ડ෡௄ ൌ ࣪ஒే ۲୏୘ …࣪ஒమ ۲ଶ୘	࣪ஒభ ۲ଵ୘܆

o The motivation is clear – getting close to what CNN use

oHowever, this is the simplest and weakest pursuit known in 
the field of sparsity – Can we offer something better?
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Layered Basis Pursuit (Noiseless)
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ડଶ୐୆୔ ൌ min
ડమ

	 ડଶ ଵ			s. t. 			ડଵ୐୆୔ ൌ ۲ଶડଶ

ડଵ୐୆୔ ൌ min
ડభ

	 ડଵ ଵ			s. t. ൌ۲ଵડଵ܆						
Deconvolutional

networks
[Zeiler, Krishnan, Taylor 

& Fergus ‘10]

o Our Goal: ۲۱۾஛ : Find a set of representations satisfying

܆ ൌ ۲ଵડଵ ડଵ ଴,ஶ
ୱ ൑ λଵ

ડଵ ൌ ۲ଶડଶ ડଶ ଴,ஶ
ୱ ൑ λଶ

⋮ ⋮
ડ୏ିଵ ൌ ۲୏ડ୏ ડ୏ ଴,ஶ

ୱ ൑ λ୏

oWe can propose a Layered Basis Pursuit Algorithm: 



oAs opposed to prior work in CNN, we can do far more than just 
proposing an algorithm – we can analyze its terms for success:

oConsequences: 
 The layered BP can retrieve the underlying representations in the noiseless 

case, a task in which the forward pass fails to provide

 The Layered-BP’s success does not depend on the ratio ડ	୧୫୧୬ / ડ	୧୫ୟ୶

Guarantee for Success of Layered BP
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Theorem: If a set of representations ડ୧ ୧ୀଵ୏ of the 
Multi-Layered CSC model satisfy

ડ୧ ଴,ஶ
ୱ ൑ λ୧ ൏

1
2 1 ൅

1
μ ۲୧

then the Layered BP is guaranteed to find them



Layered Basis Pursuit (Noisy)
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ડଵ୐୆୔ ൌ min
ડభ

	
1
2 ܇ െ ۲ଵડଵ ଶ

ଶ ൅ λଵ ડଵ ଵ

For ܇ ൌ ۲ડ ൅ ۳, if

ડ ଴,ஶ
ୱ ൏

1
3 1 ൅

1
μ ۲

then we are guaranteed that

ઢ ଶ,ஶ
୮ ൑ 7.5	ε୐଴	 ડ ଴,ஶ

୮

We can invoke a 
result we have seen 
already, referring to 
the BP for the CSC 

model:

ડଶ୐୆୔ ൌ min
ડమ

	
1
2 	 ડଵ

୐୆୔ െ ۲ଶડଶ ଶ
ଶ൅ λଶ ડଶ ଵ



Stability of Layered BP
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Theorem: Assuming that  ડ୧ ଴,ஶ
ୱ ൏ ଵ

ଷ
1 ൅ ଵ

ஜ ۲౟
then For correctly chosen λ୧ ୧ୀଵ୏ 	we are guaranteed that

1. The support of ડ	୧୐୆୔ is contained in that of ડ୧
2. The error is bounded:  ડ	୧୐୆୔ െ ડ୧ ଶ,ஶ

୮ ൑ ε୐୧ , where 

ε୐୧ ൌ 7.5୧ ۳ ଶ,ஶ
୮ ෑ ડ୨ ଴,ஶ

୮
୧

୨ୀଵ

3. Every entry in ડ୧ greater than ε୐୧ / ડ୧ ଴,ஶ
୮ will be found



Layered Iterative Soft-Thresholding:

ડ୨୲ ൌ ࣭ஞౠ/ୡౠ ડ୨୲ିଵ ൅
1
c୨
۲୨୘ ડ෡୨ିଵ െ ۲୨ડ୨୲ିଵ

Layered Iterative Thresholding
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* c୧ ൐ 0.5 λ୫ୟ୶ሺ۲୧୘۲୧ሻ

Layered BP:    ડ୨୐୆୔ ൌ min
ડౠ

	ଵ
ଶ
	 ડ୨ିଵ୐୆୔ െ ۲୨ડ୨ ଶ

ଶ൅ ξ୨ ડ୨ ଵ

Can be seen as a recurrent neural network
[Gregor & LeCun ‘10]

t

Note that our suggestion 
implies that groups of layers 
share the same dictionaries



Time to Conclude
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This Talk
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Extension of the 
classical sparse theory
to a multi-layer setting

Multi-Layer 
Convolutional 
Sparse Coding

Independent 
patch-processing

Local 
Sparsity

Novel View of 
Convolutional 
Sparse Coding

Convolutional 
Neural 

Networks

A novel interpretation and 
theoretical understanding of CNN

The underlying idea: 
Modeling the data source 

in order to be able to 
theoretically analyze 

algorithms’ performance 
We described the limitations of patch-based 
processing as a motivation for the CSC model
We presented a theoretical study of the CSC                                             
model both in a noiseless and a noisy settings
We mentioned several interesting connections between 
CSC and CNN and this led us to … 
… propose and analyze a multi-layer extension of 
CSC, shown to be tightly connected to CNN

The ML-CSC was shown to 
enable a theoretical study of 
CNN, along with new insights 



Current/Future Work
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In general, we aim to leverage our theoretical insights 
in order to get to practical implications

More specifically, we work on:

 Developing alternative (local) pursuit methods for the CSC and ML-CSC
 Could we propose an MMSE-driven pursuit 
 Training the dictionaries – So far our efforts are focused on the unsupervised 

mode and the results are encouraging 
 Explaining theoretically “known” tricks in CNN (local normalization, batch-

normalization, the effect of stride, residual networks, dropout, …
 Better understanding this model by projecting true signals on to it to see   

what kind of sparsities and dictionaries are obtained
 Improving the corresponding performance bounds, and 
 Tying all the above to applications 
 …



Questions?
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These slides will be shared in my webpage in few days


