A discrete uniformization for polyhedral surfaces and its applications

Feng Luo

Rutgers University

Geometry and Shape Analysis in Biological Sciences National University of Singapore

joint with D. Gu (Stony Brook), J. Sun (Tsinghua Univ.), T. Wu (Courant)

June 12-16, 2017

classical theory of smooth surfaces

Metric = Riemannian metric

 $K=\lim_{r
ightarrow 0^+}12rac{\pi r^2-A(r)}{\pi r^4}$

K>0

pseudosphere, K≡-1

k≡1.

Basic question:

K<0

relationship between curvature and metric

Uniformization thm (Poincare-Koebe, 1907) ∀ Riemannian metric g on S,

 $\exists \lambda: S \rightarrow \mathbf{R}_{>0}$ s.t., (S, λg) is a complete metric of curvature 1, 0, -1.

 λg and g have the same notion of angles, i.e., conformal.

6g-6 invariants

 $z = e^{it} \frac{z - z_0}{1 - \overline{z}_0 z}$

Corollary. (Riemann mapping)

Any simply connected bounded domain in the plane is conformal to the unit disk.

circle packing metric

K. Stephenson

Andreev-Koebe-Thurston Theorem

A simplicial triangulation of a disk can be *realized* by a circle packing of the unit disk.

Key issue: what is a discrete conformal equivalence for PL metrics?

Discrete conformality I: vertex scaling

Same triangulation, scale edge lengths from vertex weights

A variational principle

and there exists a locally concave function f(u) such that $\nabla f = (a_1, a_2, a_3)$.

Bobenko-Pinkahl-Springborn (2010).

f can be extended to a convex function on R³ and is explicit.

Corollary (BPS, 2010).

If ℓ and $u \ast \ell$ are two PL metrics on T with the same curvature, then $u \equiv c$.

However, given ℓ on T, there are in general no constant curvature metrics of the form $u_*\ell$.

Discrete conformality, Part II: Delaunay triangulatic

A finite point set V produces a Delaunay triangulatio

Delaunay : $a+b \leq \pi$ at each edge e

Different Delaunay triangulations of the same metric (S,V,d) are related by :

Diagonal switch from T to T'

(b) If $T_i \neq T_{i+1}$, then $(S, d_i) \cong (S, d_{i+1})$ by an isometry homotopic to id,

(c) If
$$T_i = T_{i+1}$$
, $\exists \lambda_i: V \rightarrow R$, s.t., $\ell_{d_{i+1}} = \lambda_i * \ell_{d_i}$

Thm(Fillastre 2008) Every cusped hyperbolic puncture torus is isometric the boundary of a convex hull of a finite set of points in a Fuschian hyperbolic 3-manifolds.

For K^{*}= $\frac{2\pi \cdot \chi(S)}{|V|}$, d^{*} is a discrete uniformization metric.

Convergence

Thurston's discrete Riemann mapping conjecture, Rodin-Sullivan's theorm: $f_n \rightarrow$ the Riemann mapping

Riemann mapping sending the triangle to $(\Omega; p, q, r)$.

Convergence

 (Σ,d) is a disk with a Riemannian metric d, and p,q,r three boundary points.

A sequence of PL triangulations (Σ, T_n) is *regular* if there exist $\delta > 0$, C > 0 s.t.

(1) all angles in T_n are in $(\delta, \frac{\pi}{2} - \delta)$,

(2) all lengths of edges in T_n are in $(\frac{1}{C \cdot n}, \frac{C}{n})$

Thm 3(Gu-Wu-L). If (Σ, T_n) is a regular sequence of triangulations of a Riemannian disk (Σ, d, p,q,r) and $f_n: \Sigma \rightarrow \Delta$ is the associated discrete uniformization map, then f_n converges uniformly to the uniformization map associated to (Σ, d) .

The same is true for a torus (S¹XS¹, g) with any Riemannian metric.

Cor. The uniformization map for simply connected surface and torus is computable.

Thank you.

