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classical theory of
smooth surfaces

Metric = Riemannian metric 

curvature=Gaussian curvature

Basic question: 
relationship between curvature and metric

pseudosphere, K≡-1K<0 K>0

k≡1



S =  connected surface

Uniformization thm (Poincare-Koebe, 1907)   ∀ Riemannian metric g on S, 

Ǝ λ: S → R>0 s.t.,  (S, λg) is a complete metric of curvature 1, 0, -1.

λg  and g have the same notion of angles,  i.e., conformal.

x2+y2-z2

6g-6 invariants



Corollary. (Riemann mapping)  
Any simply connected bounded domain in the plane is conformal to the unit disk.

K. Stephenson

circle packing metric

Andreev-Koebe-Thurston Theorem

A simplicial triangulation of a disk can be realized by a circle packing of the unit disk.



Questions
1. Can one compute the uniformization map?

2. Is there a discrete version of the uniformization thm for polyhedral surfaces? 
Does it converge to the uniformization map?

Key issue: 
what is  a discrete conformal equivalence for PL metrics?

angle-preserving =conformal

ANS: yes (Gu-L-Sun-Wu).



Isometric gluing of  E2 triangles along edges:  (S, T,  l ).

Curvature K=Kd: V →R, 

K(v)= 2π-sum of angles at v

A triangulated PL metric (S,T,  l)
is Delaunay:  a+b ≤π at each edge e.

Gauss‐Bonnet
K(v)>0

K(v)<0
triangulation

(Closed surfaces)

Polyhedral surface
PL metric d on (S,V) is a flat cone metric, cone points in V. 



discretization • S closed  surface, 

V={v1, …, vn} in S, n>0.

• Triangulation T of (S,V):  V(T)=V, 
E=E(T)

• PL metric d on (S, T, V):

isometric gluing of triangles,        
singularities in V.    

d determined  by   edge length 

ld: E → R>0

Smooth surface S

Functions on S

Riemannian metrics 

Gauss Bonnet

Conformal change:
g →λg

Triangulated surfaces  (S, T)

Functions on V=V(T)

Polyhedral metrics

Curvature Kd: V -> (-∞,2π)

Kd(v)=2π - ∑ ai

∑ Kd(v) = 2π χ(S)

???

Smooth world Discrete world



Discrete conformality I:  vertex scaling

Same triangulation, scale edge lengths from vertex weights

Def. (Vertex scaling) Given  λ: V → R and l : E → R,    
λ*l(uv) = e λ(u)+λ(v) l(uv)

݀ఒర௚ u, v െߣ ݑ ߣ	 ݒ ݀݃ሺݑ, |ሻݒ 		൑|
u  

v

௚݀ܥ ,ݑ ݒ ଷ (Gu-L-Wu, 2015)



A variational principle
Prop (L, 2004) 

߲ܽ௜
௝ݑ߲

ൌ
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and there exists a locally concave  function f(u) such that ߘf ൌ a1, a2, a3 .

Then 

u1

u2

u3

Bobenko-Pinkahl-Springborn (2010).  
f can be extended to a convex function on R3 and is explicit.

Corollary (BPS, 2010). 
If l and u*l are two PL metrics on T with the same curvature, then u ≡ c.

However,  given  l on T,  there are in general no constant curvature metrics of the form u*l.

, 	 ሾడ௔೔
డ௨ೕ

	ሿ 3x3  semi-negative definite, 



Discrete conformality, Part II:  Delaunay triangulation

A finite point set V  produces a Delaunay triangulation  T with V(T)=V

Voronoi cells 

Edge e=vv’ in T Diagonal switch from T to T’

T
T’

Different Delaunay  triangulations of 
the same metric (S,V,d)  are related by :

Delaunay :  a+b ≤ π at each edge e



Discrete conformality

Def.(Gu-L-Sun-Wu)  PL metrics d, d’ on (S,V) are discrete conformal,

d ~ d’ 

if Ǝ sequences d1=d, d2, …, dk=d’ and T1, …, Tk on (S,V) s.t.,
(a) Ti is Delaunay in di,   

(b) If Ti ≠ Ti+1, then (S, di) ≅ (S,di+1) by an isometry homotopic to id,

(c) If Ti=Ti+1, ∃ λi:V -> R, s.t.,   ldi+1
=  λi*ldi



Thm 1. (Gu-L-Sun-Wu)  ∀	PL metric d on a closed (S,V) and ∀	K*: V→  (-∞, 2π), 
s.t., ∑ K*(v) =2πχ(S), 

Ǝ a PL metric d*, unique up to scaling,  on (S,V)  s.t.,

(a) d* is discrete conformal to d,

(b) the discrete curvature of d* is K*,

(c) d* can be found by a finite dimensional variational principle.

For K*= 
ଶగ⋅஧ ୗ

௏
,  d* is a discrete uniformization metric.

Thm(Fillastre 2008)    Every cusped hyperbolic puncture torus is isometric the boundary of a convex hull 
of a finite set of points in a Fuschian hyperbolic 3-manifolds. 

K*=0

4π/5

There exists a hyperbolic version of thm 1





Thurston’s discrete Riemann mapping conjecture, 
Rodin-Sullivan’s theorm:  fn → the Riemann mapping

Convergence



.

Riemann mapping sending the triangle to (;p,q,r).

Cor.  A polygonal disk (D, V; a,b,c) in C is  d.c.
to the equilateral triangle (ΔABC, V’, {A,B,C}) 

Thm 2 (L‐Sun‐Wu)
fn → Riemann mapping for (;p,q,r).

A

B C

Counterpart of Thurston’s  circle packing conjecture: 
Fn converges to the Riemann mapping.

K*= 
ସగ
ଷ

at a,b,c



Convergence 
(∑,d) is a disk with a Riemannian metric d,  and p,q,r three boundary points. 

A sequence of PL triangulations  (∑, Tn)  is regular if there exist δ>0, C >0 s.t.

(1) all angles in Tn are in (δ, 
గ
ଶ
	- δ), 

(2) all lengths of edges in Tn are in (
ଵ
஼⋅௡

	 , ஼
௡

).

Thm 3(Gu-Wu-L).  If (∑, Tn) is a regular sequence of triangulations of a Riemannian 
disk (∑, d, p,q,r) and fn: ∑ → Δ is the associated discrete uniformization map, then fn
converges uniformly to the uniformization map associated to (∑, d).  

Cor. The uniformization map for simply connected surface and torus is computable.

The same is true for a torus (S1XS1, g) with any Riemannian metric. 



Thank you. 


