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Examples

I Multiscale non-rigid point cloud registration based on
Laplace-Beltrami eigenmap.

I Hamiltonian Monte Carlo acceleration using surrogate functions
with random basis for Bayesian inference.

I Image classification using random basis.

I Learning dominant wave directions for high frequency wave fields.



Non-rigid point cloud registration

joint work with R. Lai



The problem
Point cloud is the most basic way for representing geometry and
information in 3D and higher dimensions.

How to compare and register two point clouds?

Difficulties:

I unstructured geometric object, no natural
basis or parametrization,

I embedding is not unique, e.g., rigid and
non-rigid transformation,

I a point cloud primitively embedded in very
high dimensional space may posses intrinsic
low dimensional structure.

public available data
TOSCA



Laplace-Beltrami (LB) eigenmap

Given a d-dimensional manifold (M, g), the LB eigen-system {λn, φn} is

−4Mφn = λnφn, n = 1, 2, · · ·

Assuming the point cloud X = {xi ∈ Rm, i = 1, 2, . . . ,N} is sampled from
a d-dimensional manifold (M, g), define the scale-invariant LB eigenmap
(Rustamov’07)

L : xi ∈ Rm → pi =

φ1(xi)

λd/4
1

,
φ2(xi)

λd/4
2

, . . . ,
φn(xi)

λd/4
n

T

∈ Rn.



Nice properties of LB eigenmap

I Intrinsic GPS.

I Invariant to scaling and isometric transformation.

I A natural multiscale characterization with global information.

I A good candidate for nonlinear dimension reduction for point clouds
in higher dimensions.
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Eigenfunctions of LB operator on point clouds

n = 1

n = 15

n = 5

n = 20

n = 10

n = 25



Multiscale representation of point clouds by LB
eigen-modes

original

the first 100

the first 20

the first 150

the first 50

the first 200



Iso-metric invariance of LB eigen-maps



Iso-metric invariance of LB eigen-maps



New issues for LB eigen-map
I possible sign ambiguity of LB eigenfunctions;

I non simple eigenspace;

I possible order switch of LB eigenfunctions.
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Figure: Ambiguities of LB eigen-map.



Key features of our method

I Handle non-rigid transformation using LB eigen-map.

I A registration in distribution sense based on optimal transport.

I Overcome the ambiguity of LB eigen-map by introducing rotation
invariant Wasserstein distance in the LB embedding space.

I Achieve computation efficiency by using the rotation invariant
sliced-Wasserstein distance.

I A multiscale implementation that improves both robustness and
efficiency.

I Work for other embeddings and point clouds in high dimensions .



Registration of point clouds

Figure: Registration using the first 5 egienfunctions. Num. of points =
3400. Computation time = 9.03s



Registration of non-uniform data

By defining registration in distribution, one has more flexibilities by
introducing appropriate mass/weight to each data set in the optimal
transport problem. For example, to deal with non-uniform data one can
chose the wright according to the local sampling density.



Multiscale registration

Computation time

method
Time (s)

n1 = 5 n2 = 10 n3 = 20 n4 = 30 n5 = 50 n6 = 80 n7 = 120 n8 = 150 n9 = 200
L = 500 L = 800 L = 1000 L = 1500 L = 3000 L = 6000 L = 10000 L = 15000 L = 20000

RSWD 0.61 1.21 1.50 2.26 4.75 9.58 16.50 26.23 38.42
empirical 0.45 .70 0.83 1.23 2.30 4.76 7.68 11.67 15.60

n = 5 n = 20 n = 30 n = 50

n = 80 n = 120 n = 150 n = 200



Efficient and scalable computational models for
Bayesian inference

joint work with B. Shahbaba and C. Zhang



Bayesian inference

Given a set of independent observations Y = {y1, . . . , yN} modeled by an
underlying distribution p(y|q) with parameters q = {q1, . . . , qd}, one is
interested in sampling from the posterior distribution,

p(q|Y) =
p(Y |q)p(q)

p(Y)
∝

N∏
n=1

p(yn |q) · p(q).

Given a probabilistic model for the observed data, Bayesian inference
properly quantifies uncertainty and reveals the global landscape of the
model.



Computational challenge for Bayesian inference

I exact posterior inference in practice is often intractable.

I most approximation models and their algorithms are
computationally intensive, e.g., MCMC method, especially for big
data and high dimensions.

The key question: how to explore the underlying structure of the model to
propose effective sample states with

I reduced computational cost,

I high acceptance rate,

I fast convergence.
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Hamiltonian Monte Carlo (HMC)
HMC introduces a Hamiltonian dynamic system that includes gradient of
the potential to generate proposals

dq
dt

=
∂H
∂p

,
dp
dt

= −
∂H
∂q

where H(q,p) = U(q)+
1
2

pT M−1p, U(q) = −
N∑

i=1

log P(yi |q)− log P(q).

from a joint distribution P(q,p) ∝ exp
(
−U(q) − 1

2 pT M−1p
)
.

I HMC reduces the random walk behavior and proposes states with a
high probability of acceptance.

I Riemannian HMC uses Fisher information (Hessian) for M to
incorporate local geometric structure.

Computational challenge: repetitive evaluations of U, its derivatives, M−1,

I N is large (big data),

I the number of parameter is large (high dimensions),

I the model is complex.
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Random network surrogate (RNS) HMC

Key idea: construct a random network surrogate for U that implicitly
subsample the data by

I exploring redundancy in the data and regularity in the parameter
space

I effectively capturing the collective properties of large datasets

I with scalability, flexibility and efficiency

by using a linear combination of nonlinear basis functions with random
parameterization through efficient optimization from training data, i.e.,

U(q) ≈
s∑

i=1

βia(q;γi),

where a(x) is the nonlinear basis function, γi is the random parameter,
and βi are learned/trained from the available samples.

Remark: Universal approximation is theoretically guaranteed (Cybenko,
Hornick, Huang, Rahimi and Recht).



Random network surrogate (RNS) HMC

Key features of our method:

I Exploration phase: efficient optimization to train the surrogate
function.

I Exploitation phase: the surrogate function is used to approximate
the potential function and its derivatives in the HMC.

I Scalability and flexibility: free form approximation, different choices
of basis functions, the number of hidden nodes can be adjusted to
achieve desired accuracy and stability.

I Adaptivity: sampling and learning can be coupled on the fly.



Basis function

Our basis function with random orientation, scaling and offset {w, b}:

a(q,γ) = a(wt · q + b), a(x) = ln(1 + ex), γ = {w, b}

which has a non-local nature and proper behavior at infinity to
approximate a potential function.
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Comparing different surrogate approximations with an increasing number of observations N = 10, 20, 40 on target function

y = x2/2. The observation points are nested samples from the standard normal distribution.



Optimization

Given training samples in the parameter space at qi ∈ Rd , i = 1, . . . , t ,

I Least square fitting the potential function at training samples.

min
β

1
2

t∑
i=1

‖

s∑
j=1

βja(qi ,γj) − U(qi)‖
2(+

λ

2
‖β‖2)

I Least square fitting the gradient of the potential function using
training samples (score matching).

min
β

1
2

t∑
i=1

‖

s∑
j=1

βj∇qa(qi ,γj) − ∇qU(qi)‖
2(+

λ

2
‖β‖2)

I The computation cost is O(tN + dst + ts2 + s3), linear in N, the
number of data, and in t , the number of training samples.

I The number of hidden nodes, s, can be used to balance accuracy
and stability.



Generalization of random network surrogate HMC

If radial basis function centered at training sample points qi , i = 1, . . . , t is
used

a(q,γi) = c2exp(−
‖q − qi‖

2

2l2
) = K(q,qi), γi = {qi , l}

to fit the training data (qi ,U(qi)), j = 1, . . . , t by the following optimization

min
β

1
2

t∑
j=1

‖

t∑
i=1

βja(qi ,γj) − U(qi)‖
2 +

1
2
σ2βT Ktβ, Kt = [K(qi ,qj)]ti,j=1

one recovers the popular Gaussian process (GP) model.

Remark: The computation cost is O(t3) to invert the covariance matrix
Kt .



Tests
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Comparing HMC and NNS-HMC for a 2-dimensional banana-shaped distribution.
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Comparison of efficiency on a 32 dimensional Gaussian target whose covariance matrix has one eigenvalue of 1, and all

others are 0.01. Each algorithm is run ten times. The medians and 80% error bars are plotted.



Tests

Acceptance probability of surrogate induced Hamiltonian flow on simulated logistic regression models for different number

of parameters, d, and hidden neurons, s.

Acceptance probability of the surrogate induced Hamiltonian flow based on a simulated logistic regression models with

dimension d = 32.



An inverse problem for elliptic PDE
∇x · (c(x, θ)∇xu(x, θ)) = 0, x = (x1 , x2) ∈ [0, 1]

2

with boundary conditions A log-Gaussian process prior for c(x) with covariance kernel:

C(x1 , x2) = σ2 exp

− ‖x1 − x2‖
2
2

2l2

 , σ = 1, l = 0.2.

The diffusivity field is approximated by Karhunen-Loéve (K-L) expansion:

c(x, θ) ≈ exp

 d∑
i=1

θi
√
λi vi (x)


where λi and vi (x) are the eigenvalues and eigenfunctions of the integral operator defined by the kernel C.

The problem: inference for parameters θi endowed with independent
standard normal priors, θi ∼ N(0, 0.52).

The experiment: The K-L expansion is truncated at d = 20. Data are
generated by adding independent Gaussian noise to observations of the
solution field,

Remark. This is a complex probability model where a PDE is involved.
Each evaluation of the potential function and its derivatives in HMC is
extremely expensive.
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Results

Experiment Method AP ESS s/Iter min(ESS)/s speedup

LR (Simulation) HMC 0.76 (4351,5000,5000) 0.061 14.17 1
RMHMC 0.80 (1182,1496,1655) 3.794 0.06 0.004

s = 2000 RNS-HMC 0.76 (4449,4999,5000) 0.007 123.56 8.72

LR (Bank Marketing) HMC 0.70 (2005,2454,3368) 0.061 6.52 1
RMHMC 0.92 (1769,2128,2428) 0.631 0.56 0.09

s = 1000 RNS-HMC 0.70 (1761,2358,3378) 0.007 52.22 8.01

LR (a9a 60 dimension) HMC 0.72 (1996,2959,3564) 0.033 11.96 1
RMHMC 0.82 (5000,5000,5000) 3.492 0.29 0.02

s = 2500 RNS-HMC 0.68 (1835,2650,3203) 0.005 81.80 6.84

Elliptic PDE HMC 0.91 (4533,5000,5000) 0.775 1.17 1
RMHMC 0.80 (5000,5000,5000) 4.388 0.23 0.20

s = 1000 RNS-HMC 0.75 (2306,3034,3516) 0.066 7.10 6.07

Comparing algorithms using logistic regression models and an elliptic
PDE inverse problem. For each method, we provide the acceptance

probability (AP), the CPU time (s) for each iteration and the
time-normalized ESS.



Adaptive random network surrogate HMC

I Idea: Generate the samples and training the network surrogate
simultaneously.

I Catch: Need to have adaption rate of the surrogate function ct → 0
with iteration t of Markov chain to guarantee ergodicity and
convergence (Roberts and Rosenthal 06).

I At the initial stage when samples are few, local quadratic (Laplace)
approximation of the potential function.

I Efficient update of the random network surrogate with new samples
based on Sherman-Morrison-Woodbury formula.



Test results

(a) Simulated Data (b) Bank Market (c) Elliptic PDE

Median acceptance rate of ANNS-HMC along with the corresponding 90% interval (shaded area). The red line shows the

average acceptance rate of standard HMC.
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Neural Response based Extreme Learning
Machine for Image Classification

joint work with H. Li



Key elements of our method

I A simple and efficient image classification method based on
multilayer feature mapping and extreme learning machine (ELM).

I Multilayer feature mapping based on random basis and
max-pooling.

I SIFT preprocessing is used to introduce more invariance properties.

I At the ELM learning stage, elastic-net regularization is used.



Extreme learning machine

For single layer ELM with K hidden nodes with activation function σ(x),
one tries to design output weights βj , j = 1, 2, . . . ,K to fit the output f on
given data xi , i = 1, 2, ...,

f(xi) =
K∑

j=1

βjσ(aT
j xi + bj)

I aj , bj are randomly chosen⇒ universal approximation theorem of
random basis (Barron, Huang, Rahimi and Recht) + bless of
dimensions.

I Linear model⇒ computationally efficient.

I Sigmoid function σ(x) = 1
1+exp(−x) is used in our application.



Our algorithm



Random feature map and maxpooling

first layer feature map

second layer feature map and max pooling



Test results

MNIST data set

Methods Accuracy (%) Time (s)

CNN 98.92 14,127.68
DBN 98.87 20,580.00
SAE 98.60 36,448.40
DBM 99.05 68,246.00
SDAE 98.72 37,786.03

ScSPM 98.58 13,287.79
NR model 96.43 33,619.54

SNR 96.71 >24h
Classical ELM 95.98 18.33

ML-ELM 99.03 149.47
ELM-LRF 98.35 3,172.86
NR-ELM 99.18 622.72

Classification results

accuracy vs the number of first layer feature maps.

accuracy vs the number of second layer feature maps.



Caltech face database.

Classification results on the Caltech face database
Methods Accuracy (%) Time (s)

CNN 39.62 42,397.84
DBN 26.52 899.14
SAE 42.81 597.13

ScSPM 80.32 1006.40
NR 26.96 1,552.26

SNR 91.79 3,744.15
Classical ELM 38.34 0.49

ML-ELM 37.70 91.07
ELM-LRF 48.88 236.98

NR-ELM (one layer) 90.42 74.68
NR-ELM 93.93 144.86

Images with random rotation angles.

The effect of using SIFT.
Methods Accuracy (%) Time (s)

Classical ELM (w/o SIFT) 38.34 0.49
Classical ELM (with SIFT) 37.70 42.63

NR-ELM (w/o SIFT) 69.97 887.10
NR-ELM (with SIFT) 93.93 144.86

comparisons



Learning dominant wave directions for high
frequency wave fields

joint work with J. Fun, J. Qian and L. Zepeda-Núñez



Helmholtz equation

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

wave speed: c(x)
refraction index: n(x) = 1
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frequency: ω

wavelength: λ = 2πc
ω

wave number: k = 1
λ

Helmholtz equation

(∆ + ω2n2(x))u(x) = f(x)

+ b. c.

Applications:

I Wave propagation

I Inverse problems

I Imaging

I Non-destructive testing



Helmholtz equation (HE) in high frequency regime

∆xu(x) + ω2n2(x)u(x) = f(x) , x ∈ Ω ⊂ Rd

When domain size� λ or high resolution is needed, λ�1,⇒ high
frequency regime: ω�1 (λ�1), HE is notoriously difficult to solve.

I Solution is highly oscillatory.

I Waves propagate in all directions.

I Waves are strongly scattered by the medium.

I True degrees of freedom are large ≥ O(ωd).



Motivations

Design better basis functions by learning/probing the medium.

I Learn local dominant wave front directions, which depends on both
the medium and source.

I Incorporate the information into basis functions to capture local
oscillation pattern.

I Both local dominant wave front directions and the wave field can be
updated and improved iteratively.

Ultimate Goal: overall complexity O(ωd logω).



Our problem specific approach

I Probe the medium using a low frequency wave.

I Process the low frequency wave field to learn the ray field.

I Local ray field information is incorporated into the basis functions to
improve both efficiency and stability for computing the high
frequency wave field.

I Learning is specific to the medium and source distribution.

I The ray field and wave field can be improved iteratively.



Example
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