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It all started with a conversation with biologists....

Doug Boyer

Jukka Jernvall

More Precisely: biological morphologistsy
Study Teeth & Bones of

extant & extinct animals∣∣
still live today fossils



First: project on “complexity” of teeth

Then: find automatic way to compute Procrustes distances
between surfaces — without landmarks

Landmarked Teeth −→

d2
Procrustes (S1, S2) = min

R rigid tr.

J∑
j=1

‖R (xj )− yj‖2

Find way to compute a distance that does as well,
for biological purposes, as Procrustes distance,
based on expert-placed landmarks, automatically?
examples: finely discretized triangulated surfaces



First: project on “complexity” of teeth
Then: find automatic way to compute Procrustes distances
between surfaces — without landmarks

Landmarked Teeth −→

d2
Procrustes (S1, S2) = min

R rigid tr.

J∑
j=1

‖R (xj )− yj‖2

Find way to compute a distance that does as well,
for biological purposes, as Procrustes distance,
based on expert-placed landmarks, automatically?
examples: finely discretized triangulated surfaces



Data Acquisition

Surface reconstructed from µCT-scanned voxel data
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The Shape Space of k landmarks in R3



Geometric Morphometrics: Limitation of Landmarks

• Landmark Placement: tedious
and time-consuming

• Fixed Number of Landmarks:
lack of flexibility

• Domain Knowledge: high
degree of expertise needed, not
easily accessible

• Subjectivity: debates exist
even among experts
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conformal Wasserstein neighborhood
                 distance



Continuous Procrustes Distance (cPD)

DcP (S1,S2) =

( ∫
S1

‖ x − C (x) ‖2 dvolS1 (x)

) 1
2

,

where C : S1 → S2 is an area-preserving diffeomorphism. so as to
wrap into the next line
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Continuous Procrustes Distance (cPD)

DcP (S1,S2) =

(
inf

C∈A(S1,S2)
inf

R∈E(3)

∫
S1

‖R (x)− C (x) ‖2 dvolS1 (x)

) 1
2

,

where A (S1, S2) is the set of area-preserving diffeomorphisms
between S1 and S2, and E3 is the Euclidean group on R3.



Continuous Procrustes Distance (cPD)

dcP (S1, S2) = inf
C∈A

inf
R∈E3

(∫
S1

‖R(x) − C(x) ‖2 dvolS1(x)

)1/2

d12

−−−→



We defined 2 different distances

dcWn (S1,S2): conformal flattening
comparison of neighborhood geometry
optimal mass transport

dcP (S1,S2): continuous Procrustes distance



Bypass Explicit Feature Extraction

S1

S2

Correspondence-Based Shape Distances

D (S1,S2) = inf
f ∈A (S1,S2)

F (f ;S1,S2)



Multi-Dimensional Scaling (MDS) for cPD Matrix



Diffusion Maps: “Knit together” local geometry to get
“better” distances

Small distances are much more reliable!



Diffusion Maps: “knitting together” local geometry

Small distances are much more reliable!



Diffusion Maps: “knitting together” local geometry

Small distances are much more reliable!



Diffusion Maps: “knitting together” local geometry

Small distances are much more reliable!



Diffusion Maps: “knitting together” local geometry

Small distances are much more reliable!



Diffusion Maps: “knitting together” local geometry

Small distances are much more reliable!



Diffusion Maps: “knitting together” local geometry

Small distances are much more reliable!



Diffusion Maps: “knitting together” local geometry

dij

Si

Sj

• P = D−1W defines a random
walk on the graph

• Solve eigen-problem

Puj = λjuj , j = 1, 2, · · · ,m

and represent each individual
shape Sj as an m-vector(

λ
t/2
1 u1 (j) , · · · , λt/2

m um (j)
)



Diffusion Maps: “knitting together” local geometry

dij

Si

Sj

• P = D−1W defines a random
walk on the graph
• Solve eigen-problem

Puj = λjuj , j = 1, 2, · · · ,m

and represent each individual
shape Sj as an m-vector(

λ
t/2
1 u1 (j) , · · · , λt/2

m um (j)
)



Diffusion Maps: “knitting together” local geometry

dij

Si

Sj

• P = D−1W defines a random
walk on the graph
• Solve eigen-problem

Puj = λjuj , j = 1, 2, · · · ,m

and represent each individual
shape Sj as an m-vector(

λ
t/2
1 u1 (j) , · · · , λt/2

m um (j)
)



Diffusion Distance (DD)
Fix 1 ≤ m ≤ N, t ≥ 0,

Dt
m (Si ,Sj) =

(
m∑

k=1

λtk (uk (i)− uk (j))2

) 1
2
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MDS for cPD & DD

cPD DD



Even better can be obtained!

HBDD DD















Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F
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Towards Horizontal Diffusion Maps

Horizontal Diffusion Maps

D−1Wuk = λk uk , 1 ≤ k ≤ N

D−1


...
...

· · · · · · e−d2
ij/ε · · ·
...




...

...
uk (j)

...

 = λk


...
...

uk (j)
...





Towards Horizontal Diffusion Maps

Horizontal Diffusion Maps

D−1Wuk = λk uk , 1 ≤ k ≤ κ

D−1


...
...

· · · · · · e−d2
ij/ερδij · · ·
...




...
...
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...
...
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Correspondences Between Triangular Meshes
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Correspondences Between Triangular Meshes
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· · · B1 B2 B3 · · ·
...

...
...

...
A1 · · · 0 0 1 · · ·
A2 · · · 1 0 0 · · ·
A3 · · · 0 ? 0 · · ·
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Correspondences Between Triangular Meshes

A1

A2 A3

B1

B2

B3

f12 (A3)



· · · B1 B2 B3 · · ·
...

...
...

...
A1 · · · 0 0 1 · · ·
A2 · · · 1 0 0 · · ·
A3 · · · 0.91 0.95 0.88 · · ·
...

...
...

...



S2

S1

ρδ12 (r , s) = exp

(
−‖f12 (Ar )− Bs‖2

δ

)
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Horizontal Diffusion Maps: For fixed 1 ≤ m ≤ κ, t ≥ 0,
represent Sj as a κj ×m matrix(

λ
t/2
1 u1[j], · · · , λ

t/2
m um[j]

)



Diffusion Maps vs. Horizontal Diffusion Maps

Diffusion Maps: For fixed 1 ≤ m ≤ κ, t ≥ 0, represent Sj as
an m-dimensional vector(

λ
t/2
1 u1 (j) , · · · , λt/2

m um (j)
)

Horizontal Diffusion Maps: For fixed 1 ≤ m ≤ κ, t ≥ 0,
represent Sj as a κj ×m matrix(

λ
t/2
1 u1[j], · · · , λ

t/2
m um[j]

)









Even better can be obtained!
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2. Automatic Landmarking: Spectral Clustering
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