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Figure: Sensor locations inferred for n = 1055 largest cities in the
continental US. On average, each sensor estimated local distances to 18
neighbors, with measurements corrupted by 10% Gaussian noise. We
assume that the locations in the figure is not known in prior. Only the
distance of two locations within radius of 0.1 can be measured.
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Weighted graph for a give data set

The geometric structure of a data set is given by the weighted
graph on the data.
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Weighted graph for a give data set

The geometric structure of a data set is given by the weighted
graph on the data.

o Let X = RP and |X| = n. A weighted graph on X is the triple
G = [X, E, W], where X is the node set, E is the edge set,
and W is an n x n (sparse) weight matrix with w; ; = w; ; and

{Wi,j:()? (XI'7X_I')¢E7

WfJ>07 (X,',XJ')GE .
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Weighted graph for a give data set

The geometric structure of a data set is given by the weighted
graph on the data.

o Let X = RP and |X| = n. A weighted graph on X is the triple
G = [X, E, W], where X is the node set, E is the edge set,
and W is an n x n (sparse) weight matrix with w; ; = w; ; and

{Wi,j:()? (XI'7X_I')¢E7

WfJ>07 (X,',XJ')GE .

. x:|12
o Example: w;j = exp (—%) . (xi,x) € E.
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Weighted graph for a give data set

The geometric structure of a data set is given by the weighted
graph on the data.

o Let X = RP and |X| = n. A weighted graph on X is the triple
G = [X, E, W], where X is the node set, E is the edge set,
and W is an n x n (sparse) weight matrix with w; ; = w; ; and

wij =0, (x,x)¢E,
WfJ>07 (X,',XJ')GE .
) Ixi—x;1?

e Example: w;j = exp (—ﬁ) . (xi,xj) e E.

@ The weight matrix defines a metric on the graph G, which
defines the kernel distance on X:

2
di/ (Xi, %)) = wii + wjj — 2w j.
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Spectral approach to wavelet: diffusion wavelets

On a connected data graph G = [X, E, W], the weight is given by
a positive definite and symmetric kernel k(x;, xj) = w;j. Let
= §x k(x,y)du(y).
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Spectral approach to wavelet: diffusion wavelets

On a connected data graph G = [X, E, W], the weight is given by
a positive definite and symmetric kernel k(x;, xj) = w;j. Let
= §x k(x,y)du(y).

o Diffusion kernel: k(x,y) = \/ﬁ Zn 1>\2 () (y)-
Then A\g =1 and A1 < 1.
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Spectral approach to wavelet: diffusion wavelets

On a connected data graph G = [X, E, W], the weight is given by
a positive definite and symmetric kernel k(x;, xj) = w;j. Let
= §x k(x,y)du(y).
o Diffusion kernel: k(x,y) = \/ﬁ Py 1)\2 ®j(x)0j(y).
Then \g =1 and A1 < 1.
o Diffusion map: It is defined as {®;} : X — /2 such that

®e(x) = [AM¢1(x), -+ Ap_1dn-1(x)] 7
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Spectral approach to wavelet: diffusion wavelets

On a connected data graph G = [X, E, W], the weight is given by
a positive definite and symmetric kernel k(x;, xj) = w;j. Let
= §x k(x,y)du(y).
o Diffusion kernel: k(x,y) = \/ﬁ Py 1)\2 ®j(x)0j(y).
Then \g =1 and A1 < 1.
o Diffusion map: It is defined as {®;} : X — /2 such that

®e(x) = [AM¢1(x), -+ Ap_1dn-1(x)] 7

o Diffusion distance: dz.(x,y) = | P:(x) — P:(y)].
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MRA on H and Diffusion Wavelets

Ref. [Coifman and Maggioni, Diffusion Wavelets, 2006. Similar
idea from Wilkinson (1965), Watkins (1982, 1991)]

Let H = L2(X, i) be a Hilbert space of functions on (X, u) and
the diffusion operator on H be (T*f)(x) = §, k(x,y)f(y)du(y).
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Let H = L2(X, i) be a Hilbert space of functions on (X, u) and
the diffusion operator on H be (T*f)(x) = §, k(x,y)f(y)du(y).
@ Let € > 0 be sufficient small. A subspace S c Hiscalled a
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MRA on H and Diffusion Wavelets

Ref. [Coifman and Maggioni, Diffusion Wavelets, 2006. Similar
idea from Wilkinson (1965), Watkins (1982, 1991)]

Let H = L2(X, i) be a Hilbert space of functions on (X, u) and
the diffusion operator on H be (T*f)(x) = §, k(x,y)f(y)du(y).

@ Let € > 0 be sufficient small. A subspace S c Hiscalled a
e-null space of TEif |[THf| < ¢|f| for all f € S. We denote it
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MRA on H and Diffusion Wavelets

Ref. [Coifman and Maggioni, Diffusion Wavelets, 2006. Similar
idea from Wilkinson (1965), Watkins (1982, 1991)]

Let H = L2(X, i) be a Hilbert space of functions on (X, u) and
the diffusion operator on H be (T*f)(x) = §, k(x,y)f(y)du(y).
@ Let € > 0 be sufficient small. A subspace S c Hiscalled a
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MRA on H and Diffusion Wavelets

Ref. [Coifman and Maggioni, Diffusion Wavelets, 2006. Similar
idea from Wilkinson (1965), Watkins (1982, 1991)]

Let H = L2(X, i) be a Hilbert space of functions on (X, u) and
the diffusion operator on H be (T*f)(x) = §, k(x,y)f(y)du(y).

@ Let € > 0 be sufficient small. A subspace S c Hiscalled a
e-null space of TEif |[THf| < ¢|f| for all f € S. We denote it
by S = Nul(T?").

olet Vy=H, V= T?7'(H), and n e N be the integer such
that V,, = Span(vp). Then

V03V13V23-~~3V,,

is an MRA of H with respect to T.

o Let Vi = Vi 1 ® W1, Vir1LWii1. An o.n. basis of W is
call the diffusion wavelet basis of W;.

@ The all basis of W; and vg form a basis of H.



Spectral graph wavelets

Ref. [D.K. Hammond, P. Vandergheynst, R. Gribonval, 2011]

Let £ be the graph Laplacian on G such that
L= Zjn;& )\ij(X)Xj(y), where 0 = )\0 < )\1 < /\2 < K )\n—l-
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Spectral graph wavelets

Ref. [D.K. Hammond, P. Vandergheynst, R. Gribonval, 2011]

Let £ be the graph Laplacian on G such that
L= Zjn;& )\ij(X)Xj(y), where 0 = )\0 < )\1 < /\2 < K )\n—l-

o Let g be a function on R*. The wavelet operator is defined as
Ty = g(L) = 3770 A ()X (v).
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Spectral graph wavelets

Ref. [D.K. Hammond, P. Vandergheynst, R. Gribonval, 2011]
Let £ be the graph Laplacian on G such that
L= ZJ'-’;Ol Aixj(X)xj(y), where 0 = Ao < Ag < Ao < -+ < Apy.
o Let g be a function on R*. The wavelet operator is defined as
Ty = g(£) = X775 A ()X (¥)-
@ The spectral graph wavelet is defined as
bexly) = X0 8(t)xi(X)xi(y), xeX,t=0.
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Spectral graph wavelets

Ref. [D.K. Hammond, P. Vandergheynst, R. Gribonval, 2011]
Let £ be the graph Laplacian on G such that
L= Zjn;& )\ij(X)Xj(y), where 0 = )\0 < )\1 < /\2 < K )\n—l-
o Let g be a function on R*. The wavelet operator is defined as
Ty = g(£) = X775 A ()X (¥)-
@ The spectral graph wavelet is defined as
bexly) = X0 8(t)xi(X)xi(y), xeX,t=0.
@ The wavelet transform of f is given by

n—1

We(t,x) = e, £ = Y g(EA)x () D) X (1) F(y)

Jj=0 yeX
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Our Purpose

Constructing “traditional “ compact supported wavelets on data set

@ Construction of MRA on the data via hierarchical tree
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Our Purpose

Constructing “traditional “ compact supported wavelets on data set
@ Construction of MRA on the data via hierarchical tree

@ Construction of compact supported wavelet basis and frame
on data sets

@ Development of pyramid algorithm for wavelet decomposition
and recovering of functions on data
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Section 2. Construction of hierarchical data tree via
data graph
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Data partition via normalized cut

We adopt the method proposed by [J. Shi and J. Malik, 2000].
Let A,B,V c X st. A(\B=,AJB =V and Ac V. Define
the cut of (A, B) (w.r.t. V) and the association of (A, V) as
CUt(A’ B) = ZaeA,beB k(a7 b)’ aSSOC(A7 V) = ZaeA,veV k(aa V)
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Data partition via normalized cut

We adopt the method proposed by [J. Shi and J. Malik, 2000].
Let A,B,V c X st. A(\B=,AJB =V and Ac V. Define
the cut of (A, B) (w.r.t. V) and the association of (A, V) as
CUt(A’ B) = ZaeA,beB k(a7 b)’ aSSOC(A7 V) = ZaeA,veV k(aa V)

Definition

The normalized cut of (A, B) (w.r.t. V) is the following number:

cut(A, B) cut(A, B)

Ncut(A, B) =
cut(A, B) assoc(A, V) * assoc(B, V)
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Data partition via normalized cut

We adopt the method proposed by [J. Shi and J. Malik, 2000].
Let A,B,V c X st. A(\B=,AJB =V and Ac V. Define
the cut of (A, B) (w.r.t. V) and the association of (A, V) as
CUt(A’ B) = ZaeA,beB k(a7 b)’ aSSOC(A7 V) = ZaeA,veV k(aa V)

Definition

The normalized cut of (A, B) (w.r.t. V) is the following number:

cut(A, B) cut(A, B)

Ncut(A, B) =
cut(A, B) assoc(A, V) * assoc(B, V)

e Ncut(A, B) can be naturally extended to Ncut(Ay,- -+, Ax).
@ The optimal k-partition of V is the solution:

(A1, , Ax) = argmin Ncut(Az, - -+, Ax)
where | Ji_; Aj = V and Ai(Aj = @, if i # .
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Approximation of optimal partition

The optimal k-partition is a NP problem, which can be relaxed to
a problem of eigen-decomposition of £ and approximatively solved
as following:
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the k-mean one.
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Approximation of optimal partition

The optimal k-partition is a NP problem, which can be relaxed to
a problem of eigen-decomposition of £ and approximatively solved
as following:

@ Obtaining a k-dimensional reduction Y < R¥ of V

@ Making a k partition of Y using a clustering algorithm, say,
the k-mean one.

@ Deriving the k-partition of V' from the k-partition of Y.

@ There are (self-tuning) algorithms for finding the optimal
partition number k. [A. Zelnik-Manor and P. Perona, 2004.]
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Approximation of optimal partition

The optimal k-partition is a NP problem, which can be relaxed to
a problem of eigen-decomposition of £ and approximatively solved
as following:

@ Obtaining a k-dimensional reduction Y < R¥ of V

@ Making a k partition of Y using a clustering algorithm, say,
the k-mean one.

@ Deriving the k-partition of V' from the k-partition of Y.

@ There are (self-tuning) algorithms for finding the optimal
partition number k. [A. Zelnik-Manor and P. Perona, 2004.]

Applying the partition algorithm recursively, we construct a
multi-layer partition, in which the cluster number k can be varied
for each subpartition.
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Construction of a hierarchical data tree

Definition

Assume X has a L-layer partition s.t. X = X} = Uiz XjL_l, and
for L<e<L X{=X"". Define

Se={X{, - ,Xf;e}, 1 <4< L, and Sg = X. Then the structure

5,5 1<---<145<45

is called a hierarchical data tree and denoted by T (X).
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Construction of a hierarchical data tree

Definition

Assume X has a L-layer partition s.t. X = X} = Uiz XjL_l, and
for L<e<L X{=X"". Define
Se={X{, - ,Xf;e}, 1 <4< L, and Sg = X. Then the structure

5,5 1<---<145<45

is called a hierarchical data tree and denoted by T (X).

e S, is called the roof of the tree T (x), the points in X called
the leaves, and a set in Sy called a (-level folder (or a (-level
node).
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Construction of a hierarchical data tree

Definition

Assume X has a L-layer partition s.t. X = X} = Uiz XjL_l, and
for L<e<L X{=X"". Define

Se={X{, - ,Xf;e}, 1 <4< L, and Sg = X. Then the structure

5,5 1<---<145<45

is called a hierarchical data tree and denoted by T (X).

e S, is called the roof of the tree T (x), the points in X called
the leaves, and a set in Sy called a (-level folder (or a (-level
node).

@ The set Xjk has a double identities: A subset of X and a
k-level folder in the tree.
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Construction of a hierarchical data tree

Definition

Assume X has a L-layer partition s.t. X = X} = Uiz XjL_l, and
for L<e<L X{=X"". Define

Se={X{, - ,Xf;e}, 1 <4< L, and Sg = X. Then the structure

5,5 1<---<145<45

is called a hierarchical data tree and denoted by T (X).

e S, is called the roof of the tree T (x), the points in X called
the leaves, and a set in Sy called a (-level folder (or a (-level
node).

@ The set Xjk has a double identities: A subset of X and a
k-level folder in the tree.

o We have | J,(X}) = X,|So| = |X| = n,|S.| = 1.
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Deferent hierarchical data trees

By the partition tree, we can construct the hierarchical date tree.
We apply an ordering operator to sort the nodes at each level,
from the root to the leaves.

o Full tree.
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Deferent hierarchical data trees

By the partition tree, we can construct the hierarchical date tree.
We apply an ordering operator to sort the nodes at each level,
from the root to the leaves.

o Full tree.
o Tight balanced tree.

@ Balanced tree.
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Deferent hierarchical data trees

By the partition tree, we can construct the hierarchical date tree.
We apply an ordering operator to sort the nodes at each level,
from the root to the leaves.

o Full tree.

o Tight balanced tree.

o Balanced tree.

For all parent and child folders,

|child folder| )
0<B< |parent folder| <B<l
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Deferent hierarchical data trees

By the partition tree, we can construct the hierarchical date tree.
We apply an ordering operator to sort the nodes at each level,
from the root to the leaves.

o Full tree.
o Tight balanced tree.

o Balanced tree.
For all parent and child folders,
0<B< |child folder| <B<1

|parent folder|
For a balanced tree, the number of levels is L = ()(log n).
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Full data tree I: Binary tree

0000 0001 0010 0011 0100 0101 0110 0111

NSNS NS N/

000 001 010 011

N N
~

Binary full data tree
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Full data tree Il: Ternary tree

000 001 002 010 011 012 020 021 022

00 01 02
0

Ternary Full Tree
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Tight balance tree

0000 0001 0010 0011 0020 0021 0030 0031 0100 0101 0110 0111 0120 0121 0130 0131

VYV VYV

Tight Balanced Tree
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Distance between folders

Let A= {a1,a2, -+ ,ak} and B = {b1, b2, -+ , by} be two folders
at (L —1) level.

o Define the k x m distance matrix D(A, B) = [dg(a;, bj)].
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Distance between folders

Let A= {a1,a2, -+ ,ak} and B = {b1, b2, -+ , by} be two folders
at (L —1) level.

o Define the k x m distance matrix D(A, B) = [dg(a;, bj)].
@ The average distance d,(A, B) = |D(A, B)||f.
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Distance between folders

Let A= {a1,a2, -+ ,ak} and B = {b1, b2, -+ , by} be two folders
at (L —1) level.

o Define the k x m distance matrix D(A, B) = [dg(a;, bj)].
@ The average distance d,(A, B) = |D(A, B)||f.
@ The shortest distance ds(A, B) = min dg(aj, bj).
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Distance between folders

Let A= {a1,a2, -+ ,ak} and B = {b1, b2, -+ , by} be two folders
at (L —1) level.

o Define the k x m distance matrix D(A, B) = [dg(a;, bj)].

@ The average distance d,(A, B) = |D(A, B)||f.

@ The shortest distance ds(A, B) = min dg(aj, bj).

@ The longest distance d;(A, B) = max dg(a;, aj).
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Distance between folders

Let A= {a1,a2, -+ ,ak} and B = {b1, b2, -+ , by} be two folders
at (L —1) level.

o Define the k x m distance matrix D(A, B) = [dg(a;, bj)].

@ The average distance d,(A, B) = |D(A, B)||f.

@ The shortest distance ds(A, B) = min dg(aj, bj).

@ The longest distance d;(A, B) = max dg(a;, aj).

Jianzhong Wang Wavelets on Data Trees



Folder sorting via optimization

Let A= {a1,ap, - ,ak} and d a distance on A. Let 7 be an index
permutation of [1,---, k]. We call a; = [ar(1); ar(2);" " ar(k)] @
stack of A headed by a(;), and call {(a;) = Zj:ll d(ar(j)s ar(j+1))
the path length of a;. We denote the set of permutations (with
the head /) by

Definition

A shortest-path sorting of A headed by a; is a stack a, that has
the shortest path length among all pathes starting from ay:

ar = argmin/(a;).
ﬂ'EP[
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Greedy algorithm for folder sorting [Ram, Elad, Cohen, 2013]

Denote by A the folder set at a level. Let p be a probability
function on A and 2 the sorted index set initialized to Q = (.

© Set 7(1) =/ and update Q = {/}.
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Greedy algorithm for folder sorting [Ram, Elad, Cohen, 2013]

Denote by A the folder set at a level. Let p be a probability
function on A and 2 the sorted index set initialized to Q = (.

© Set 7(1) =/ and update Q = {/}.

@ After i steps, assume now Q = {7 (1),--- ,w(i)}. To find
(i + 1), from unsorted elements, pick up two nearest ones y;
and y; of ar(;) and compute

1
14 exp (d(a,-,yn—d(a,-,y»)’

qi

«

where o > 0 is the sorting parameter. If q; < pr(;), we select
ar(i+1) = 2. Otherwise, select a ;1) = 1.
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Greedy algorithm for folder sorting [Ram, Elad, Cohen, 2013]

Denote by A the folder set at a level. Let p be a probability
function on A and 2 the sorted index set initialized to Q = (.

© Set 7(1) =/ and update Q = {/}.
@ After i steps, assume now Q = {7 (1),--- ,w(i)}. To find

(i + 1), from unsorted elements, pick up two nearest ones y;
and y; of ar(;) and compute

1
14 exp (d(a,-,yn—d(a,-,y»)’

qi

«

where o > 0 is the sorting parameter. If q; < pr(;), we select
ar(i+1) = 2. Otherwise, select a ;1) = 1.

© Update €2, and repeat the step above. The algorithm is
terminated when Q| = k.
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Greedy algorithm for folder sorting [Ram, Elad, Cohen, 2013]

Denote by A the folder set at a level. Let p be a probability
function on A and 2 the sorted index set initialized to Q = (.

© Set 7(1) =/ and update Q = {/}.

@ After i steps, assume now Q = {7 (1),--- ,w(i)}. To find
(i + 1), from unsorted elements, pick up two nearest ones y;
and y; of ar(;) and compute

1
14 exp (d(a,-,yn—d(a,-,y»)’

qi

«

where o > 0 is the sorting parameter. If q; < pr(;), we select
ar(i+1) = 2. Otherwise, select a ;1) = 1.

© Update €2, and repeat the step above. The algorithm is
terminated when Q| = k.

@ a, is an approximative shortest path sorting of A headed by ay.
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Algorithm for building data tree

Q Input: A weighted graph G = [X, W] on the data set X.

@ Construct the matrix P = D™'W and use a fast
eigen-decomposition algorithm to find the largest k Left
eigenvectors. To make sure that the gap between Ay and
)\k-i-l is Iarge.

© Use a partition algorithm, e.g., k-mean, to make a partition of
X ={x1," "+ ,Xn}.

© On each subset X;, repeat the processing above to partition it
again up to L levels.

© Smoothly order the folders at each level.
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Data tree of a brain image

towd iege | CWsers\SHSWGooghk: Drive'Mallab\DataWiliTree  BrainData\bran_001.dem o | g dem | 2 r Frage Ansyss

Jianzhong Wang



Section 3. Construction of hierarchical data tree via
data graph
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MRA on #H via a hierarchical data tree

Definition

Let Ho = H(= L?(X,du)) and

He={feH f(x)=c,xe Xf € S¢}. The hierarchical tree T (X)
derives the following MRA on H:

HODHI"'DHL

where dim(H;) = ne(= |Sel)-
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MRA on #H via a hierarchical data tree

Definition

Let Ho = H(= L?(X,du)) and

He={feH f(x)=c,xe Xf € S¢}. The hierarchical tree T (X)
derives the following MRA on H:

HODHI"'DHL

where dim(H;) = ng(= |S¢|). Let Wy @D He = Hy—1 and Wy L H,.
Then W, is a wavelet subspace of H.
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MRA on #H via a hierarchical data tree

Definition

Let Ho = H(= L?(X,du)) and

He={feH f(x)=c,xe Xf € S¢}. The hierarchical tree T (X)
derives the following MRA on H:

HODHI"'DHL

where dim(H;) = ng(= |S¢|). Let Wy @D He = Hy—1 and Wy L H,.
Then W, is a wavelet subspace of H.

We have dim(Wy) = my = |S;—1| — |S¢|, and

/HZ’HL@WL@-“@WL
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The relation between o.n. bases of [%(X, du) and of [%(X, dx)

O In L2(X, dx), (2, b) = 3, ajb;.
In L2(X,du), {a,b)m = 2 ajbjm; = <{a, bm).
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The relation between o.n. bases of [%(X, du) and of [%(X, dx)

Q In [2(X,dx), (a,b) = 3 ; ajb;.
In L2(X,dp), {a,b)m = 2 ajbjm; = <{a, bm).

O Let {n;}7_; be an o.n. basis of L?(X,dx). Then, setting
flj = mj//m, {ijj}7_; is an o.n. basis of L?(X,dp).
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The relation between o.n. bases of L?(X,du) and of L%(X, dx)

Q In [2(X,dx), (a,b) = 3 ; ajb;.
In L2(X,dp), {a,b)m = 2 ajbjm; = <{a, bm).

O Let {n;}7_; be an o.n. basis of L?(X,dx). Then, setting
flj = mj//m, {ijj}7_; is an o.n. basis of L?(X,dp).

© We may use o.n wavelet basis of L2(X, dx) to perform the
o.n. wavelet decomposition and recovering for f € L%(X, dpu)
by using the following formula:

fm, nj) = {E5ijm.
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Hierarchical structure of wavelet basis on H = L?(X, dx)

The scaling functions and wavelet functions in H# = L?(X, dx) have
the following properties:

Properties of scaling function and wavelets

@ At the leaf level, the set of delta functions {dx}xex is an o.n.
basis of H. Each f € ‘H has the decomposition f = Zj 15-05)9.,
where 15-0 = f(x;).

v
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Hierarchical structure of wavelet basis on H = L?(X, dx)

The scaling functions and wavelet functions in H# = L?(X, dx) have
the following properties:

Properties of scaling function and wavelets

@ At the leaf level, the set of delta functions {dx}xex is an o.n.
basis of H. Each f € ‘H has the decomposition f = Zj 15-05)9.,
where 15-0 = f(x;).

o At Level ¢, assume Sy = {Xf}l’-'il. Let

L X € Xf,

#(x) = § YT
0, x ¢ X
Then {¢{}7, is an o.n. basis of ;.

v
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Hierarchical structure of wavelet basis on H = L?(X, dx)

The scaling functions and wavelet functions in H# = L?(X, dx) have
the following properties:

Properties of scaling function and wavelets

@ At the leaf level, the set of delta functions {dx}xex is an o.n.
basis of H. Each f € ‘H has the decomposition f = Zj 6.05)9
where 15-0 = f(x;).

o At Level ¢, assume Sy = {Xf}l’-'il. Let

1 ¢

, X€ X,
9i(x) = § VI ’
0, x ¢ X
Then {¢{}7, is an o.n. basis of ;.
@ There is a wavelet basis {w‘]} of Wy such that each w‘] is

locally supported and has at Ieast one vanishing moment i.e.,
thereis 1 < s < my, s.t. supp(wf) c X¢, and <¢f, 1)=0.
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The o.n. wavelet basis within a tree-folder

By the properties of wavelets, we may construct the wavelet basis
on H folder-by-folder. We denote by Y a folder at 1-level having k
leaves: Y = {y;}/_;. Let ¢? = d,,. Then {¢2}/_, is an o.n. basis
of L2(Y,dy). The spatial representation of f € L?(Y, dy) is

f= Zj-(:l rj-gbj(-’. We denote by f the vector [fi,--- , fi]T too.
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The o.n. wavelet basis within a tree-folder

By the properties of wavelets, we may construct the wavelet basis
on H folder-by-folder. We denote by Y a folder at 1-level having k
leaves: Y = {y;}/_;. Let ¢? = d,,. Then {¢2}/_, is an o.n. basis
of L2(Y,dy). The spatial representation of f € L?(Y, dy) is

f= Zj-(:l ﬂ-gbj@. We denote by f the vector [fi,--- , fi]T too.

Definition

An o.n. wavelet basis on L?(Y,dy) is a k x k o.g. matrix:
M = [¢, 1, ,1k_1], where the first column ¢ is a scaling
function and others are wavelets. The wavelet transform of a
function f € L?(Y,dy) is given by d = MTf and the inverse
wavelet transform given by in f = Md.

By MRA on L2(Y), we may construct the o.n. wavelet basis of
L?(Y) using a pyramid algorithm.
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First-layer Haar o.n. wavelet basis in a folder

Let the first layer Haar o.n. wavelet basis be represented as a
k x k matrix My = [Ly, H1], where Ly = [¢},--- ,qﬁ%kp]] contains
scaling functions and H = [}, - - ,¢[1k+1]/2] contains wavelets.
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First-layer Haar o.n. wavelet basis in a folder

Let the first layer Haar o.n. wavelet basis be represented as a
k x k matrix My = [Ly, H1], where Ly = [¢},--- 7¢%k/2]] contains
scaling functions and H = [, ,w[lk+1]/2] contains wavelets.

Construction I: From 2 leaf scaling functions

[ 1/} ] [¢2, 17¢21] [

Sl
Sl
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First-layer Haar o.n. wavelet basis in a folder

Let the first layer Haar o.n. wavelet basis be represented as a
k x k matrix My = [Ly, H1], where Ly = [¢},--- ,qﬁ%kp]] contains
scaling functions and H = [}, - - ,¢[1k+1]/2] contains wavelets.

Construction I: From 2 leaf scaling functions

11
[ :171/}11] = [¢gi—17¢gi] [\? \/51 ]
V2 V2

When k = 2s — 1, we also need the following:

Construction Il: From 3 leaf scaling functions

1 1 1
(Gt U] = [ il [ O
s—1) ¥s—1>%¥s m—2>%m—1>%m \F . i@
V3 V2 Ve
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Multi-layer Haar o.n. wavelet basis in a folder

We now construct (j + 1)-level scaling functions and wavelets from
Jj-level scaling functions ®; = [¢}, -, ¢7n]. Write s; = | supp(¢?)|.

[¢J,:+1.» ’1/4,:+1] = [Q%i—lv ¢j2:] Wj2
Ww2-=__1 [\/ﬁ %2 :|

J T A/mi1tSiyoi [Soi  —~/S2i—1
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Multi-layer Haar o.n. wavelet basis in a folder

We now construct (j + 1)-level scaling functions and wavelets from
Jj-level scaling functions ®; = [¢}, -, ¢7n]. Write s; = | supp(¢?)|.

[¢J,:+1.» ’1/4,:+1] = [Q%i—lv ¢j2:] Wj2
Ww2-=__1 [\/ﬁ %2 :|

J T A/S2i—1tSitai [Soi  —~/S2i—1
Wavelet transform: ¢/*' = (W?)Td/, o/ = W2/HL.
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Multi-layer Haar o.n. wavelet basis in a folder

We now construct (j + 1)-level scaling functions and wavelets from
Jj-level scaling functions ®; = [¢}, -, ¢7n]. Write s; = | supp(¢?)|.

[¢J,:+1.» ’l/f’f:H] = [Qséi—lﬂ ¢j2:] Wj2

w1 [veia Ve
I VEmiatsia | (/5 —\/%i1

Wavelet transform: ¢/*' = (W?)Td/, o/ = W2/HL.

When m=2s—1, set hy; = S22 + Sm—1 + Sm-

(. s 11 wy_l] = [Qﬁj,.n_zv gb’l’.n_lj Qﬁjm] VVj3

Sm—2 Sm Sm—1Sm—2
hm Sm—2+5Sm hm(sm—2+5m)
W3 _ Sm—1 0 /[ Sm—2+5m

Sm _ Sm—2 Sm—15m
hm Sm—2+5Sm hm(sm—2+5m)
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Multi-layer Haar o.n. wavelet basis in a folder

We now construct (j + 1)-level scaling functions and wavelets from
Jj-level scaling functions ®; = [¢}, -, ¢7n]. Write s; = | supp(¢?)|.

[¢J,:+1.» ’l/f’f:H] = [Qséi—lﬂ ¢j2:] Wj2

W2 — 1 VS2i—1 \/ S2i
J VeRi-1tsivai | /5p; —\/S2i-1
Wavelet transform: ¢/*' = (W?)Td/, o/ = W2/HL.

When m=2s—1, set hy; = S22 + Sm—1 + Sm-

(. s 11 wy_l] = [Qﬁj,.n_zv gb’l’.n_lj Qﬁjm] VVj3

Sm _ Sm—2 Sm—15m
hm Sm—2+5Sm hm(sm—2+5m)

Wavelet transform: ¢/*1 = (W?)Td/, o = Wi/t
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Haar wavelet transform algorithm on the whole tree

The construction of wavelets above can be applied to the whole
tree. Assume that the Haar wavelet basis has been built up to
Level £, where Sy = {X{,--- , X[ }. Therefore, in this basis, there

are ny scaling functions: qﬁj(-e) = \/|1X7XXJZ’ 1<j<n. Leta
j

wavelet on X,f is denoted by wy’k). (If it is at i-th layer and the

layer level need to stress, then it is denoted by 1/)55.’[().)
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Haar wavelet transform algorithm on the whole tree

The construction of wavelets above can be applied to the whole
tree. Assume that the Haar wavelet basis has been built up to
Level £, where Sy = {X{,--- , X[ }. Therefore, in this basis, there

are ny scaling functions: qﬁj(.e) =

1<j<n Leta
\/MXXIM J ¢

wavelet on X,f is denoted by wJ@ 2 (If it is at i-th layer and the
layer level need to stress, then it is denoted by 1/)55.’[().)

Let X{H1 = Ujlle XJ-Z,XI‘/“Ur1 € Sy+1. We construct the (¢ + 1)-layer
wavelets on XZJrl recursively.

(4+1,1
o Initialize O-layer wavelets as qﬁ L1 _
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Haar wavelet transform algorithm on the whole tree

The construction of wavelets above can be applied to the whole
tree. Assume that the Haar wavelet basis has been built up to
Level £, where Sy = {X{,--- , X[ }. Therefore, in this basis, there

are ny scaling functions: qu = \/—XXZ, 1<j<n. Leta
X}

wavelet on X,f is denoted by wJ@ 2 (If it is at i-th layer and the

layer level need to stress, then it is denoted by 1/)55.’[().)
Let X{H1 = Ujlle XJ-Z,XI‘/“Ur1 € Sy+1. We construct the (¢ + 1)-layer

wavelets on XZJrl recursively.
(e+1,1)

-6 1<j<k

o Initialize O-layer wavelets as qﬁ ;

@ When k is even, then apply

(£+1,1) , (£+1,1) (£+1,1) (¢+1,1) 2
[¢t+1l 7¢t+1l ] - [¢t,2i—1 ) 20 ]VVJ
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Haar wavelet transform algorithm on the whole tree

The construction of wavelets above can be applied to the whole
tree. Assume that the Haar wavelet basis has been built up to
Level £, where Sy = {X{,--- , X[ }. Therefore, in this basis, there

. . ¢
are ny scaling functions: qu(. ) 1

\/W Xe,l <j<my. Leta
wavelet on X,f is denoted by wy 2 (If it is at i-th layer and the

layer level need to stress, then it is denoted by 1/)55’[().)
Let X{H1 = Ujlle Xf,XfH € Sy+1. We construct the (¢ + 1)-layer

wavelets on XZJrl recursively.
(e+1,1)

-6 1<j<k

o Initialize O-layer wavelets as qﬁ ;

@ When k is even, then apply

(£+1,1) , (£+1,1) (£+1,1) (¢+1,1) 2
[¢t+1l 7¢t+1l ] - [¢t,2i—1 ) 20 ]VVJ

@ When k = 2s — 1, we apply following for the last block:

(£+1,1) (£+1,1) (£+1,1) (£+1,1) ,(¢+1,1) ,(¢+1,1) W3
[¢t+1s 1>wt+1s 1’wt+1s ]_[ t,k—2 7¢tk 1 ’¢ ]
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Construction of tight wavelet frames on data w.r.t to data tree

Using the similar way, we also can construct a tight frame on the
data tree 7 (X).

@ Tight frames have excellent localization.

@ The redundance in the frames are very useful in data analysis
and processing.

@ Rich algorithms and methods for constructions of tight frames
with boundaries are available in literature. Ref. [Chan,
Riemenschneider, Shen, and Shen, 1998; Cai, Chan, Shen, and
Shen, 1998; Daubechies, Han, Ron and Shen, 2003:; Shen,
2010; ...].

The steps for constructing tight frame on a data tree

@ Construction of tight frame within a folder.

@ Construction of tight frame on the whole tree.
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Tight frames on a folder (1)

To construct the wavelet tight frame within a folder, we employ
the tight framelets on a space of finite sequence [x1, - - ,xy] with
a certain boundary condition, say, symmetric one. [see Chan,
Riemenschneider, Shen,and Shen, 2005]
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Tight frames on a folder (1)

To construct the wavelet tight frame within a folder, we employ
the tight framelets on a space of finite sequence [x1, - - ,xy] with
a certain boundary condition, say, symmetric one. [see Chan,
Riemenschneider, Shen,and Shen, 2005]
@ When L = 3, choose hg = [1/4,1/2,1/4], h1 =
[~1/4,1/2,—~1/4], hy = [-+/2/4,0,/2/4] as the masks of
the generators for the tight frame [¢, 11, ¥5].
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Tight frames on a folder (1)

To construct the wavelet tight frame within a folder, we employ
the tight framelets on a space of finite sequence [x1, - - ,xy] with
a certain boundary condition, say, symmetric one. [see Chan,
Riemenschneider, Shen,and Shen, 2005]

@ When L = 3, choose hg = [1/4,1/2,1/4], h1 =
[~1/4,1/2,—~1/4], hy = [-+/2/4,0,/2/4] as the masks of
the generators for the tight frame [¢, 11, ¥5].

o When L = 4, choose hg = £[1,2,2,2,1], h; =

111,0,0,0, — ]/Q—V}m()quo —v2,-1], h

[cos (%), —+/2sin (§)’ —2sin (%), —V/2sin (3), cos(g) ] hy =
[1,0,—2,0,1], hs = [1,-2,0,2, ~1], hg =
(L,

;ln (g) —/2,0,4/2,— 1], h7 =
[sin (%) —+/2 cos (8) —2cos (%) ,—/2 cos (%) ,sin (%)]

o[~
ol 2

ﬂ&@&
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Tight frames on a folder (1)

To construct the wavelet tight frame within a folder, we employ
the tight framelets on a space of finite sequence [x1, - - ,xy] with
a certain boundary condition, say, symmetric one. [see Chan,
Riemenschneider, Shen,and Shen, 2005]

@ When L = 3, choose hg = [1/4,1/2,1/4], h1 =
[~1/4,1/2,—~1/4], hy = [-+/2/4,0,/2/4] as the masks of
the generators for the tight frame [¢, 11, ¥5].

o When L = 4, choose hg = £[1,2,2,2,1], h; =

111,0,0,0, 1], hz—fcos( ) [1,v/2,0,—v/2, 1], h
[cos (%), —+/2sin (g) ,—2sin (§),—v2sin (§) ,cos (g) ] hy =
[1,0,-2,0,1], hs = 5[1,-2,0,2, 1], hs =
sin (3) [1,-v2,0,v2,-1], h7 =
2lsin (5) . —v2cos (3) . ~2co8 (3) . —v2cos (3) .5in (3)]
@ The boundary elements need to add.

Jianzhong Wang Wavelets on Data Trees
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Tight frames within a folder (1)

@ At a level ¢, Assume the the coefficient sequence of scaling
functions is ¢ = [c1, -+ ,cn], N = 5. When N is odd, we
choose the framelets with L = 3 and when it is even, we
choose them with L = 4.

e If 1 < N < 5, then we use the Haar do construct the wavelet
and scaling function.

@ The result tight frame within the folder contains only one
scaling function.
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Hierarchical measures on a data tree

To decompose the data in a tree by tight frame, we introduce the
following:

Definition

Let 7(X) be a data tree on the space (X, dug), where

duo = m@dx and m© is a measure function. Assume also 7 (X)
has L levels: §; <15, _1 <--- <151 <0 Sp. Then the measure
function m) on (Sy, dyy) is defined as

mOXxH) = > mTiXY,
Xflext
J

and the set {m(©® ... m(D} is called a hierarchical measures on
the tree T (X).
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An example of hierarchical measures

Let m® be the uniform measure such that m®(x) = 1,x € X.
Then m(® (ij) = |Xf|. It can be normalized to pmf by setting

Xt
pO(X!) = X1
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Tight wavelet frame on the whole tree

@ Within each folder, construct the tight frame as described
above.

@ For cross-level folders, we make the tight frame w.r.t. the
measure m. Let {n;}]_; be an tight frame of L?(X, dx). Write
flj = mj/v/m. Then {f};}]_; is an tight of L2(X, du).
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Tight wavelet frame on the whole tree

@ Within each folder, construct the tight frame as described
above.

@ For cross-level folders, we make the tight frame w.r.t. the
measure m. Let {n;}]_; be an tight frame of L?(X, dx). Write

flj = mj/v/m. Then {f};}]_; is an tight of L2(X,dp).
© To compute the coefficients of the tight frame on L?(X, dpu),
we use the formula:

<fm7 77_i> = <f7 ﬁj>m'
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Section 4. Wavelet representations of functions on
data set
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Why do we need wavelet representation?

@ It works on a wide-range of data sets and avoids to treat the
high-dimensional data directly. (No curse of dimensionality).
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Why do we need wavelet representation?

@ It works on a wide-range of data sets and avoids to treat the
high-dimensional data directly. (No curse of dimensionality).

@ It needn’t the spatial operators that work only on the data
sets in RP.
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Why do we need wavelet representation?

@ It works on a wide-range of data sets and avoids to treat the
high-dimensional data directly. (No curse of dimensionality).

@ It needn’t the spatial operators that work only on the data
sets in RD.

© It provides sparse representations of the functions such as
compactly supported functions, piecewise constant functions,
zero-moment functions, and so on.

@ The optimization models based on wavelets usually have
simple structure and lead to a fast algorithm.
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Compute the wavelet coefficients via pyramid algorithm

Let the data tree on X be given:
X = Xt D{XlL‘l,--- 7XnLl_1} S X0, X0,

where XjO = {xj}. Assume that the wavelet o.n. basis or the tight
wavelet frame is constructed. Let f € L2(X). We may apply the
classical Mallat's pyramid algorithm to compute the wavelet
coefficients of f.
@ As the initial, we set ¢ = [c1,- -+, ¢p] = [f(x1),- -+, F(Xn)].
Then f =37, cjgb?(x), where qﬁ?(x,-) = 0jj
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Compute the wavelet coefficients via pyramid algorithm

Let the data tree on X be given:
X = Xt D{XlL‘l,--- 7XnLl_1} S X0, X0,

where XjO = {xj}. Assume that the wavelet o.n. basis or the tight
wavelet frame is constructed. Let f € L2(X). We may apply the
classical Mallat's pyramid algorithm to compute the wavelet
coefficients of f.

@ As the initial, we set ¢ = [c1,- -+, ¢p] = [F(x1), -+, F(xn)].
Then f =37, cjgb?(x), where gb?(x,-) = 0jj

o At Level 1, assume that X{ = {x1, - ,xm} and the Haar o.n.
basis is employed. Denote by ¢; = [c1,- -, cm]. Then

C171 = (l 2)C1 * /'IO7 d171 = (l 2)C1 * hl and
ci2=(2)ci1xhg, dip=(l2)c11%m
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Compute the wavelet coefficients via pyramid algorithm

Let the data tree on X be given:
X = Xt D{XlL‘l,--- 7XnLl_1} S X0, X0,

where XjO = {xj}. Assume that the wavelet o.n. basis or the tight
wavelet frame is constructed. Let f € L2(X). We may apply the
classical Mallat's pyramid algorithm to compute the wavelet
coefficients of f.

@ As the initial, we set ¢ = [c1,- -+, ¢p] = [F(x1), -+, F(xn)].
Then f =37, cjgb?(x), where gb?(x,-) = 0jj

o At Level 1, assume that X{ = {x1, - ,xm} and the Haar o.n.
basis is employed. Denote by ¢; = [c1,- -, cm]. Then

C171 = (l 2)C1 * /'IO7 d171 = (l 2)C1 * hl and
ci2=(2)ci1xhg, dip=(l2)c11%m

@ The decompositions are repeated, say Ki times, until ¢y g, is
reduced to a single value.
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Compute the wavelet coefficients via pyramid algorithm

Let the data tree on X be given:
X = Xt D{XlL‘l,--- 7XnLl_1} S X0, X0,

where XjO = {xj}. Assume that the wavelet o.n. basis or the tight
wavelet frame is constructed. Let f € L2(X). We may apply the
classical Mallat's pyramid algorithm to compute the wavelet
coefficients of f.

@ As the initial, we set ¢ = [c1,- -+, ¢p] = [F(x1), -+, F(xn)].
Then f =37, cjgb?(x), where gb?(x,-) = 0jj

o At Level 1, assume that X{ = {x1, - ,xm} and the Haar o.n.
basis is employed. Denote by ¢; = [c1,- -, cm]. Then

C171 = (l 2)C1 * /'IO7 d171 = (l 2)C1 * hl and
ci2=(2)ci1xhg, dip=(l2)c11%m

@ The decompositions are repeated, say Ki times, until ¢y g, is
reduced to a single value.

@ Repeat the steps above for [c k,, - - - ’C”L—vinL_1] and so on.
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@ The similar algorithm is available for tight wavelet frame too.
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@ The similar algorithm is available for tight wavelet frame too.

@ The reconstruction of f from its wavelet coefficients is also
similar to the classical pyramid algorithm.
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@ The similar algorithm is available for tight wavelet frame too.

@ The reconstruction of f from its wavelet coefficients is also
similar to the classical pyramid algorithm.

o In the wavelet representation f = ¢; ¢t + D dek ik, Cois
the average of f: ¢g = \% >/_1f(xj). We denote by W for
the vector of wavelet coefficients of f (excluding c;).
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Smoothness of function on data tree

Ref. [M. Gavish, B. Nadler, R.R. Coifman, 2010]

Definition

For each subset S < X, define p(S) = |S|/|X]|. For x,y € X,
denote by S(x,y) the smallest folder in the tree 7 (X) that contains
both x and y. Then the tree distance of x and y is defined as

p(S(x,y)), x#Y,
0 X =Y.

dT(X7 Y) = {

For 0 < a < 1, a function f € L?(X) is called a-Hélder continuous
w.r.t. T (denoted by f € HY(T) if

|f(X) - f(y)| < Cd’%(xay)a Vx,y, e X.
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Exponential decay of wavelet coefficients

Assume f € H*(T) and wy’k) is the wavelet at (-level with
supp(wj(é’k)) c X{. Then

<f w(ék > (XZ)aJrl/Z

On the other hand, if the inequality above holds for all wavelets
W), then f € HO(T).
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Exponential decay of wavelet coefficients

Assume f € H*(T) and w;e’k) is the wavelet at (-level with
supp(wj(é’k)) c X{. Then

<f w(ék > (Xf)a+l/2

On the other hand, if the inequality above holds for all wavelets
W), then f € HO(T).

Corollary

Let T(X) be a balanced tree with the upper bound B. Assume
fe H*(T) and @b}e’k) is the wavelet at {-level with

supp(w}z’k)) < X{. Then

a+1/2)(£—1)

0.k —
(F, "9y < CB!




Application to data classification: Semi-supervised learning

Let f be a binary classification function: X — {—1,1}, which is
known on the labeled set S © X : f(x) = y. Then the classifier
can be computed as the minimum of the following:

f=argmin ) |[F(x) = y[* + A|Wr|s.
feH(T) xes
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Application to data classification: Semi-supervised learning

Let f be a binary classification function: X — {—1,1}, which is
known on the labeled set S © X : f(x) = y. Then the classifier
can be computed as the minimum of the following:

f=argmin ) |[F(x) = y[* + A|Wr|s.
feH(T) xes

We denote by M be the matrix representing the wavelet transform
on X, by MT the inverse wavelet transform matrix. Let

S =[xj,, - ,x;] and Ps = [¢€,;--- ; €] be the landmark
extraction. Then the minimization problem above becomes the
following;:

Wr = arg min(PsMT Wr —y) T (PsMT Wr —y) + A|Welf1,
W

which leads to a wavelet threshold algorithm [see Chui and Wang,
2007]
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Application to data function denoising

Let g(x) = f(x) + n(x), where n(x) is a noise on X. Then a simple
denoising algorithm is given by

f = argmin Z IWe — W |2 4+ A[We.
fEH(T) xeX
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Handwritten digits

A set of test digits is given randomly. Only a small number of the
test digits are labeled.

N N IR S ST
Al 000~ RN AT NN



Experiment 1: MNIST

@ We select 1000 handwritten digits at random from MNIST,
where 200 samples are for each of the digits 8, 3, 4, 5, 7.
Digits 8 were in a class, and others are in another class.

@ We test the algorithm for the labeled set size
|S| = 10,20, ---,100, that is, the label rates are from 1% to
10%.

@ We compare our method with three others: Laplacian
Eigenvalues, Laplacian Regression, and Adaptive
Threshold. They do not employ graph tree structure, but are
based on manifold learning.
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Experiment on 1000 samples of MNIST

hWethod Comparison on MMNIST benchmark
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Experiment 2: USPS

@ We select 1500 handwritten digits at random from USPS,
where 150 samples are for each of the digits from 0 to 9.
Digits 2 and 5 were in a class, and others are in another class.

@ We test the algorithm for the labeled set size
|S| = 10,20, ---,100, that is, the label rates are from about
0.67% to 6.67%.

@ We again compare our method with three others: Laplacian
Eigenvalues, Laplacian Regression, and Adaptive
Threshold.
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Experiment on 1500 samples of USPS
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Experiment on USPS 1500 samples: Error rates (%) of different

methods.

Method |Xo| =10 |Xo| = 100
1-NN 19.82 7.64
SVM 20.03 9.75
MVU + 1-NN 14.88 6.09
LEM 4+ 1-NN 19.14 6.09
QC + CMN 13.61 6.36
Discrete Reg. 16.07 4.68
TSVM 25.20 9.77
SGT 25.36 6.80
Cluster-Kernel 19.41 9.68
Data-Dep. Reg. 17.96 5.10
LDS 17.57 4.96
Laplacian RLS 18.99 4.68
CHM (Normalized) 20.53 7.65
Graph-tree Wavelets 8.21 3.47
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