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The connection of sensor locations in US

Figure: Sensor locations inferred for n “ 1055 largest cities in the
continental US. On average, each sensor estimated local distances to 18
neighbors, with measurements corrupted by 10% Gaussian noise. We
assume that the locations in the figure is not known in prior. Only the
distance of two locations within radius of 0.1 can be measured.

Jianzhong Wang Wavelets on Data Trees



Weighted graph for a give data set

The geometric structure of a data set is given by the weighted
graph on the data.

Let X Ă RD and |X | “ n. A weighted graph on X is the triple
G “ rX ,E ,W s, where X is the node set, E is the edge set,
and W is an nˆ n (sparse) weight matrix with wi ,j “ wj ,i and
#

wi ,j “ 0, pxi , xjq R E ,

wi ,j ą 0, pxi , xjq P E
.

Example: wi ,j “ exp
´

´
}xi´xj}

2

2σ2

¯

, pxi , xjq P E .

The weight matrix defines a metric on the graph G , which
defines the kernel distance on X :

d2
W pxi , xjq “ wi ,i ` wj ,j ´ 2wi ,j .
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Spectral approach to wavelet: diffusion wavelets

On a connected data graph G “ rX ,E ,W s, the weight is given by
a positive definite and symmetric kernel kpxi , xjq “ wi ,j . Let
dpxq “

ş

X kpx , yqdµpyq.

Diffusion kernel: k̃px , yq “ kpx ,yq?
dpxqdpyq

“
řn´1

j“0 λ
2
j φjpxqφjpyq.

Then λ0 “ 1 and λ1 ă 1.

Diffusion map: It is defined as tΦtu : X Ñ l2 such that

Φtpxq “ rλ
t
1φ1pxq, ¨ ¨ ¨ , λ

t
n´1φn´1pxqs

T .

Diffusion distance: dk̃t px , yq “ }Φtpxq ´ Φtpyq}.
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MRA on H and Diffusion Wavelets

Ref. [Coifman and Maggioni, Diffusion Wavelets, 2006. Similar
idea from Wilkinson (1965), Watkins (1982, 1991)]

Let H “ L2pX , µq be a Hilbert space of functions on pX , µq and
the diffusion operator on H be pT t f qpxq “

ş

X k̃tpx , yqf pyqdµpyq.

Let ε ą 0 be sufficient small. A subspace S Ă H is called a
ε-null space of T t if }T t f } ď ε}f } for all f P S . We denote it
by S “ NulεpT

tq.

Let V0 “ H, Vj “ T 2j´1
pHq, and n P N be the integer such

that Vn “ Spanpv0q. Then

V0 Ą V1 Ą V2 Ą ¨ ¨ ¨ Ą Vn

is an MRA of H with respect to T .

Let Vj “ Vj`1 ‘Wj`1, Vj`1KWj`1. An o.n. basis of Wj is
call the diffusion wavelet basis of Wj .

The all basis of Wj and v0 form a basis of H.
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Spectral graph wavelets

Ref. [D.K. Hammond, P. Vandergheynst, R. Gribonval, 2011]

Let L be the graph Laplacian on G such that
L “

řn´1
j“0 λjχjpxqχjpyq, where 0 “ λ0 ă λ1 ď λ2 ď ¨ ¨ ¨ ď λn´1.

Let g be a function on R`. The wavelet operator is defined as
Tg “ gpLq “

řn´1
j“0 gpλjqχjpxqχjpyq.

The spectral graph wavelet is defined as
ψt,xpyq “

řn´1
j“0 gptλjqχjpxqχjpyq, x P X , t ě 0.

The wavelet transform of f is given by

Wf pt, xq “ xψt,x , f y “
n´1
ÿ

j“0

gptλjqχjpxq
ÿ

yPX

χjpyqf pyq
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Our Purpose

Constructing “traditional“ compact supported wavelets on data set

Construction of MRA on the data via hierarchical tree

Construction of compact supported wavelet basis and frame
on data sets

Development of pyramid algorithm for wavelet decomposition
and recovering of functions on data
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Outline

Section 2. Construction of hierarchical data tree via
data graph
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Data partition via normalized cut

We adopt the method proposed by [J. Shi and J. Malik, 2000].
Let A,B,V Ă X s.t. A

Ş

B “ H,A
Ť

B “ V and A Ă V . Define
the cut of pA,Bq (w.r.t. V ) and the association of pA,V q as
cutpA,Bq “

ř

aPA,bPB kpa, bq, assocpA,V q “
ř

aPA,vPV kpa, vq

Definition

The normalized cut of pA,Bq (w.r.t. V ) is the following number:

NcutpA,Bq “
cutpA,Bq

assocpA,V q
`

cutpA,Bq

assocpB,V q

NcutpA,Bq can be naturally extended to NcutpA1, ¨ ¨ ¨ ,Akq.

The optimal k-partition of V is the solution:

pA1, ¨ ¨ ¨ ,Akq “ arg minNcutpA1, ¨ ¨ ¨ ,Akq

where
Ťk

j“1 Aj “ V and Ai
Ş

Aj “ H, if i ‰ j .
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Approximation of optimal partition

The optimal k-partition is a NP problem, which can be relaxed to
a problem of eigen-decomposition of L and approximatively solved
as following:

Obtaining a k-dimensional reduction Y Ă Rk of V

Making a k partition of Y using a clustering algorithm, say,
the k-mean one.

Deriving the k-partition of V from the k-partition of Y .

There are (self-tuning) algorithms for finding the optimal
partition number k . [A. Zelnik-Manor and P. Perona, 2004.]

Applying the partition algorithm recursively, we construct a
multi-layer partition, in which the cluster number k can be varied
for each subpartition.
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Construction of a hierarchical data tree

Definition

Assume X has a L-layer partition s.t. X “ X L
1 “

ŤnL´1

j“1 X L´1
j , and

for 1 ď ` ď L, X `
k “

Ť

X `´1
j . Define

S` “ tX
`
1 , ¨ ¨ ¨ ,X

`
n`
u, 1 ď ` ď L, and S0 “ X . Then the structure

SL C SL´1 C ¨ ¨ ¨C S1 C S0

is called a hierarchical data tree and denoted by T pX q.

SL is called the roof of the tree T pxq, the points in X called
the leaves, and a set in S` called a `-level folder (or a `-level
node).

The set X k
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Deferent hierarchical data trees

By the partition tree, we can construct the hierarchical date tree.
We apply an ordering operator to sort the nodes at each level,
from the root to the leaves.

Full tree.

Tight balanced tree.

Balanced tree.
For all parent and child folders,
0 ă B ď |child folder|

|parent folder| ď B ă 1.

For a balanced tree, the number of levels is L “©plog nq.
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Full data tree I: Binary tree
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Full data tree II: Ternary tree

0

00

000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A
A
A
A

001

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

002

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
�
�
�

Q
Q

Q
Q

Q
QQ

01

010

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A
A
A
A

011

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

012

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
�
�
�

02

020

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A
A
A
A

021

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

022

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
�
�
�

�
�
�
�
�
��

Ternary Full Tree

Jianzhong Wang Wavelets on Data Trees



Tight balance tree

0

00

000

0000

B
B

0001

�
�

H
HH

HH
001

0010

B
B

0011

�
�

J
J

002

0020

B
B

0021

�
�






003

0030

B
B

0031

�
�

�
��

��

H
HH

H
HH

HH 01

010

0100

B
B

0101

�
�

H
HH

HH
011

0110

B
B

0111

�
�

J
J

012

0120

B
B

0121

�
�






013

0130

B
B

0131

�
�

�
��

��

�
��

�
��

��

Tight Balanced Tree

Jianzhong Wang Wavelets on Data Trees



Distance between folders

Let A “ ta1, a2, ¨ ¨ ¨ , aku and B “ tb1, b2, ¨ ¨ ¨ , bmu be two folders
at pL´ 1q level.

Define the k ˆm distance matrix DpA,Bq “ rdG pai , bjqs.

The average distance dapA,Bq “ }DpA,Bq}F .

The shortest distance dspA,Bq “ min dG pai , bjq.

The longest distance dlpA,Bq “ max dG pai , ajq.
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Folder sorting via optimization

Let A “ ta1, a2, ¨ ¨ ¨ , aku and d a distance on A. Let π be an index
permutation of r1, ¨ ¨ ¨ , ks. We call aπ “ raπp1q, aπp2q, ¨ ¨ ¨ , aπpkqs a

stack of A headed by aπp1q, and call `paπq “
řk´1

j“1 dpaπpjq, aπpj`1qq
the path length of aπ. We denote the set of permutations (with
the head l) by

Pl “ tπ; πp1q “ lu.

Definition

A shortest-path sorting of A headed by al is a stack aπ that has
the shortest path length among all pathes starting from al :

aπ “ arg min
πPPl

`paπq.
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Greedy algorithm for folder sorting [Ram, Elad, Cohen, 2013]

Denote by A the folder set at a level. Let p be a probability
function on A and Ω the sorted index set initialized to Ω “ H.

1 Set πp1q “ l and update Ω “ tlu.

2 After i steps, assume now Ω “ tπp1q, ¨ ¨ ¨ , πpiqu. To find
πpi ` 1q, from unsorted elements, pick up two nearest ones y1
and y2 of aπpiq and compute

qi “
1

1` exp
´

dpai ,y1q´dpai ,y2q
α

¯ ,

where α ą 0 is the sorting parameter. If qi ă pπpiq, we select
aπpi`1q “ y2. Otherwise, select aπpi`1q “ y1.

3 Update Ω, and repeat the step above. The algorithm is
terminated when |Ω| “ k.

4 aπ is an approximative shortest path sorting of A headed by al .
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Algorithm for building data tree

1 Input: A weighted graph G “ rX ,W s on the data set X .

2 Construct the matrix P “ D´1W and use a fast
eigen-decomposition algorithm to find the largest k Left
eigenvectors. To make sure that the gap between λk and
λk`1 is large.

3 Use a partition algorithm, e.g., k-mean, to make a partition of
X “ tx1, ¨ ¨ ¨ , xnu.

4 On each subset Xj , repeat the processing above to partition it
again up to L levels.

5 Smoothly order the folders at each level.
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Data tree of a brain image

Figure: Data tree of a brain image.
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Outline

Section 3. Construction of hierarchical data tree via
data graph
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MRA on H via a hierarchical data tree

Definition

Let H0 “ Hp“ L2pX , dµqq and
H` “ tf P H; f pxq “ cj , x P X

`
j P S`u. The hierarchical tree T pX q

derives the following MRA on H:

H0 Ą H1 ¨ ¨ ¨ Ą HL

where dimpH`q “ n`p“ |S`|q.

Let W`
À

H` “ H`´1 and W`KH`.
Then W` is a wavelet subspace of H.

We have dimpW`q “ m` “ |S`´1| ´ |S`|, and

H “ HL

à

WL

à

¨ ¨ ¨
à

W1.
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The relation between o.n. bases of L2pX , dµq and of L2pX , dxq

1 In L2pX , dxq, xa, by “
ř

j ajbj .

In L2pX , dµq, xa, bym “
ř

j ajbjmj “ xa, bmy.

2 Let tηju
n
j“1 be an o.n. basis of L2pX , dxq. Then, setting

η̃j “ ηj{
?
m, tη̃ju

n
j“1 is an o.n. basis of L2pX , dµq.

3 We may use o.n wavelet basis of L2pX , dxq to perform the
o.n. wavelet decomposition and recovering for f P L2pX , dµq
by using the following formula:

xfm, ηjy “ xf , η̃jym.

Jianzhong Wang Wavelets on Data Trees



The relation between o.n. bases of L2pX , dµq and of L2pX , dxq

1 In L2pX , dxq, xa, by “
ř

j ajbj .

In L2pX , dµq, xa, bym “
ř

j ajbjmj “ xa, bmy.

2 Let tηju
n
j“1 be an o.n. basis of L2pX , dxq. Then, setting

η̃j “ ηj{
?
m, tη̃ju

n
j“1 is an o.n. basis of L2pX , dµq.

3 We may use o.n wavelet basis of L2pX , dxq to perform the
o.n. wavelet decomposition and recovering for f P L2pX , dµq
by using the following formula:

xfm, ηjy “ xf , η̃jym.

Jianzhong Wang Wavelets on Data Trees



The relation between o.n. bases of L2pX , dµq and of L2pX , dxq

1 In L2pX , dxq, xa, by “
ř

j ajbj .

In L2pX , dµq, xa, bym “
ř

j ajbjmj “ xa, bmy.

2 Let tηju
n
j“1 be an o.n. basis of L2pX , dxq. Then, setting

η̃j “ ηj{
?
m, tη̃ju

n
j“1 is an o.n. basis of L2pX , dµq.

3 We may use o.n wavelet basis of L2pX , dxq to perform the
o.n. wavelet decomposition and recovering for f P L2pX , dµq
by using the following formula:

xfm, ηjy “ xf , η̃jym.

Jianzhong Wang Wavelets on Data Trees



Hierarchical structure of wavelet basis on H “ L2pX , dxq

The scaling functions and wavelet functions in H “ L2pX , dxq have
the following properties:

Properties of scaling function and wavelets

At the leaf level, the set of delta functions tδxuxPX is an o.n.
basis of H. Each f P H has the decomposition f “

ř

j f
0
j δxj ,

where f 0j “ f pxjq.

At Level `, assume S` “ tX `
j u

n`
j“1. Let

φ`j pxq “

$

&

%

1
b

|X `
j |
, x P X `

j ,

0, x R X `
j .

Then tφ`j u
n`
j“1 is an o.n. basis of H`.

There is a wavelet basis tψ`j u
m`
j“1 of W` such that each ψ`j is

locally supported and has at least one vanishing moment, i.e.,
there is 1 ď s ď m`, s.t. supppψ`j q Ă X `

s , and xψ`j , 1y “ 0.
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The o.n. wavelet basis within a tree-folder

By the properties of wavelets, we may construct the wavelet basis
on H folder-by-folder. We denote by Y a folder at 1-level having k
leaves: Y “ tyju

k
j“1. Let φ0j “ δyj . Then tφ0j u

k
j“1 is an o.n. basis

of L2pY , dyq. The spatial representation of f P L2pY , dyq is
f “

řk
j“1 fjφ

0
j . We denote by f the vector rf1, ¨ ¨ ¨ , fk s

T too.

Definition

An o.n. wavelet basis on L2pY , dyq is a k ˆ k o.g. matrix:
M “ rφ, ψ1, ¨ ¨ ¨ , ψk´1s, where the first column φ is a scaling
function and others are wavelets. The wavelet transform of a
function f P L2pY , dyq is given by d “ MT f and the inverse
wavelet transform given by in f “ Md .

By MRA on L2pY q, we may construct the o.n. wavelet basis of
L2pY q using a pyramid algorithm.
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An o.n. wavelet basis on L2pY , dyq is a k ˆ k o.g. matrix:
M “ rφ, ψ1, ¨ ¨ ¨ , ψk´1s, where the first column φ is a scaling
function and others are wavelets. The wavelet transform of a
function f P L2pY , dyq is given by d “ MT f and the inverse
wavelet transform given by in f “ Md .

By MRA on L2pY q, we may construct the o.n. wavelet basis of
L2pY q using a pyramid algorithm.
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First-layer Haar o.n. wavelet basis in a folder

Let the first layer Haar o.n. wavelet basis be represented as a
k ˆ k matrix M1 “ rL1,H1s, where L1 “ rφ

1
1, ¨ ¨ ¨ , φ

1
rk{2ss contains

scaling functions and H “ rψ1
1, ¨ ¨ ¨ , ψ

1
rk`1s{2s contains wavelets.

Construction I: From 2 leaf scaling functions

rφ1i , ψ
1
i s “ rφ

0
2i´1, φ

0
2i s

«

1?
2

1?
2

1?
2
´ 1?

2

ff

When k “ 2s ´ 1, we also need the following:

Construction II: From 3 leaf scaling functions

rφ1s´1, ψ
1
s´1, ψ

1
s s “ rφ

0
m´2, φ

0
m´1, φms

»

—

–

1?
3

1?
2

1?
6

1?
3

0 ´ 2?
6

1?
3
´ 1?

2
1?
6

fi

ffi

fl

.
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Multi-layer Haar o.n. wavelet basis in a folder

We now construct pj ` 1q-level scaling functions and wavelets from
j-level scaling functions Φj “ rφ

j
1, ¨ ¨ ¨ , φ

j
ms. Write si “ | supppφji q|.

rφj`1i , ψj`1
i s “ rφj2i´1, φ

j
2i sW

2
j

W 2
j “

1?
s2i´1`si`2i

„?
s2i´1

?
s2i

?
s2i ´

?
s2i´1



Wavelet transform: c j`1 “ pW 2
j q

T c j , c j “W 2
j c

j`1.

When m “ 2s ´ 1, set hm “ sm´2 ` sm´1 ` sm.

rφj`1s´1, ψ
j`1
s´1, ψ

j`1
s s “ rφjm´2, φ

j
m´1, φ

j
msW 3

j

W 3
j “

»

—

—

—

–

b

sm´2

hm

b

sm
sm´2`sm

b

sm´1sm´2

hmpsm´2`smq
b

sm´1

hm
0 ´

b

sm´2`sm
hm

b

sm
hm

´

b

sm´2

sm´2`sm

b

sm´1sm
hmpsm´2`smq

fi

ffi

ffi

ffi

fl

.

Wavelet transform: c j`1 “ pW 3
j q

T c j , c j “W 3
j c

j`1.
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Wavelet transform: c j`1 “ pW 3
j q

T c j , c j “W 3
j c

j`1.
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Haar wavelet transform algorithm on the whole tree

The construction of wavelets above can be applied to the whole
tree. Assume that the Haar wavelet basis has been built up to
Level `, where S` “ tX

`
1 , ¨ ¨ ¨ ,X

`
n`
u. Therefore, in this basis, there

are n` scaling functions: φ
p`q
j “ 1

b

|X `
j |
χX `

j
, 1 ď j ď n`. Let a

wavelet on X `
k is denoted by ψ

p`,kq
j . (If it is at i-th layer and the

layer level need to stress, then it is denoted by ψ
p`,kq
i ,j .)

Let X ``1
1 “

Ťk
j“1 X

`
j ,X

``1
1 P S``1. We construct the p`` 1q-layer

wavelets on X ``1
1 recursively.

Initialize 0-layer wavelets as φ
p``1,1q
0,j “ φ

p`q
j , 1 ď j ď k .

When k is even, then apply

rφ
p``1,1q
t`1,i , ψ

p``1,1q
t`1,i s “ rφ

p``1,1q
t,2i´1 , φ

p``1,1q
t,2i sW 2

j

When k “ 2s ´ 1, we apply following for the last block:

rφ
p``1,1q
t`1,s´1, ψ

p``1,1q
t`1,s´1, ψ

p``1,1q
t`1,s s “ rφ

p``1,1q
t,k´2 , φ

p``1,1q
t,k´1 , φ

p``1,1q
t,k sW 3

j
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Construction of tight wavelet frames on data w.r.t to data tree

Using the similar way, we also can construct a tight frame on the
data tree T pX q.

Motivation

Tight frames have excellent localization.

The redundance in the frames are very useful in data analysis
and processing.

Rich algorithms and methods for constructions of tight frames
with boundaries are available in literature. Ref. [Chan,
Riemenschneider, Shen, and Shen, 1998; Cai, Chan, Shen, and
Shen, 1998; Daubechies, Han, Ron and Shen, 2003; Shen,
2010; ...].

The steps for constructing tight frame on a data tree

Construction of tight frame within a folder.

Construction of tight frame on the whole tree.
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Tight frames on a folder (I)

To construct the wavelet tight frame within a folder, we employ
the tight framelets on a space of finite sequence rx1, ¨ ¨ ¨ , xN s with
a certain boundary condition, say, symmetric one. [see Chan,
Riemenschneider, Shen,and Shen, 2005]

When L “ 3, choose h0 “ r1{4, 1{2, 1{4s, h1 “
r´1{4, 1{2,´1{4s, h2 “ r´

?
2{4, 0,

?
2{4s as the masks of

the generators for the tight frame rφ, ψ1, ψ2s.

When L “ 4, choose h0 “
1
8 r1, 2, 2, 2, 1s, h1 “

1
8 r1, 0, 0, 0,´1s, h2 “

?
2
8 cos

`

π
8

˘

r1,
?

2, 0,´
?

2,´1s, h3 “
?
2
8 rcos

`

π
8

˘

,´
?

2 sin
`

π
8

˘

,´2 sin
`

π
8

˘

,´
?

2 sin
`

π
8

˘

, cos
`

π
8

˘

s h4 “
1
8 r1, 0,´2, 0, 1s, h5 “

1
8 r1,´2, 0, 2,´1s, h6 “

?
2
8 sin

`

π
8

˘

r1,´
?

2, 0,
?

2,´1s, h7 “
?
2
8 rsin

`

π
8

˘

,´
?

2 cos
`

π
8

˘

,´2 cos
`

π
8

˘

,´
?

2 cos
`

π
8

˘

, sin
`

π
8

˘

s

The boundary elements need to add.
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Tight frames on a folder (I)
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`
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`

π
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π
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`
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`
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π
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π
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s

The boundary elements need to add.
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Tight frames on a folder (I)
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Tight frames within a folder (II)

At a level `, Assume the the coefficient sequence of scaling
functions is c “ rc1, ¨ ¨ ¨ , cN s,N ě 5. When N is odd, we
choose the framelets with L “ 3 and when it is even, we
choose them with L “ 4.

If 1 ă N ă 5, then we use the Haar do construct the wavelet
and scaling function.

The result tight frame within the folder contains only one
scaling function.
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Hierarchical measures on a data tree

To decompose the data in a tree by tight frame, we introduce the
following:

Definition

Let T pX q be a data tree on the space pX , dµ0q, where
dµ0 “ mp0qdx and mp0q is a measure function. Assume also T pX q
has L levels: SL C SL´1 C ¨ ¨ ¨C S1 C S0. Then the measure
function mp`q on pS`, dµ`q is defined as

mp`qpX `
k q “

ÿ

X `´1
j ĂX `

k

m`´1pX `´1
j q,

and the set tmp0q, ¨ ¨ ¨ ,mpLqu is called a hierarchical measures on
the tree T pX q.
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An example of hierarchical measures

Example

Let mp0q be the uniform measure such that mp0qpxq “ 1, x P X .
Then mp`qpX `

j q “ |X
`
j |. It can be normalized to pmf by setting

pp`qpX `
j q “

|X `
j |

|X | .
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Tight wavelet frame on the whole tree

1 Within each folder, construct the tight frame as described
above.

2 For cross-level folders, we make the tight frame w.r.t. the
measure m. Let tηju

n
j“1 be an tight frame of L2pX , dxq. Write

η̃j “ ηj{
?
m. Then tη̃ju

n
j“1 is an tight of L2pX , dµq.

3 To compute the coefficients of the tight frame on L2pX , dµq,
we use the formula:

xfm, ηjy “ xf , η̃jym.
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Outline

Section 4. Wavelet representations of functions on
data set
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Why do we need wavelet representation?

1 It works on a wide-range of data sets and avoids to treat the
high-dimensional data directly. (No curse of dimensionality).

2 It needn’t the spatial operators that work only on the data
sets in RD .

3 It provides sparse representations of the functions such as
compactly supported functions, piecewise constant functions,
zero-moment functions, and so on.

4 The optimization models based on wavelets usually have
simple structure and lead to a fast algorithm.
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Compute the wavelet coefficients via pyramid algorithm

Let the data tree on X be given:

X “ X L
1 Ą tX

L´1
1 , ¨ ¨ ¨ ,X L´1

n1 u Ą ¨ ¨ ¨ Ą tX 0
1 , ¨ ¨ ¨ ,X

0
n u,

where X 0
j “ txju. Assume that the wavelet o.n. basis or the tight

wavelet frame is constructed. Let f P L2pX q. We may apply the
classical Mallat’s pyramid algorithm to compute the wavelet
coefficients of f .

As the initial, we set c “ rc1, ¨ ¨ ¨ , cns “ rf px1q, ¨ ¨ ¨ , f pxnqs.
Then f “

řn
j“1 cjφ

0
j pxq, where φ0j pxi q “ δi ,j

At Level 1, assume that X 1
1 “ tx1, ¨ ¨ ¨ , xmu and the Haar o.n.

basis is employed. Denote by c1 “ rc1, ¨ ¨ ¨ , cms. Then
c1,1 “ pÓ 2qc1 ˚ h0, d1,1 “ pÓ 2qc1 ˚ h1 and
c1,2 “ pÓ 2qc1,1 ˚ h0, d1,2 “ pÓ 2qc1,1 ˚ h1
The decompositions are repeated, say K1 times, until c1,K1 is
reduced to a single value.

Repeat the steps above for rc1,K1 , ¨ ¨ ¨ , cnL´1,KnL´1
s and so on.
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Remark

The similar algorithm is available for tight wavelet frame too.

The reconstruction of f from its wavelet coefficients is also
similar to the classical pyramid algorithm.

In the wavelet representation f “ cLφ
L `

ř

d`,k,jψ`,k,j , c0 is
the average of f : c0 “

1?
n

řn
j“1 f pxjq. We denote by Wf for

the vector of wavelet coefficients of f (excluding cL).
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Smoothness of function on data tree

Ref. [M. Gavish, B. Nadler, R.R. Coifman, 2010]

Definition

For each subset S Ă X , define ρpSq “ |S |{|X |. For x, y P X ,
denote by Spx, yq the smallest folder in the tree T pX q that contains
both x and y. Then the tree distance of x and y is defined as

dT px, yq “

#

ρpSpx, yqq, x ‰ y,

0 x “ y.

For 0 ă α ă 1, a function f P L2pX q is called α-Hölder continuous
w.r.t. T (denoted by f P HαpT q if

|f pxq ´ f pyq| ď CdαT px, yq, @x, y, P X .
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Exponential decay of wavelet coefficients

Theorem

Assume f P HαpT q and ψ
p`,kq
j is the wavelet at `-level with

supppψ
p`,kq
j q Ă X `

k . Then

xf , ψ
p`,kq
j y ď CρpX `

k q
α`1{2.

On the other hand, if the inequality above holds for all wavelets

ψ
p`,kq
j , then f P HαpT q.

Corollary

Let T pX q be a balanced tree with the upper bound B. Assume

f P HαpT q and ψ
p`,kq
j is the wavelet at `-level with

supppψ
p`,kq
j q Ă X `

k . Then

xf , ψ
p`,kq
j y ď CB

pα`1{2qp`´1q
.
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Application to data classification: Semi-supervised learning

Let f be a binary classification function: X Ñ t´1, 1u, which is
known on the labeled set S Ă X : f pxq “ y . Then the classifier
can be computed as the minimum of the following:

f “ arg min
f PHpT q

ÿ

xPS

}f pxq ´ y}2 ` λ}Wf }1.

We denote by M be the matrix representing the wavelet transform
on X , by MT the inverse wavelet transform matrix. Let
S “ rxj1 , ¨ ¨ ¨ , xjs s and Ps “ r~ej1 ; ¨ ¨ ¨ ; ~ejs s be the landmark
extraction. Then the minimization problem above becomes the
following:

Wf “ arg min
Wf

pPsM
TWf ´ yqT pPsM

TWf ´ yq ` λ}Wf }1,

which leads to a wavelet threshold algorithm [see Chui and Wang,
2007]
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Application to data function denoising

Let gpxq “ f pxq ` npxq, where npxq is a noise on X . Then a simple
denoising algorithm is given by

f “ arg min
f PHpT q

ÿ

xPX

}Wf ´Wg }
2 ` λ}Wf }1.

Jianzhong Wang Wavelets on Data Trees



Handwritten digits

A set of test digits is given randomly. Only a small number of the
test digits are labeled.
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Experiment 1: MNIST

We select 1000 handwritten digits at random from MNIST,
where 200 samples are for each of the digits 8, 3, 4, 5, 7.
Digits 8 were in a class, and others are in another class.

We test the algorithm for the labeled set size
|S | “ 10, 20, ¨ ¨ ¨ , 100, that is, the label rates are from 1% to
10%.

We compare our method with three others: Laplacian
Eigenvalues, Laplacian Regression, and Adaptive
Threshold. They do not employ graph tree structure, but are
based on manifold learning.
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Experiment on 1000 samples of MNIST

Figure: Result Comparison on MNIST.
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Experiment 2: USPS

We select 1500 handwritten digits at random from USPS,
where 150 samples are for each of the digits from 0 to 9.
Digits 2 and 5 were in a class, and others are in another class.

We test the algorithm for the labeled set size
|S | “ 10, 20, ¨ ¨ ¨ , 100, that is, the label rates are from about
0.67% to 6.67%.

We again compare our method with three others: Laplacian
Eigenvalues, Laplacian Regression, and Adaptive
Threshold.
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Experiment on 1500 samples of USPS

Figure: Result Comparison on USPS.
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Experiment on USPS 1500 samples: Error rates (%) of different
methods.

Method |X0| “ 10 |X0| “ 100

1-NN 19.82 7.64
SVM 20.03 9.75

MVU + 1-NN 14.88 6.09
LEM + 1-NN 19.14 6.09
QC + CMN 13.61 6.36

Discrete Reg. 16.07 4.68
TSVM 25.20 9.77
SGT 25.36 6.80

Cluster-Kernel 19.41 9.68
Data-Dep. Reg. 17.96 5.10

LDS 17.57 4.96
Laplacian RLS 18.99 4.68

CHM (Normalized) 20.53 7.65
Graph-tree Wavelets 8.21 3.47
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Last slide

THANK YOU !
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