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Outline of the talk 

• Non-stationary Image blurring

– Motion blurring

– Out-of-focus blurring 

• Brief Introduction to blind deconvolution (stationary 
image blurring) 

• A two-stage approach for recovering images with non-
stationary motion blurring

• A fast method for estimating de-focus map of images with 
non-stationary out-of-focus blurring



Image blurring

• Degradation of sharpness and contrast of the image, 
causing loss of image details (high frequency information)
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Motion blurring

• Blurring caused by the relative motion between camera or 
object during shutter time

– Larger motion; more blurring
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• Blurring caused by  objects away from  focal plane

– More away from focal plane; more blurring

Out-of-focus (defocus) blurring
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Motion blur : motion path on image plane

• Pinhole camera 

• 2D Motion field in image

– Spatially invariant motion blur == constant motion field

• Scene depth Z is close to constant

• Camera motion:

3D rigid camera motion:
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Motion blurring: Stationary VS Non-stationary

Slanted scene depth

In-plane camera translation

Dynamic scene with moving object

Constant scene depth

In-plane camera translation

Rotational camera motion



De-focus blurring: usually nonstationary

• Image usually contains several depth layer

• Different layer has different blurring 

De-focus blurring amount  ≈ Ordinal scene depth



Convolution model for stationary image blurring
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Regularization for blind image deconvolution

• Infinite number of solutions: how to avoid the trivial 
solution: 

• ℓ1-norm relating regularization (either TV or wavelet)
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Demonstration

Real blurred image Our  result
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Non-stationary image blurring

Motion blurring Out-of-focus blurring



Stationary  VS Non-stationary  (in 1D case)

• Matrix form of Convolution: 

– Stationary: all rows of 𝐾 are same, up to a shift

– Nonstationary: each row of K might be different

• Motion blurring

– Each row is of free-form, but with compact support 

• Out-of-focus blurring

– Each row is a Gaussian, but with different standard deviation 
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A piece-wise stationary model based framework [2]

[2] H. Ji and K. Wang, A two-stage approach to remove spatially-varying 
motion blur from a single photograph, CVPR’12

Input blurred image

Estimate one kernel
for each region

Identify and remove
erroneous kernels

PCA-based Interp. for 
blurring matrix 

Non-blind Image 
deblurring robust to 
matrix error

The output 

Piece-wise uniform 
motion-blur approx.

Interp. for blurring
matrix & deblurring



Sensitivity of deconvolution to blur kernel error

Clear image Image blurred by horizontal constant
kernel of size 10 pixels



Sensitivity of deconvolution to blur kernel error

Clear image Image blurred by horizontal constant
kernel of size 10 pixels

Image de-blurred by ℓ1-norm based 
regularization, and an erroneous kernel 
(horizontal constant of size 12 pixels 



Robust non-blind image deconvolution [3]

• An EIV (Error-In-Variable) model for de-convolution

• Problem : given f and    , estimate g

[3] H. Ji and K. Wang, Robust image de-convolution with an inaccurate blur 
kernel. IEEE Trans. Image Proc.. 2012
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Robust non-blind image deconvolution [3]

• An EIV (Error-In-Variable) model for de-convolution

• Problem : given f and    , estimate g

• Reformulation:

Two unknowns:

[3] H. Ji and K. Wang, Robust image de-convolution with an inaccurate blur 
kernel. IEEE Trans. Image Proc.. 2012
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Two sparsity-relating regularization

• Sparsity of                        in pixel space q = d p*g

g p*g p*g d p*g



Two sparsity-relating regularization

• Sparsity of                        in pixel space 

• Second:  Artifacts in solution caused by kernel error  is sparse 

in DCT domain

q = d p*g

g p*g p*g d p*g

Result using 
Erroneous kernel

The resulting 
error along edges



Convex minimization model

• Model for robust image deconvolution

– W: framelet transform, D: DCT transform
Clear image Artifacts System error



Demo.

Our nonstationary method

Blurry image

Gupta et al. ECCV’10
(nonstationary

Stationary blind deconvolution
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Our nonstationary method
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Stationary blind deconvolution



Demo.

Our nonstationary method

Blurry image

Whyte et al. CVPR’10 (non-
stationary)

Stationary blind deconvolution



Out-of-focus (defocus) blurring
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Defocus amount estimation from a single image [4]

[4] G. Xu, Y. Quan and H. Ji, Defocus amount estimation via maximum rank of 
patches, 2017

Darker color  = less defocus amount =  less blurring = closer distance



• Defocus amount ≈ ordinal scene depth

– foreground/background segmentation

– Image matting; image refocusing

Defocus amount estimation from a single image [4]

[4] G. Xu, Y. Quan and H. Ji, Defocus amount estimation via maximum rank of 
patches, 2017

Darker color  = less defocus amount =  less blurring = closer distance



Rank of patches and Separable blur kernel

0

Consider three matrices U,I,G associated by 2D 

convolution: I=U . Suppose U is positive (negative) definite 

ˆ ˆand Then, Rank(I)=|
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Proposition

• Constructing positive (negative) patches at edges points

– Sampling K image patches with different orientations.

– One of these different oriented patches is positive definite.



Rank of patches and Separable blur kernel

0

Consider three matrices U,I,G associated by 2D 

convolution: I=U . Suppose U is positive (negative) definite 
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Proposition

• Constructing positive (negative) patches at edges points

– Sampling K image patches with different orientations.

– One of these different oriented patches is positive definite.

• Defocus amount and maximum rank of oriented patches
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Completion of defocus map

Input image Defocus estimation at edge points



• Defocus map completion by matting Laplacian method
– Keep the values in complete map are close to the ones given 

at edge points
– Keeping the discontinuities of defocus map consistent with 

image edges.

Completion of defocus map

Input image Defocus estimation at edge points



Demonstration

Input image defocus map at edges



Demonstration

Input image defocus map at edges

Complete defocus map



Demonstration

Input image defocus map at edges

Complete defocus map Foreground segmentation



More

Input image Bae et al. Tang et al. ours



Evaluation on fore/background segmentation 

• Test defocus dataset from CUHK: 704 images

– Manually segmented in-focus foreground and out-of-focus 
background

Precision and recall curves of foreground/background segmentation 
using the defocus maps generated by different methods



Occlusion-aware image composition

Source image 

Target 



Occlusion-aware image composition

Source image 

Target 

Image composition 1 



Occlusion-aware image composition

Source image 

Target Image composition 2 

Image composition 1 
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