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Outline of the talk

* Non-stationary Image blurring
— Motion blurring
— Out-of-focus blurring

e Brief Introduction to blind deconvolution (stationary
image blurring)

* A two-stage approach for recovering images with non-
stationary motion blurring

e A fast method for estimating de-focus map of images with
non-stationary out-of-focus blurring
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Image blurring

R

* Degradation of sharpness and contrast of the image,
causing loss of image details (high frequency information)
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Image blurring

* Degradation of sharpness and contrast of the image,
causing loss of image details (high frequency information)

Motion blurring Out-of-focus blurring
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Motion blurring

* Blurring caused by the relative motion between camera or
object during shutter time

— Larger motion; more blurring

ObjeW
t

image sensor

lens Motion blurring

- /
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Out-of-focus (defocus) blurring

e Blurring caused by objects away from focal plane

— More away from focal plane; more blurring

Defocus  Focal plane Lens Image sensor
plane

o

e
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Motion blur : motion path on image plane

* Pinhole camera 3D rigid camera motion:
(X)) (X ) ()
X £l o t, W,
Yy N t=t, |, o=|o,
1 £ t
\‘z / \?; )

e 2D Motion field in image

(1) (X(t)j f(-t+t,x) [(xy@, —(x* +Da, +ya,
r — = — —+
yit)) Z{-t,+Ly (Y’ +Dw, — Xyw, — X,
— Spatially invariant motion blur == constant motion field

e Scene depth Z is close to constant
e Camera motion: T =(t,,t,,0);w =0

NG
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Motion blurring: Stationary VS Non-stationary

Constant scene depth Slanted scene depth
In-plane camera translation In-plane camera translation

\ Rotational camera motion Dynamic scene with moving object /
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De-focus blurring: usually nonstationary

* Image usually contains several depth layer
* Different layer has different blurring

De-focus blurring amount = Ordinal scene depth
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Convolution model for stationary image blurring

. Convolution
" (non-invertible)

g ® P= Zm,n g[kr kz] p[m— k1’ n-— kz]

f=0® P+ 7

Blurred  Sharp Kernel  Noise
image  image (PSF)
known unknown unknown unknown

- /

Blind deblurring:
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Regularization for blind image deconvolution

f=g®p+7y
* Infinite number of solutions: how to avoid the trivial
solution: f=f®0O

* £,-norm relating regularization (either TV or wavelet)

min 271 f—g*p II; +AWV Q)+ A, (p) st. ped

w1(9) =lIWg ||
w, () =lWhil, + | b}

®={p:» p[il=1 p[i]>0}

jed

I\

[1] ). Cai, H. Ji, C. Liu and Z. Shen, Blind motion deblurring from a single image
ksing sparse approximation, CVPR’09
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Regularization for blind image deconvolution

f=g®p+7y
* Infinite number of solutions: how to avoid the trivial
solution: f=f®0O

* £,-norm relating regularization (either TV or wavelet)

min 271 f—g*p II; +AWV Q)+ A, (p) st. ped

w,(9) =llWg |;
w,(h) =[|Wh|, +z || h]];

®©={p:) plil=1 p[j]>0}

jeld

2
Remark: ||h||2 is for avoiding

convergence to 5, das

n[4,....1]=argmin| h|, st.he®

N

[1] ). Cai, H. Ji, C. Liu and Z. Shen, Blind motion deblurring from a single image
wsing sparse approximation, CVPR’09 /




Demonstration

Our result

Real blurred image
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Demonstration

Real blurred image Our result
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Non-stationary image blurring

Motion blurring Out-of-focus blurring
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Stationary VS Non-stationary (in 1D case)

e Matrix form of Convolution:
f = Kg+n, K e R™"

— Stationary: all rows of K are same, up to a shift
— Nonstationary: each row of K might be different

* Motion blurring

— Each row is of free-form, but with compact support

* Qut-of-focus blurring
— Each row is a Gaussian, but with different standard deviation
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A piece-wise stationary model based framework [2]

Input blurred image

[
: Piece-wise uniform [ Estimate one kernel I | Identify and remove ]
|
[
[

motion-blur approx. for each region erroneous kernels

Interp. for blurring [PCA—based Interp. forJ Non-blind Image

|

. |

matrix & deblurring | pyrring matrix —> deblurring robustto !
matrix error I

The output

[2] H. Ji and K. Wang, A two-stage approach to remove spatially-varying
kmotion blur from a single photograph, CVPR’12 j
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Sensitivity of deconvolution to blur kernel error

— —

Image blurred by horizontal constant
kernel of size 10 pixels
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Sensitivity of deconvolution to blur kernel error

—

Image blurred by horizontal constant
kernel of size 10 pixels

Image de-blurred by £;-norm based
regularization, and an erroneous kernel
(horizontal constant of size 12 pixels

/
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Robust non-blind image deconvolution [3]

 An EIV (Error-In-Variable) model for de-convolution
f=p®g+n=(p-0,)®g+n

6, . kernel error; n:image noise

 Problem : given fand P, estimate g

[3] H. Ji and K. Wang, Robust image de-convolution with an inaccurate blur
k kernel. IEEE Trans. Image Proc.. 2012
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Robust non-blind image deconvolution [3]

 An EIV (Error-In-Variable) model for de-convolution
f=p®g+n=(p-0,)®g+n

6, . kernel error; n:image noise

 Problem : given fand P, estimate g
* Reformulation:

f=(p-0,)"g+n=p*g-q+n
g : clear image

Two unknowns: : .
{ q=0p®Qg: image distortion by kernel error

[3] H. Ji and K. Wang, Robust image de-convolution with an inaccurate blur
k kernel. IEEE Trans. Image Proc.. 2012 /
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Two sparsity-relating regularization

* Sparsity of g =dp™ g in pixel space
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Two sparsity-relating regularization

* Sparsity of g =dp™ g in pixel space

g - p*g p *g dp*g

 Second: Artifacts in solution caused by kernel error is sparse
in DCT domain
Result using The resulting

Erroneous kernel error along edges
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Convex minimization model

B T %
g =W ¢,

(I)(c,h,u)=%|| Fe

* Model for robust image deconvolution

\[c*,h*,u*] =argmin_,  ®(c,h,u)+ 2, lell, +A4, 1Rl +A, lull,

p

Clear image  Artifacts

1
p*W e+ D uw)+nl + 1T=WW)ell?

N

System error

— W: framelet transform, D: DCT transform




Demo.

Gupta et al. ECCV’'10 Our nonstationary method
(nonstationary
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Blurry image

Gupta et al. ECCV'10 (non-
stationary)

Our nonstationary method
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Blurry image

Whyte et al. CVPR’10 (non-
stationary)

Stationary blind deconvolution

Our nonstationary method
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Blurry image

Whyte et al. CVPR’10 (non-
stationary)

Stationary blind deconvolution

Our nonstationary method

/
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Out-of-focus (defocus) blurring

Defocus  Focal plane Lens Image sensor
plane

d
for each pixel r;, blur kernel
Circle of ld—d;| {7 . 17 =7 Il
. = )= exp(—
Confusion °© d n(d, —f) p(f) 275" p( o (F.) )
(defocus amount) c(r;) ~ o(rp) (Gaussians.t.d.)

- /
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Defocus amount estimation from a single image [4]

R

Darker color = less defocus amount = less blurring = closer distance

[4] G. Xu, Y. Quan and H. Ji, Defocus amount estimation via maximum rank of
\ patches, 2017

/
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Defocus amount estimation from a single image [4]

R

Darker color = less defocus amount = less blurring = closer distance

* Defocus amount = ordinal scene depth

— foreground/background segmentation
— Image matting; image refocusing

[4] G. Xu, Y. Quan and H. Ji, Defocus amount estimation via maximum rank of
\ patches, 2017

/
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Rank of patches and Separable blur kernel

Proposition Consider three matrices U,1,G associated by 2D

convolution: I=U ® G. Suppose U is positive (negative) definite
and G = gg ' .Then, Rank(l)=||§||,, where § is DFT of g.

e Constructing positive (negative) patches at edges points

— Sampling K image patches with different orientations.

] kS

— One of these different oriented patches is positive definite.
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Rank of patches and Separable blur kernel

R

Proposition Consider three matrices U,1,G associated by 2D

convolution: I=U ® G. Suppose U is positive (negative) definite
and G = gg ' .Then, Rank(l)=||§||,, where § is DFT of g.

e Constructing positive (negative) patches at edges points

— Sampling K image patches with different orientations.

T

— One of these different oriented patches is positive definite.

* Defocus amount and maximum rank of oriented patches
aXOSkSK Rank(Pk))
n

Lor y~—ma-I
C O

\_




.

Completion of defocus map

Input image

Defocus estimation at edge points




.

Completion of defocus map

Input image Defocus estimation at edge points

* Defocus map completion by matting Laplacian method
— Keep the values in complete map are close to the ones given
at edge points
— Keeping the discontinuities of defocus map consistent with
image edges.
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Demonstration

Input image

defocus map at edges
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Demonstration

NG

Input image

Complete defocus map

iy '

defocus map at edges
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Demonstration

\_

Input image

Complete defocus map

T AN,

Foreground segmentation

%
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Input image

Bae et al.
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Tang et al.

-

o




.

Evaluation on fore/background segmentation

e Test defocus dataset from CUHK: 704 images

— Manually segmented in-focus foreground and out-of-focus
background
1
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0 0.2 0.4 0.6 0.8 1

Precision and recall curves of foreground/background segmentation
using the defocus maps generated by different methods

-
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Occlusion-aware image composition

Source image

Target
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Occlusion-aware image composition

Source image

Target

Image composition 1
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Occlusion-aware image composition

Source image

Target

Image composition 2

/




.

List of co-authors

* Blind deconvolution for removing motion blur

— Jianfeng Cai, Chaogqgiang Liu and Zuowei Shen

* Non-stationery blind motion deblurring

— Wang Kang

* Non-stationary out-of-focus blurring estimation and

applications
— Xu Guodong and Yuhui Quan




Thank You




