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Bending Energy: Lipid Vesicles and Sphere Eversions

Geometric energies for surfaces

Symmetric quadratic function of principal curvatures

E :=

∫∫ (
a + bK + c(H − H0)2

)
dA

Gauß–Bonnet says
∫∫

K = const.
thus irrelevant for variational problems

If symmetric and fixed area

W :=
1

4π

∫∫
H2 dA

elastic bending energy for surfaces

Scale-invariant, even Möbius-invariant
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Bending Energy: Lipid Vesicles and Sphere Eversions

Lipid bilayer membranes

Lipid vesicles as models of cell membranes
Hydrophobic tails hidden by hydrophilic heads
Fluid surface of lipid (surfactant) molecules: free to shear

Images from NASA Ames and Vrije Univ. Amsterdam

Minimize W (or perhaps
∫∫

(H − H0)2 if sides differ)
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Bending Energy: Lipid Vesicles and Sphere Eversions

Physical constraints

Fixed volume enclosed

Fixed surface area

Fixed ∆A =
∫∫

H dA

John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13 5 / 39



Bending Energy: Lipid Vesicles and Sphere Eversions

Toroidal vesicles

Studied by Xavier Michalet (now UCLA)

Agree with W-minimizing simulations
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Bending Energy: Lipid Vesicles and Sphere Eversions

Higher-genus vesicles

Again studied by Michalet

Demonstrate Möbius invariance
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Bending Energy: Lipid Vesicles and Sphere Eversions

Lipid membranes as tubes

Work with Sahraoui Chaı̈eb (now KAUST)

Pearling by changing H0 or ∆A
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Bending Energy: Lipid Vesicles and Sphere Eversions

CMC trinoid pump

3-parameter family of 3-ended CMC surfaces
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Sphere Eversion

Minimax Sphere Eversion
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Sphere Eversion

Sphere eversion

Turn a sphere inside out

Mathematical rules
Not too hard (embedded)
Not too easy (hole or crease)

Possible [Smale 1959]
But no explicit eversion for many years
[Phillips 1966]

Must have quadruple point [BanMax 1981]
Simplest sequence of events [Morin 1992]

Usually work from half-way model
Suffices to simplify this to round sphere
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Sphere Eversion

Minimax eversion

Energy ≥ k for surface with k-tuple point

Spheres critical for W known [Bryant]
Lowest saddle at W = 4

Use this as halfway model for eversion [Kusner]
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Ropelength

Geometric Knot Theory

Geometric properties of knotted space curve
determined by knot type or implied by knottedness
(e.g. Fáry/Milnor: TC > 2πbr ≥ 4π)

Optimal shape for a given knot
usually by minimizing geometric energy
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Ropelength

Ropelength

Definition
Thickness of space curve = 2 reach

= diameter of largest embedded normal tube

Ropelength = length / thickness

Positive thickness implies C1,1

Definition
Gehring thickness = minimum distance between components

works with Milnor’s link homotopy

John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13 14 / 39



Ropelength

Ropelength

Inventiones 150 (2002) pp 257–286, arXiv:math.GT/0103224
with Jason Cantarella, Rob Kusner

Results
Minimizers exist for any link type

Some known from sharp lower bounds

Simple chain = connect sum of Hopf links
Middle components stadium curves: not C2
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Ropelength

Minimizers
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Ropelength

Lower bounds

Geom. & Topol. 10 (2006) pp 1–26,
arXiv:math.DG/0408026

with Elizabeth Denne and Yuanan Diao

Theorem
K knotted =⇒ ropelength ≥ 15.66 (within 5% for trefoil)

Proof uses essential alternating quadrisecants:
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Ropelength

Quadrisecant

Line intersecting a curve four times

Every knot has one (Pannwitz – 1933 Berlin)

Three order types

simple flipped alternating

Theorem (Denne thesis)
Every knot has an essential alternating quadrisecant

(Essential means no disk in R3 r K spans secant plus arc of K.)
John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13 18 / 39



Ropelength criticality

Criticality

Balance Criterion: tension vs. contact force
Characterizes ropelength-critical links by force balance

C1 2C

S

c1 c2
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Ropelength criticality

Criticality papers

Gehring case – no curvature bound
Geom. & Topol. 10 (2006) pp 2055–2115,
arXiv:math.DG/0402212

with Jason Cantarella, Joe Fu, Rob Kusner, Nancy Wrinkle

Ropelength case – with curvature bound
Geom. & Topol. 18 (2014) pp 1973–2043,
arXiv:1102.3234

with Cantarella, Fu, Kusner
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Ropelength criticality

Kuhn–Tucker

Minimization problem
Given f , gi : Rn → R, (i = 1, . . . ,m), minimize f (p) s.t. gi(p) ≥ 0.

Definition
p is a constrained critical point for minimizing f if for any tangent
vector v at p with

〈
∇f , v

〉
< 0 we have

〈
∇gi, v

〉
< 0 for some active gi.

p is balanced if ∇f = nonnegative combination of active ∇gi.

Theorem (Modified Kuhn–Tucker)
p is constrained-critical ⇐⇒ balanced.

Only involves derivatives of f and gi at p (linear functions).
Linear algebra ∼ Farkas alternative
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Ropelength criticality

Infinite dimensions

Strategy: combine Clark’s theorem on derivatives of min-functions
with our version of K–T that applies to:
X vector space (of variations), Y compact space (of active constraints),
C(Y) = {continuous functions}, C∗(Y) = {Radon measures}.

Theorem (CFKSW’06)
For any linear f : X → R and g : X → C(Y), t.f.a.e.:

Balanced: ∃ nonneg. Radon meas. µ on Y s.t. f (ξ) =
∫

Y g(ξ) dµ.

Strongly critical: ∃ε > 0 s.t.

f (ξ) = −1 =⇒ ∃y (gξ)y ≤ −ε.
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Ropelength criticality

The clasp

Clasp: one rope attached to ceiling, one to floor

Again with semicircles?
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Ropelength criticality

The Gehring clasp

Gehring clasp has unbounded curvature (is C1,2/3 and W2,3−ε)

Half a percent shorter than naive clasp
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Ropelength criticality

The Gehring clasp

Gehring clasp has unbounded curvature (is C1,2/3 and W2,3−ε)
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Ropelength criticality

Example Tight Link

Critical Borromean rings – IMU logo
maximal (pyritohedral) symmetry, each component planar

piecewise smooth (42 pieces in total)

some described by elliptic integrals
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Ropelength criticality

Borromean Rings

Uses clasp arcs and circles; 0.08% shorter than circular

Curvature < 2 everywhere =⇒ also ropelength-critical
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Ropelength criticality

The tight clasp

Tight clasp slightly longer

Kink (arc of max curvature) at tip
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Ropelength criticality

The tight clasp

Tight clasp slightly longer

Kink (arc of max curvature) at tip
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Ropelength criticality

Other ways to find critical points

Symmetric criticality for tight knots
Cantarella, Ellis, Fu, Mastin: JKTR, 2014

Gordian split link
Coward, Hass: Pacific J, 2015
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Ropelength criticality

Biological applications

Knotted DNA
Great source of motivation for geometric knot theory

Are tight shapes correlated with ensemble average shapes?

Image from Andrzej Stasiak, EPFL
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Ropelength criticality

Periodic links

Links in 3-torus
Closed and infinite components when lifted to R3

Not enumerated yet

Can extend ropelength criticality theory

Work with Myf Evans ++
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Ropelength criticality

Periodic links

Singly periodic case

Links in solid torus S1 × D2

Diagrams in annulus

Enumeration of small knots
extended to links by Franziska Schlösser

Stress/strain relationship as we vary periodicity
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Ropelength criticality

Singly periodic links
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arcsin ⌧

Figure 4: The clasp is the simplest configuration of two interlooped arcs. On
the left, we see the basic clasp where the endpoints are constrained to lie in
parallel planes. On the right, we have the angled clasp where the four ends
of the rope make an angle of arcsin ⌧ with the horizontal. We will study
� –critical clasp configurations for varying values of ⌧ and � .

In the clasps we discuss next, the ends of each arc — attached the boundary planes —
are straight segments. Clearly we could extend these to be infinite rays and talk about a
complete clasp. It would be balanced by the same compactly supported strut and kink
measures used for the compact clasp.

7 The tight clasp

Our next example is a variation on the “simple clasp” which we considered previously
in [4, Section 9]. This clasp is a system of two interlooped ropes as in Figure 4 (left),
one anchored to the floor and one to the ceiling. We studied the problem of minimizing
the total length subject to the Gehring condition that the two strands are everywhere
separated by at least unit distance, that is, that the link-thickness is at least 1.

In fact, we considered the entire family of “⌧ –clasp” problems, 0 ⌧  1, in which the
four ends of the two ropes are no longer vertical but make an angle of arcsin ⌧ with the
horizontal. (Thus the case ⌧ D 1 is the basic clasp described above.) In each case we
described in detail a critical configuration (a “Gehring clasp”) that we conjectured to be
minimizing. Surprisingly, for ⌧ D 1 the Gehring clasp is a C 1 curve with unbounded
curvature (that is, not C 1;1 ).

Here we consider the analogous problem in the more physically realistic setting of the
present paper where the constraint is Thi� � 1. Where the Gehring ⌧ –clasp would
have curvature greater than 1=� , our � –critical ⌧ –clasp now has a kinked arc. Note
that the struts in these critical clasps always connect one component to the other. Thus

Geometry & Topology, Volume 18 (2014)
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angleofthekinkisarcsin.⌧=2/.Butthisistrueby(27a).Thestraightsegmentsbear
nostrutforceandhaveT0D0,sotheyobeythebalanceequationaswell.Further,the
Gehringarcsobeythebalanceequationbyconstruction.

Asbefore,
z

CÄisnormaltotheconstraintplanesattheendpointsofthearc,sothe
endpointconditionsofTheorem4.13aresatisfiedaswell.

ThiscompletestheproofofTheorem7.8.ApictureoftheclaspappearsinFigure8.

Figure8:Thesefiguresshowthe.1;
1

2/clasp.Fromlefttoright,thestraight
“tail,”shoulder,Gehring,andkinkedarcsoftheclaspareshowninalternating
blueandwhitecolors.Thetwostraightsegmentsareincludedinblack.The
longersegmentoflengthb⇠0:003878betweentheGehringandshoulder
sectionsisbarelyvisibleasathinblackborderaboutonepixelwide.The
muchshortersegmentoflengtha⇠0:000224betweenthekinkandGehring
regionsistoonarrowtoshowup.

7.6Geometryofthetightclasps

Tocomparethelengthofvariousclaspswiththesame⌧butdifferent�,inaway
independentofaparticularboundingtetrahedron,wedefinetheexcesslength`.⌧;�/
ofour.⌧;�/clasptobethedifferencebetweenthelengthoftheclaspandfourtimes
theinradiusoftheboundingtetrahedron,whichwouldbetheinfimallengthinthe
absenceofanythicknessconstraint.As�increases,wearestrengtheningthecurvature
constraint,sotheexcesslengthmustbemonotonicallyincreasing.

Whiletheexcesslengthofthekinkedandtransitionalclaspscanbecomputedexactly,
thelengthoftheGehringclasp(andthegenericclasp,whichincludesaGehringarc)is

Geometry&Topology,Volume18(2014)
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Ropelength criticality

Rainbow loom bands

“Brunnian link making device and kit”

John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13 35 / 39



Ropelength criticality

Doubly periodic links

Links in thickened torus T2 × I
Links in thickened surfaces
equivalent to Kaufmann’s virtual knots
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Ropelength criticality

Triply periodic links

Chiral rod packing Π+ becomes close to helical
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Ropelength criticality

Periodic entangled structures

Entanglement at mesoscale
Important in physics of soft materials

Can lead to exotic macroscopic properties

Like negative Poisson ratio
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Ropelength criticality

Periodic entangled structures

Keratin filaments in skin cells under expansion (Evans)
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