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Bending Energy: Lipid Vesicles and Sphere Eversions

Geometric energies for surfaces

@ Symmetric quadratic function of principal curvatures

E::// <a+bK+c(H—H0)2>dA

@ GauB-Bonnet says [[ K = const.
thus irrelevant for variational problems

@ If symmetric and fixed area

Wi L / H? dA
4
elastic bending energy for surfaces
@ Scale-invariant, even Mobius-invariant

John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13



Bending Energy: Lipid Vesicles and Sphere Eversions

Lipid bilayer membranes

@ Lipid vesicles as models of cell membranes
@ Hydrophobic tails hidden by hydrophilic heads
@ Fluid surface of lipid (surfactant) molecules: free to shear
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Images from NASA Ames and Vrije Univ. Amsterdam

@ Minimize W (or perhaps [[(H — Hy)? if sides differ)
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Bending Energy: Lipid Vesicles and Sphere Eversions

Physical constraints

@ Fixed volume enclosed
@ Fixed surface area
o Fixed AA = [[HdA
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Bending Energy: Lipid Vesicles and Sphere Eversions

Toroidal vesicles

@ Studied by Xavier Michalet (now UCLA)
@ Agree with W-minimizing simulations

Y= 071

Vi = 0.80
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Bending Energy: Lipid Vesicles and Sphere Eversions

Higher-genus vesicles

@ Again studied by Michalet
@ Demonstrate Mobius invariance

A B C D E
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Bending Energy: Lipid Vesicles and Sphere Eversions

Lipid membranes as tubes

@ Work with Sahraoui Chaieb (now KAUST)
@ Pearling by changing Hy or AA
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Bending Energy: Lipid Vesicles and Sphere Eversions

CMC trinoid pump

@ 3-parameter family of 3-ended CMC surfaces
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Sphere Eversion

Minimax Sphere Eversion
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Sphere Eversion
Sphere eversion

@ Turn a sphere inside out

@ Mathematical rules
Not too hard (embedded)
Not too easy (hole or crease)
@ Possible [Smale 1959]
But no explicit eversion for many years
[Phillips 1966]
@ Must have quadruple point [BanMax 1981]
Simplest sequence of events [Morin 1992]
@ Usually work from half-way model
Suffices to simplify this to round sphere

John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13



Sphere Eversion
Minimax eversion

@ Energy > k for surface with k-tuple point

@ Spheres critical for W known [Bryant]
Lowest saddle at W =4

@ Use this as halfway model for eversion [Kusner]
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Geometric Knot Theory

Geometric properties of knotted space curve

determined by knot type or implied by knottedness
(e.g. Fary/Milnor: TC > 27br > 4m)

Optimal shape for a given knot
usually by minimizing geometric energy

John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13



Ropelength

Definition
@ Thickness of space curve = 2 reach
= diameter of largest embedded normal tube

@ Ropelength = length / thickness

Positive thickness implies C"!

Definition

@ Gehring thickness = minimum distance between components

works with Milnor’s link homotopy
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Ropelength

Inventiones 150 (2002) pp 257-286, arXiv:math.GT/0103224
with Jason Cantarella, Rob Kusner

@ Minimizers exist for any link type

@ Some known from sharp lower bounds

@ Simple chain = connect sum of Hopf links
Middle components stadium curves: not C?

John M. Sullivan (TU Berlin) Topology with Biological Applications 2017 June 13


arXiv: math.GT/0103224

Ropelength
Minimizers
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Ropelength
Lower bounds

Geom. & Topol. 10 (2006) pp 1-26,
arXiv:math.DG/0408026
with Elizabeth Denne and Yuanan Diao

K knotted —> ropelength > 15.66 (within 5% for trefoil) I

Proof uses essential alternating quadrisecants:
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Ropelength
Quadrisecant

@ Line intersecting a curve four times
@ Every knot has one (Pannwitz — 1933 Berlin)

Three order types

simple flipped alternating

Theorem (Denne thesis)
Every knot has an essential alternating quadrisecant

(Essential means no disk in R \. K spans secant plus arc of K.)
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Ropelength criticality
Criticality

Balance Criterion: tension vs. contact force
Characterizes ropelength-critical links by force balance
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Ropelength criticality
Criticality papers

Gehring case — no curvature bound

Geom. & Topol. 10 (2006) pp 2055-2115,
arXiv:math.DG/0402212

with Jason Cantarella, Joe Fu, Rob Kusner, Nancy Wrinkle

Ropelength case — with curvature bound

Geom. & Topol. 18 (2014) pp 1973-2043,
arXiv:1102.3234

with Cantarella, Fu, Kusner
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Ropelength criticality
Kuhn—Tucker

Minimization problem

Givenf,gi: R" - R, (i =1,...,m), minimize f(p) s.t. gi(p) > 0.

Definition

p is a constrained critical point for minimizing f if for any tangent
vector v at p with (Vf,v) < 0 we have (Vg;,v) < 0 for some active g;.

p is balanced if Vf = nonnegative combination of active Vg;.

Theorem (Modified Kuhn—Tucker)
p Is constrained-critical < balanced.

Only involves derivatives of f and g; at p (linear functions).
Linear algebra ~ Farkas alternative
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Ropelength criticality
Infinite dimensions

Strategy: combine Clark’s theorem on derivatives of min-functions
with our version of K—T that applies to:

X vector space (of variations), Y compact space (of active constraints),
C(Y) = {continuous functions}, C*(Y) = {Radon measures}.

Theorem (CFKSW’06)
Forany linearf: X - Randg: X — C(Y), t.fa.e.:

@ Balanced: 3 nonneg. Radon meas. ;. onY s.t. f(&) = [, g(§) dp.
@ Strongly critical: 3¢ > 0 s.t.

f§)=—1 = Ty (gdy < —=.
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Ropelength criticality

The clasp

@ Clasp: one rope attached to ceiling, one to floor
@ Again with semicircles?
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Ropelength criticality

The Gehring clasp

@ Gehring clasp has unbounded curvature (is C'2/3 and W23-¢)
@ Half a percent shorter than naive clasp
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Ropelength criticality

The Gehring clasp

@ Gehring clasp has unbounded curvature (is C'2/3 and W23-¢)

@ Half a percent shorter than naive clasp
AN
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Example Tight Link

Critical Borromean rings — IMU logo
@ maximal (pyritohedral) symmetry, each component planar

@ piecewise smooth (42 pieces in total)
@ some described by elliptic integrals
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Ropelength criticality

Borromean Rings

@ Uses clasp arcs and circles; 0.08% shorter than circular
@ Curvature < 2 everywhere — also ropelength-critical
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Ropelength criticality

The tight clasp

@ Tight clasp slightly longer
@ Kink (arc of max curvature) at tip
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Ropelength criticality

The tight clasp

@ Tight clasp slightly longer
@ Kink (arc of max curvature) at tip
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Ropelength criticality
Other ways to find critical points

Symmetric criticality for tight knots
Cantarella, Ellis, Fu, Mastin: JKTR, 2014

Gordian split link
Coward, Hass: Pacific J, 2015
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Ropelength criticality

Biological applications

Knotted DNA
@ Great source of motivation for geometric knot theory

@ Are tight shapes correlated with ensemble average shapes?

Image from Andrzej Stasiak, EPFL
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Ropelength criticality
Periodic links

Links in 3-torus

@ Closed and infinite components when lifted to R?

@ Not enumerated yet
@ Can extend ropelength criticality theory

@ Work with Myf Evans ++
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Ropelength criticality

Periodic links

Singly periodic case

@ Links in solid torus S! x D?
@ Diagrams in annulus

@ Enumeration of small knots
extended to links by Franziska Schlésser

@ Stress/strain relationship as we vary periodicity
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Ropelength criticality

Singly periodic links
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Ropelength criticality

Rainbow loom bands

“Brunnian link making device and kit”
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Ropelength criticality

Doubly periodic links

Links in thickened torus 72 x I
Links in thickened surfaces
equivalent to Kaufmann’s virtual knots

John M. Sullivan (TU Berlin)
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Ropelength criticality

Triply periodic links

Chiral rod packing IT* becomes close to helical
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Ropelength criticality

Periodic entangled structures

Entanglement at mesoscale
@ Important in physics of soft materials

@ Can lead to exotic macroscopic properties
@ Like negative Poisson ratio
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Ropelength criticality

Periodic entangled structures

Keratin filaments in skin cells under expansion (Evans)
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