Topology with Biological Applications

John M. Sullivan

Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School

Geometry and Shape Analysis in Biological Sciences IMS, NUS, Singapore 2017 June 13

Berlin opportunities

- International graduate school
- Courses in English at three universities
- www.math-berlin.de

Geometric energies for surfaces

Symmetric quadratic function of principal curvatures

$$E := \iint \left(a + bK + c(H - H_0)^2 \right) dA$$

- Gauß–Bonnet says ∬ K = const. thus irrelevant for variational problems
- If symmetric and fixed area

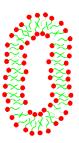
$$W:=\frac{1}{4\pi}\iint H^2\,dA$$

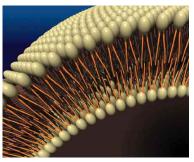
elastic bending energy for surfaces

• Scale-invariant, even Möbius-invariant

Lipid bilayer membranes

- Lipid vesicles as models of cell membranes
- Hydrophobic tails hidden by hydrophilic heads
- Fluid surface of lipid (surfactant) molecules: free to shear





Images from NASA Ames and Vrije Univ. Amsterdam

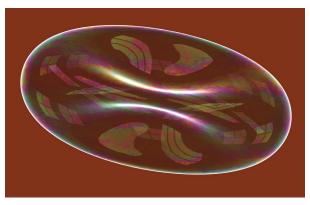
• Minimize W (or perhaps $\iint (H - H_0)^2$ if sides differ)

John M. Sullivan (TU Berlin)

Topology with Biological Applications

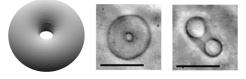
Physical constraints

- Fixed volume enclosed
- Fixed surface area
- Fixed $\Delta A = \iint H \, dA$

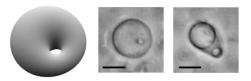


Toroidal vesicles

- Studied by Xavier Michalet (now UCLA)
- Agree with W-minimizing simulations

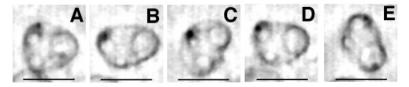


 $v_{cliff} = 0.71$



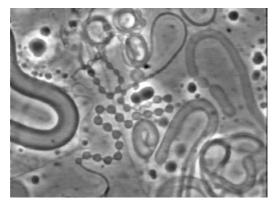
Higher-genus vesicles

- Again studied by Michalet
- Demonstrate Möbius invariance



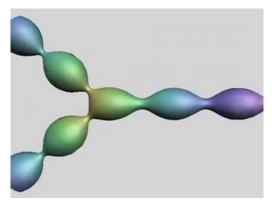
Lipid membranes as tubes

- Work with Sahraoui Chaïeb (now KAUST)
- Pearling by changing H_0 or ΔA



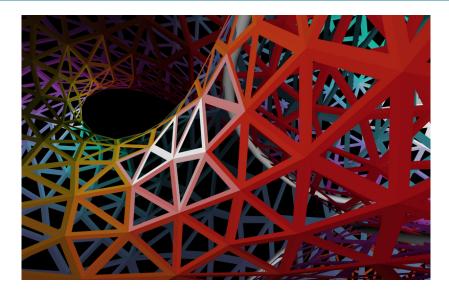
CMC trinoid pump

3-parameter family of 3-ended CMC surfaces



Sphere Eversion

Minimax Sphere Eversion



John M. Sullivan (TU Berlin)

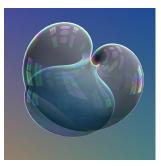
Topology with Biological Applications

Sphere eversion

- Turn a sphere inside out
- Mathematical rules
 Not too hard (embedded)
 Not too easy (hole or crease)
- Possible [Smale 1959] But no explicit eversion for many years [Phillips 1966]
- Must have quadruple point [BanMax 1981]
 Simplest sequence of events [Morin 1992]
- Usually work from half-way model Suffices to simplify this to round sphere

Minimax eversion

- Energy $\geq k$ for surface with *k*-tuple point
- Spheres critical for *W* known [Bryant] Lowest saddle at *W* = 4
- Use this as halfway model for eversion [Kusner]



Geometric Knot Theory

Geometric properties of knotted space curve

determined by knot type or implied by knottedness (e.g. Fáry/Milnor: $TC > 2\pi br > 4\pi$)

Optimal shape for a given knot

usually by minimizing geometric energy

Ropelength

Definition

- Thickness of space curve = 2 reach
 - = diameter of largest embedded normal tube
- Ropelength = length / thickness

Positive thickness implies $C^{1,1}$

Definition

• Gehring thickness = minimum distance between components

works with Milnor's link homotopy

Ropelength

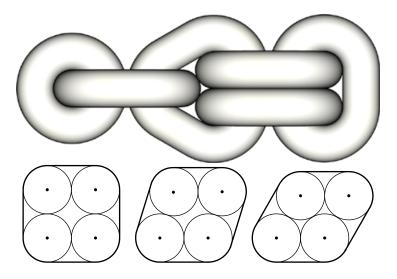
Inventiones **150** (2002) pp 257–286, arXiv:math.GT/0103224 with Jason Cantarella, Rob Kusner

Results

- Minimizers exist for any link type
- Some known from sharp lower bounds
- Simple chain = connect sum of Hopf links Middle components stadium curves: not C²



Minimizers



Lower bounds

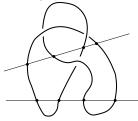
Geom. & Topol. 10 (2006) pp 1–26, arXiv:math.DG/0408026 with Elizabeth Denne and Yuanan Diao

Theorem

K knotted \implies ropelength ≥ 15.66

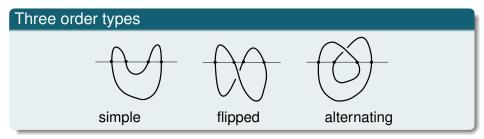
(within 5% for trefoil)

Proof uses essential alternating quadrisecants:



Quadrisecant

- Line intersecting a curve four times
- Every knot has one (Pannwitz 1933 Berlin)



Theorem (Denne thesis)

Every knot has an essential alternating quadrisecant

(Essential means no disk in $\mathbb{R}^3 \setminus K$ spans secant plus arc of *K*.)

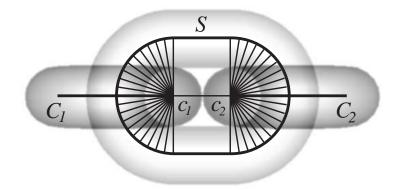
John M. Sullivan (TU Berlin)

Topology with Biological Applications

Criticality

Balance Criterion: tension vs. contact force

Characterizes ropelength-critical links by force balance



Criticality papers

Gehring case – no curvature bound

Geom. & Topol. 10 (2006) pp 2055-2115,

arXiv:math.DG/0402212

with Jason Cantarella, Joe Fu, Rob Kusner, Nancy Wrinkle

Ropelength case – with curvature bound

Geom. & Topol. 18 (2014) pp 1973-2043,

arXiv:1102.3234

with Cantarella, Fu, Kusner

Kuhn–Tucker

Minimization problem

Given
$$f, g_i \colon \mathbb{R}^n \to \mathbb{R}$$
, $(i = 1, ..., m)$, minimize $f(p)$ s.t. $g_i(p) \ge 0$.

Definition

p is a *constrained critical point* for minimizing *f* if for any tangent vector *v* at *p* with $\langle \nabla f, v \rangle < 0$ we have $\langle \nabla g_i, v \rangle < 0$ for some *active* g_i .

p is *balanced* if ∇f = nonnegative combination of active ∇g_i .

Theorem (Modified Kuhn–Tucker)

p is constrained-critical \iff balanced.

Only involves derivatives of f and g_i at p (linear functions). Linear algebra \sim Farkas alternative

John M. Sullivan (TU Berlin)

Topology with Biological Applications

Infinite dimensions

Strategy: combine Clark's theorem on derivatives of min-functions with our version of K–T that applies to:

X vector space (of variations), *Y* compact space (of active constraints), $C(Y) = \{\text{continuous functions}\}, C^*(Y) = \{\text{Radon measures}\}.$

Theorem (CFKSW'06)

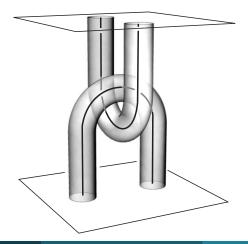
For any linear $f: X \to \mathbb{R}$ and $g: X \to C(Y)$, t.f.a.e.:

- Balanced: \exists nonneg. Radon meas. μ on Y s.t. $f(\xi) = \int_Y g(\xi) d\mu$.
- Strongly critical: $\exists \varepsilon > 0 \text{ s.t.}$

$$f(\xi) = -1 \implies \exists y \ (g\xi)y \le -\varepsilon.$$

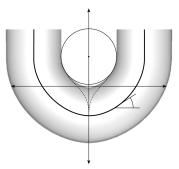
The clasp

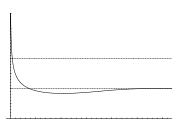
- Clasp: one rope attached to ceiling, one to floor
- Again with semicircles?



The Gehring clasp

- Gehring clasp has unbounded curvature (is $C^{1,2/3}$ and $W^{2,3-\varepsilon}$)
- Half a percent shorter than naive clasp





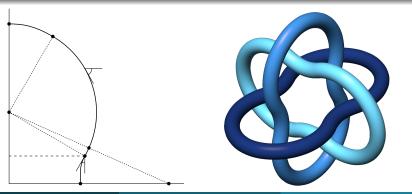
The Gehring clasp

- Gehring clasp has unbounded curvature (is $C^{1,2/3}$ and $W^{2,3-\varepsilon}$)
- Half a percent shorter than naive clasp

Example Tight Link

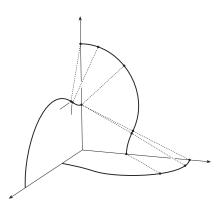
Critical Borromean rings - IMU logo

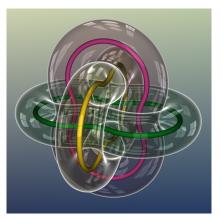
- maximal (pyritohedral) symmetry, each component planar
- piecewise smooth (42 pieces in total)
- some described by elliptic integrals



Borromean Rings

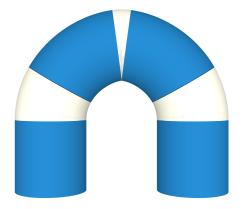
- Uses clasp arcs and circles; 0.08% shorter than circular
- Curvature < 2 everywhere \implies also ropelength-critical

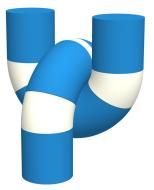




The tight clasp

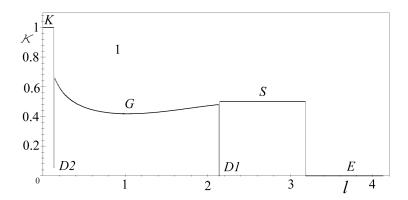
- Tight clasp slightly longer
- Kink (arc of max curvature) at tip





The tight clasp

- Tight clasp slightly longer
- Kink (arc of max curvature) at tip



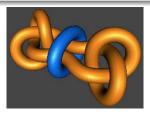
Other ways to find critical points

Symmetric criticality for tight knots

Cantarella, Ellis, Fu, Mastin: JKTR, 2014

Gordian split link

Coward, Hass: Pacific J, 2015



Topology with Biological Applications

Biological applications

Knotted DNA

- Great source of motivation for geometric knot theory
- Are tight shapes correlated with ensemble average shapes?

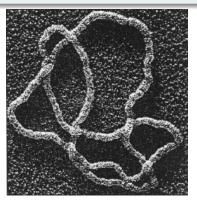


Image from Andrzej Stasiak, EPFL

Topology with Biological Applications

Periodic links

Links in 3-torus

- Closed and infinite components when lifted to \mathbb{R}^3
- Not enumerated yet
- Can extend ropelength criticality theory
- Work with Myf Evans ++

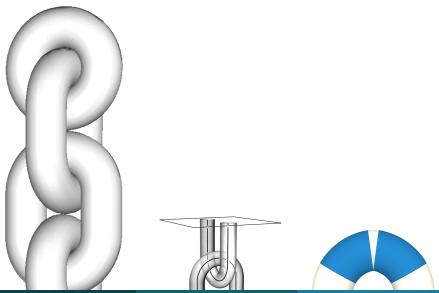
Periodic links

Singly periodic case

- Links in solid torus $\mathbb{S}^1 \times D^2$
- Diagrams in annulus
- Enumeration of small knots extended to links by Franziska Schlösser
- Stress/strain relationship as we vary periodicity

Ropelength criticality

Singly periodic links



John M. Sullivan (TU Berlin)

Topology with Biological Applications

2017 June 13

34/39

Rainbow loom bands

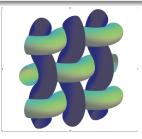
"Brunnian link making device and kit"

Doubly periodic links

Links in thickened torus $T^2 \times I$

Links in thickened surfaces

equivalent to Kaufmann's virtual knots



Triply periodic links

Chiral rod packing Π^+ becomes close to helical

Ropelength criticality

Periodic entangled structures

Entanglement at mesoscale

- Important in physics of soft materials
- Can lead to exotic macroscopic properties
- Like negative Poisson ratio

Periodic entangled structures

Keratin filaments in skin cells under expansion (Evans)

