SHAPES AND DYNAMICS OF BIOLOGICAL SYSTEMS

Patrice KOEHL

Department of Computer Science Genome Center

UC Davis

Biology = Quantitative Science

Acetylaminofluorene

Comparing (biological) shapes

Part I: Optimal diffeomorphism

Part II: Geodesics in shape space

Optimal diffeomorphims

We want to compare two surfaces by finding an *optimal diffeomorphism* between them.

If the surfaces have identical geometry then the optimal diffeomorphism is given by an isometry.

But what if they have different geometries?

What map is *closest* to being an isometry?

Optimal diffeomorphims

Optimal diffeomorphisms do more than give a distance. They also give a *correspondence*.

Diffeomorphic mapping

General maps between two surfaces deform lengths and angles

Isometries conserve lengths and angles.... but they are rarely appropriate

➤Conformal maps are the next best options, as they distort lengths but preserve angle

The Uniformization Theorem

Theorem [Poincaré, Koebe]

Any two genus-zero surfaces are conformally equivalent

Given any two shapes (with no holes), there is a map from one to the other that preserves angles.

The UC Davis Version...

The UC Davis Version...

 \tilde{g}

g

 $\tilde{g} = e^{2u}g$

Q

g': E -> R+ (i,j) -> l'_{ij}

g: E -> R+ (i,j) -> I_{ij} 8

Continuous:

$$\tilde{g} = e^{2u}g$$

Discrete:

$$l'_{ij} = e^{u(i)+u(j)}l_{ij}$$

Many algorithms exist:

- 1. Discrete Ricci Flow
- 2. Discrete Yamabe Flow
- 3. Conformal Mean Curvature Flow
- 4. Harmonic Maps
- 5. Finite Elements
- 6. Optimize a cost function
- 7. Discrete Differential Equation
- 8. Wilmore Flow
- 9. Circle Packings

Many algorithms exist:

- 1. Discrete Ricci Flow
- 2. Discrete Yamabe Flow
- 3. Conformal Mean Curvature Flow
- 4. Harmonic Maps
- 5. Finite Elements

(Springborn et al, 2008)

- 7. Discrete Differential Equation
- 8. Wilmore Flow
- 9. Circle Packings

Parametrizing a conformal map between two surfaces

Parametrizing a conformal map between two surfaces

Parametrizing a conformal map between two surfaces

Discrete stretching energy F_1 F_2 u U

$$E_{sd}(f) = \sqrt{\sum_{(v,v')\in F_1} \frac{A_{vv'}}{3} \left(\frac{l(f(v), f(v'))}{l(v,v')} - 1 \right)^2} + \sqrt{\sum_{(u,u')\in F_1} \frac{A_{uu'}}{3} \left(\frac{l(f^{-1}(u), f^{-1}(u'))}{l(u,u')} - 1 \right)^2}$$

How round are proteins?

How round are proteins?

Dataset of proximal first metatarsals from 38 prosimian primates, and 23 New and Old World monkeys

Prosimian: lemur

Simian: Cape baboon (old world)

Simian: White eared titi (new world)

Comparing lower molars from primates

Comparing lower molars from primates:

A10-A13: same order, same family Q06 : same order, different family

A10 0.0

0.30

Comparing lower molars from primates:

A10-A13: same order, same family Q06 : same order, different family

Comparing lower molars from primates

Comparing (biological) shapes

Part I: Optimal diffeomorphism

Part II: Geodesics in shape space

Minimum Action Paths and Shape Similarity

1. Defining a (geodesic) distance between shapes

2. Applications to simple 2D potentials

3. Applications to proteins: a simplified potential

4. Applications to large shapes: more simplifications

Distance between Shapes...

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

 M_2

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$L = \sqrt{\left(\frac{dX}{dt}\right)^2}$$
$$\frac{\partial L}{\partial X} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{X}}\right)$$
$$M_1$$
$$S = \int_0^T L dt = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Diffusive form of Langevin Equation:

$$\eta M \frac{dX}{dt} = -\nabla U(X) + B$$

η: friction M: diagonal mass matrix U: potential energy B: random force

For a trajectory

$$X(0) \to X(t) \to X_f(T_f)$$

$$P(X(0) \to X_f(T_f)) \propto \exp\left(-\frac{S}{k_BT}\right)$$

where the action, S, is given by (Onsager and Machlup, 1953):

$$S = \frac{1}{2\eta} \int_0^{T_f} \left(\eta M \frac{dX}{dt} + \nabla U(X) \right)^2 dt$$

Corresponding Lagrangian:

$$L = \left(\eta M \frac{dX}{dt} + \nabla U(X)\right)^2$$

 $T_X M$

Let M be a (smooth) manifold and E a function from (M,TM) to $[0,\infty)$;

Let X_0 and X_F be two points on M. Then

$$d(X,Y) = \inf\left\{\int_{0}^{T} E(\gamma(t), \dot{\gamma}(t)) dt \mid \gamma \in C^{1}([0,T], M), \gamma(0) = X_{0}, \gamma(T) = X_{F}\right\}$$

defines an intrinsic quasi-metric on M.

There always exist length minimizing curves on (M,E). Such curves can always be reparametrized to be geodesics, and any geodesic must satisfy the Euler-Lagrange equation for $F(\gamma)$:

$$F(\gamma) = \int_{X_0}^{X_F} L(\gamma(t), \dot{\gamma}(t)) dt = \int_{X_0}^{X_F} \left[E(\gamma(t), \dot{\gamma}(t)) \right]^2 dt$$

There always exist length minimizing curves on (M,E). Such curves can always be reparametrized to be geodesics, and any geodesic must satisfy the Euler-Lagrange equation for $F(\gamma)$:

$$F(\gamma) = \int_{X_0}^{X_F} L(\gamma(t), \dot{\gamma}(t)) dt = \int_{X_0}^{X_F} \left[E(\gamma(t), \dot{\gamma}(t)) \right]^2 dt$$

Onsager and Machlup (1953) action:

$$S = \frac{1}{2\eta} \int_0^{Tf} \left(\eta M \frac{dX}{dt} + \nabla U(X) \right)^2 dt$$

Corresponding Lagrangian:

$$L = \left(\eta M \frac{dX}{dt} + \nabla U(X)\right)^2$$

Lagrangian:
$$L = \left(\eta M \frac{dX}{dt} + \nabla U(X)\right)^2$$

Euler Lagrange equations:

$$\frac{\partial L}{\partial X} = \frac{d}{dt} \left(\frac{\partial L}{\frac{\partial L}{\partial X}} \right)$$

$$\frac{d^2 X}{dt^2} = \nabla \nabla U(X) \nabla U(X)$$

Boundary conditions:

$$X(0) = X_0 \qquad X(T_f) = X_f$$

Minimum Action Paths and Shape Similarity

1. Defining a (geodesic) distance between shapes

2. Applications to simple 2D potentials

3. Applications to proteins: a simplified potential

4. Applications to large shapes: more simplifications

Minimum Action Paths and Shape Similarity

1. Defining a (geodesic) distance between shapes

2. Applications to simple 2D potentials

3. Applications to proteins: a simplified potential

4. Applications to large shapes: more simplifications

Elastic network for biomolecules:

Elastic network for biomolecules:

Elastic potential:

$$V_{ENM}(X) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j>i} k_{ij} (r_{ij} - r_{ij}^{0})^{2}$$

. .

2nd order Taylor expansion:

 $V_{ENM}(X) \approx V_{ENM}(X^0) + \nabla V_{ENM}(X^0)^T (X - X^0) + \frac{1}{2}(X - X^0)^T H(X - X^0)$

$$V_{ENM}(X) \approx \frac{1}{2} (X - X^0)^T H (X - X^0)$$

Mixing potential for transition path:

Mixing potential:

$$U(X) = -\log(e^{-V_0(X)} + e^{-V_F(X)})$$

Solve:

 $\frac{d^2 X}{dt^2} = \nabla \nabla U(X) \nabla U(X)$

with boundary conditions:

$$X(0) = X_0 \qquad X(T_f) = X_f$$

using a relaxation method.

Transition Path for a Ribonuclease III

Minimum Action Paths and Shape Similarity

1. Defining a (geodesic) distance between shapes

2. Applications to simple 2D potentials

3. Applications to proteins: a simplified potential

4. Applications to large shapes: more simplifications

An elastic model for shapes

$$U_{1}(X) = \sum_{edges(i,j)} (d_{ij}(X) - d_{ij}(X_{0}))^{2}$$

$$U(X) \approx E(X_{0}) + \nabla E(X_{0})^{T} + \frac{1}{2} (X(t) - X_{0})^{T} H(X_{0}) (X(t) - X_{0})$$

$$= \frac{1}{2} (X(t) - X_{0})^{T} H(X_{0}) (X(t) - X_{0})$$

Mixing potential for transition path:

Mixing potential:

$U(X) = \min(V_0(X), V_1(X))$

Euler-Lagrange equations for stationary action:

$$\begin{aligned} X(t \rightarrow t_0) &= X_t = X(t_0 \leftarrow t) \\ \dot{X}(t \rightarrow t_0) &= \dot{X}(t_0 \leftarrow t) \\ U(X(t \rightarrow t_0)) &= U(X(t_0 \leftarrow t)) \end{aligned}$$

Transitions between two states

$$X(t_0) = X_t$$

$$X(t) = X_0$$

$$X(t) = \sinh(Ht) \operatorname{csch}(Ht_0)(X_t - X_0) + X_0$$

$$X(t) = \sinh(P(t-T))\operatorname{csch}(P(T-t_0))(X_f - X_t) + X_f$$

Dataset of proximal first metatarsals from 38 prosimian primates, and 23 New and Old World monkeys

Prosimian: lemur

Simian: Cape baboon (old world)

Simian: White eared titi (new world)

Trained morphometrist

Variational distance

Thank You

Marc Delarue, Institut Pasteur, Paris Henri Orland, CEA, Saclay

Herbert Edelsbrunner (IST Austria), Seb Doniach (Stanford University)

Michael Levitt, Stanford U. Joel Hass, UC Davis

Funding: NIH, NSF, Sloan Foundation, NU Singapore

