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Motivation and problems

2

Protein Structuring 
   The nuclear magnetic resonance (NMR) spectroscopy 
provides distance between pairs of hydrogen atoms in a 
protein. 

     The measure is incomplete and noisy. 

     Can we understand the protein structure based on the 
incomplete measurement without reconstruction?

Global configuration from incomplete information

     A network of sensors collaboratively measuring some 
quantity, the distance matrix is noisy and incomplete A. Single’08
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Motivation and problems
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Complete distance                1%    

Assumption: Given an incomplete distance matrix D = (d

2
ij), where

dij = dist(xi, xj) for a given point set {x1, · · · , xn} sampled on a manifold

M ⇢ R

D
.
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Motivation and problems

Global 
Recognition

Intrinsic  
distance

Intrinsic 
comparisonClassification

Besides visualization, what geometric information can we have for  

data without having global coordinate reconstruction? 
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Challenges
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Unlike signals or images

 No global coordinates, only inter-point distance 
information is given and is with possible missing values 
and noise.

 No natural or good global parametrization that reveals 
intrinsic dimensionality and global structure.

 Highly unstructured geometric object in high dimension, 
difficult to analysis, organize, …. No natural basis for 
representation. 
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Our strategy 

6

 Coherent structure inspires us to model distance data for points sampled 
from manifolds, where local structure can be extracted.

 Geometric PDEs on manifolds can be useful to ”connect the dots” and 
reveal global structure and provide geometric understanding of data and 
the underlying manifolds.

Local Recon 
using low-
rank matrix 
completion 

Solve 
geometric 

PDEs based 
on local recon

Conduct 
understanding 

based on 
solutions of 

PDEs

No global coordinates reconstruction
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Euclidean distance geometry (EDG) problem and matrix completion
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Euclidean distance geometry (EDG) problem and matrix completion

8

Let write ⌦ ⇢ {(i, j) | i, j = 1, · · · , n} as the index set for available values of D. We

consider the following matrix completion model to recover the Gram matrix B based on

matrix completion theory [Candes-Recht’09,Recht-Fazel-Parrilo’10]

min

B⌫0
kBk⇤ s.t.

(
bii + bjj � 2bij = d2ij , (i, j) 2 ⌦

P
j Bi,j = 0, 81  i  n

• Instead of reconstructing D, we consider to reconstruct B as it has lower rank.

• The constraint

P
j Bi,j = 0 is to remove possible ambiguity due to translation.
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Local coordinate reconstruction via Non-orthogonal basis sensing 
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• Let S = {X = XT , X1 = 0}, we rewrite the EDG relation Bi,i +

Bjj �Bij �Bji = Dij ,
P

j Bij = 0 under an appropriate basis {wij =

eii + ejj � eij � eji | i > j}.

• The dual basis of wij can be written as vij =

P
kl H

ij,klwkl with

Hij,kl = hwij ,wkli. AnyX 2 S can be written asX =

P
ijhX, ,wijivij .

• Define R⌦(X) =

L

m

X

(ij)2⌦

hX ,wijivij , then the EDG nuclear mini-

mization problem as

minimize

B2S\{X⌫0}
kBk⇤ s.t. R⌦(B) = R⌦(BT )
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Local coordinate reconstruction via Non-orthogonal basis sensing 
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Definition 1. The n ⇥ n matrix BT has coherence ⌫ with respect to basis {w↵}Ln=1 and

{v↵}Ln=1 if the following estimates hold

max

ij
||PT wij ||2F  8⌫

r

n
, and max

ij
||PT vij ||2F  32⌫

r

n

where PT is the projection to the tangent space T = {UP + QUT } of the rank r manifold

at BT = UDUT
.

Theorem 1. If |⌦| � O
�
rn⌫(1 + �) log2 n

�
, for � > 1, the solution to the above problem is

unique and equal to BT with probability atleast 1� n��
.

1. Entry sensing is under a special orthnormal basis {eij} [Candes-Recht’09].

2. Sensing under general orthonormal basis is consider in [Gross’11]

3. Restricted isometry property (RIP) is considered for general linear constraint [Recht-

Fazel-Parrilo’10], but hard to check the RIP condition.
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Numerical method for coordinate reconstruction
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Define A : Rn⇥n ! R|⌦| ⇥ Rn
: B 7!

⇣
{bii + bjj � 2bij}(ij)2⌦,

P
j Bi,j

⌘
, and write

˜A(B) = (P⌦A(B),
P

j Bi,j) and D =

�
{d2ij}(ij)2⌦, 0

�
. By introducing an auxiliary variable

C = B, we have the following equivalent version

min

B,C⌫0
Tr(B), s.t. AB �D = 0, B = C

which can be iteratively solved by

8
>>>>>>><

>>>>>>>:

Bk+1
= argmin

B
Tr(B) +

µ1

2

kAB �D +Hk
1 k22 +

µ2

2

kB � Ck +Hk
2 k2F

Ck+1
= argmin

C⌫0

µ2

2

kBk+1 � C +Hk
2 k2F ,

Hk+1
1 = Hk

1 + µ1(D �AB),

Hk+1
2 = Hk

2 + µ2(C �B),

• Convergence of the above algorithm can be theoretically validated as the problem is

convex.

• The most time consumption step is to compute the first k eigen-decompositiion with

scale O(n2k)
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Examples for coordinates reconstruction via matrix completion
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Data

�
1% 2% 3% 5% 10% 20%

S2 EB 7.157E-1 1.376E-3 4.791E-4 2.474E-4 1.342E-5 4.262E-5

⇢ 0% 92% 100% 100% 100% 100%

Cow

EB 4.9427E-5 3.980E-4 1.837E-4 5.319E-5 1.4072E-5 2.155E-5

⇢ 100% 100% 100% 100% 100% 100%

Swiss roll

EB 2.722E-4 2.894E-4 1.633E-4 5.054E-5 1.704E-5 1.114E-5

⇢ 100% 100% 100% 100% 100% 100%

Table 1: Rate of the successful reconstruction ⇢ and the average relative error EB out of 50 tests.

Figure 1: The borderline of minimum required numbers of points for exact rank reconstruc-

tion of inner-product matrix with fixed rate of valid distance.

Top:2%, bottom 3%
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Laplace-Beltrami operator: A Bridge from Local to Global
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Fourier basis

Given a d-dimensional manifold (M, g),

�4M�n = � 1p
G

@

@xi
(

p
Gg

ij @�

@xj
) = �n�n, n = 0, 1, 2, · · ·

Spherical Harmonics

• Intrinsicness. Invariant under isometric deformation M.

• Inverse spectrum problem.

Z(t) =

Z

M

X

i

e

��it
�i(x)�i(y)dv =

1

4⇡t

(

1X

i=0

cit
i/2

)

where c0 = area(M), c1 = �
p
⇡
2 length(B), c2 =

1
3

R
M K�1/6

R
B J.

[McKean-Singer’67]

• Generically, LB eigenfunctions are Morse functions [Uhlenbeck’76].

• LB eigenvalues + LB eigenfunctions uniquely fix a manifold up to isometry.

[Perard-Besson-Gassot’94]

• Estimation of LB eigenvalues and the geometry of underlying manifolds.
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Local tangent space approximation
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K-nearest neighborhood (KNN) 

Local principle component analysis 
(PCA)

Pi =
X

k2N(i)

(pk � ci)
T (pk � ci)

a local coordinate system hpi; ei1, e
i
2, e

i
3i at each point, where eigenvectors (ei1, e

i
2, e

i
3) of

Pi form an orthogonal frame associated with eigenvalues (�i
1,�

i
2,�

i
3) with �i

1 � �i
2 �

�i
3 � 0.
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• KNN of p

i

have local coordinates (x

i

k

, y

i

k

, z

i

k

)

• Local manifold approximation. Find a local degree two bivariate polynomial z

i

(x, y)

X

k2N(i)

w(kp
k

� p

i

k)
�
z

i

(x

i

k

, y

i

k

)� z

i

k

�2 �! �

i

= (x, y, z

i

(x, y)) & Metric g

• Local function approximation. min

f

x

2⇧d
m

KX

k=1

w(kx
k

� xk)kf
x

(x

k

)� f

k

k2

where f

x

(x) = b(x)

T

c(x) = b(x) · c(x) and b(x) is the polynomial basis vector.

• In the local coordinate system, M and f are well defined function.

rMf =

dX

i,j=1

g

ij

@f
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j
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xi , DivMV =
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Theorem. Assume f 2 C

m+1
(R

d

), I  K, w(·) > 0. Let h = max

k

kx
k

� xk then

����ci �
1

↵

i

!

D

↵i
f(x)

���� = Ch

m+1�|↵i|

where C is a constant depends on w, f and ↵

i

. (Liang-Zhao, natural extension of results in [Levin’98, Lipman et at’06])

w(d) =

(
1 if d = 0

1/k, if d 6= 0
, w(d) = exp(�d

2
/�), w(d) = (1� d

D

)4(
4d

D

+ 1) Wendland 
function

Local manifold approximation using moving least square method

15
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Local Mesh Method [Lai-Liang-Zhao]
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1. K nearest neighbor (KNN)

2. Local principal component analysis (PCA) on KNN

Pi =
X

k2N(i)

(pk � ci)
T (pk � ci)

3. Projection on tangent planes.

4. Inherit triangle structure from the tangent space.

With the local connectivity {pi;V(i),R(i)}, we have:

rPf(pi) ⇡
1

W

X

T2R(i)

Area(T )rT f(pi), divP
�!
V (pi) ⇡

1

W

X

T2R(i)

Area(T )divT
�!
V (pi)

• Only use the first ring structure, more accurate approximation can be obtained using the second ring

structure.

• Alternatively, we can also combine the local mesh with the moving least square approximation to

obtain better approximation.
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Solving PDEs on data represented by incomplete inter-point distance
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Key features of our methods:

No global coordinates or global parameterization is needed.

Only local information such as K nearest neighbors are needs, 
which can be reconstructed by matrix completion.

Our methods works for points sampled from manifolds with 
representation by incomplete distance. It naturally can work 
with data in any dimensions and co-dimension.
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Solve LB eigenvalue problem based on distance of points on unit sphere
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Figure 1: LB eigenfunctions corresponding to � = 2, 6, 12 from 80% local distance (1002 points).
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Local vs. Global: Time consumption comparisons 
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number of points

1002 1962 4002 7842 16002

� = 100%, ` = 6, available distance = �`/n
0.26 0.51 1.01 2.03 4.05

� = 80%, ` = 9, available distance = �`/n
2.28 5.60 11.17 22.28 45.02

� = 50%, ` = 18, available distance = �`/n
4.03 8.09 16.14 32.44 64.71

� = 30%, ` = 30, available distance = �`/n
15.13 30.19 60.42 120.95 241.63

global reconstruction using 3% distance (` = 6 for MLS)

2.09 9.86 40.13 154.40 597.06

Table 1: Comparisons of time consumption (minutes) of

solving the LB eigenvalue problem based on local/global

reconstruction methods.

O(n2m) vs. O(nl2m)
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Solve LB eigenvalues for distance data from high-D manifolds 
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LB eigenkproblem for a 2 dimensional flat torus in R4
.

Figure 1: a 2D torus R4
with 2500 points. Bottom: Relative errors. Top: full distance. Bottom: 60%

distance. Left: The largest 4 eigenvalues of inner-product matrix. Middle: Relative error for the fist 100

eigenvalues. Right: Convergence curves.
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Solve LB eigenvalues for distance data from high-D manifolds 
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LB eigenkproblem for a 3 dimensional flat torus in R6
.

Figure 1: a 3D torus R6
with 12167 points. Bottom: Relative errors. Top: full distance. Bottom: 60%

distance. Left: The largest 4 eigenvalues of inner-product matrix. Middle: Relative error for the fist 100

eigenvalues. Right: Convergence curves.
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More examples for solving LB eigenvalue problem
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1st and 2nd LB eigenvalues based on 50% local distance matrix. 
(For the first 2, mesh is only used for visualization)
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A non diffusion type: Eikonal equation from distance 
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The Eikonal equation for the distance map on M:

(
|rMd(x)| = 1

d(x) = 0, x 2 � ⇢ M

Uniform sampling on S2

sample size 1002 1962 4002 7842 16002

Dijkstra 0.008615 0.008606 0.008296 0.010642 0.011501

our method 0.008100 0.005890 0.004110 0.002877 0.002158

Non-uniform sampling on S2

Dijkstra 0.011209 0.016090 0.018380 0.016391 0.019953

our method 0.012016 0.008792 0.003742 0.001736 0.002765

Uniform sampling on swiss roll

Dijkstra 0.013104 0.021242 0.024560 0.024311 0.026004

our method 0.003127 0.001637 0.001130 0.000783 0.000620

Non-Uniform sampling on swiss roll

Dijkstra 0.016612 0.015779 0.014573 0.016587 0.018649

our method 0.004754 0.005189 0.003087 0.005171 0.007246

Table 1: Relative error of geodesic distances from north pole to south

pole reconstructed from 60% of local distances in each point’s 20 nearest

neighbourhoods.
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Construction of Skeleton
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Reeb graph and skeleton structure obtained from LB eigenfunction �:

Quotient space:M/ ⇠: x ⇠ y() �(x) = �(y). This can be used to medical image analysis and data analysis
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Shape DNA [Reuter’06]

25
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Intrinsic comparisons using LB eigenmaps + optimal transportation [Lai-Zhao’16]

26

Rotation-Invariant sliced-Wasserstein distance for registration:

RSWD

⇣
(P, µP), (Q, µQ)

⌘
2

= min

R2O(n)

Z

S n�1

min

�2ADM(⇡✓,R
#

µP,⇡✓
#

µQ)

Z

R⇥R
kx � yk2

2

d�(x, y) d✓

Theorem (Lai-Zhao). RSWD(·, ·) defines a distance on the spaceMn/ s.

26
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Manifold stitching from distance
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• P ⇡
NP
i=1

�i↵i  ! min↵ kP ��↵k2F .

The coe�cients ↵ do not depend on

location.

• Stitching patches using LB eigenfunc-

tions

min

↵,{Rj},{bj}

NpX

j=1

kQj � �j↵Rj � 1bjk2F ,

s.t. R>
j Rj = Id

methods

data

Armadillo Kitten Swiss roll

Global recon 35321.84 1315.50 622.65

Stitching 760.18 138.76 199.75

Computation 

Figure 1: 50% of local Euclidean distance. Ar-

madillo (16519 points), Kitten ( 2884 points)
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Dimension reduction using geodesic distance
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Figure 1: Top: the swiss roll surface (left) and its dimensional reduction result (right) from randomly 3% of

pair-wise geodesic distance. Bottom: local and global coordinates reconstruction of the swiss roll from its

80% local geodesic distance.



R. Lai@ RPI Geo. Understanding  Data from Distance

Some extensions to other problems

29
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Extension to Manifold low-rank for EDG
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5% 5%

min
P

X

i

rank(R⌦i(P )), s.t.A (PP>) = D.

min
P

X

i

kR⌦i(P )k⇤, s.t.A (PP>) = D. T
x

M ⇠ R⌦(P )TR⌦(P )
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Semi-supervised learning

31

we define the cluster functions {�
i

(x)} which is par-

tially assigned from the training data S.

�
i

(x) =

8
<

:
1, L(x) = i.

0, otherwise.

, x 2 S, i = 0, 1, 2, . . . , l.

min

�

X

x2I

k(RM,x

)�k⇤, s.t. P ⇢ M, �(x, i)|
x2S

=

8
<

:
1, L(x) = i.

0, otherwise.

Rank histogram

a rank-2 patch
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Semi-supervised learning: MINST, 70K images
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35 Samples 50 Samples 70 Samples

100 Samples 700 Samples Average

Figure 1: Success rate of label estimation by graph Laplacian,

weighted graph Laplacian, and proposed MLR methods.
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Extension to Image Processing: Patch Manifold and LDMM [Osher-Shi-Zhu’16]

33

Figure 1: Left: A clean Barbara image. Right: The dimension function D of the patch manifold with patch

size 11 ⇥ 11.

min
f2Rm⇥n,D,M⇢Rd

1

2

dX

i=1

Z

M
|rMai(p)|2 dM+

µ

2
kAf�f0k2, s.t. P(f) ⇢ M

min
f

dim(M(f)) +
µ

2
kAf � f0k2
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A Patch manifold based low-rank regularization model [Lai-Li’17]

34

min
M⇢R⌧2

,f

X

x2I

rank((RM,x

)(P(f)), s.t. P(f) ⇢ M, Af = g.

Inspired by matrix completion theory, we use nuclear norm to approximate rank 
which provides:

min
M⇢R⌧2

,f

X

x2I

k(RM,x

)(P(f))k⇤ s.t. P(f) ⇢ M, Af = g.

Need to update manifold and f both;
It is a non-convex problem;

For each point, SVD is only applied to a small size matrix;

with diffusion:

min
M⇢R⌧2

,f

X

x2I

kRM,x

(P(f))k⇤ +
�

2
krMfk22, s.t. P(f) ⇢ M, D(f) = g,
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Example: Image inpainting
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Ground Truth Incomp. image (5.90 dB) Harmonic Ext. (22.46 dB) Wavelet (22.83 dB)

TV (21.97 dB) LDMM (23.73 dB) LDMM+WGL (25.84 dB) MLR (� = �20, 26.09 dB)

Figure 1: Image inpainting results of 256⇥ 256 Barbara image from 10% random available pixels using di↵erent methods.
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Image inpainting
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Fingerprint Boat Baboon Peppers

G
r
o
u
n
d
T
r
u
t
h

5.04dB 5.70dB 5.38dB 6.02dB

I
n
c
o
m
p
l
e
t
e
i
m
a
g
e

Figure 1: Image inpainting for di↵erent images from 10% available pixels.
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Image inpainting

37

19.32dB 25.08dB 19.43dB 23.39dB

L
D
M
M

20.25 dB 25.51 dB 19.79dB 24.58 dB

L
D
M
M
+
W
G
L

20.24dB 25.77dB 20.05dB 24.29dB

M
R
L
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Image inpainting
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Incomplete image Wavelet model [cai-chan-shen’10]

MLR method

12.73dB 24.91dB 29.97dB

9.97dB 21.24dB 25.74dB
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Super-resolution
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Bi-Cubic interpolation LDMM method MLR method

22.93dB 23.52dB 23.71dB

21.61dB 22.33dB 22.42dB

Figure 1: Super resolution from average. Down sample rate 4⇥ 4 and 8⇥ 8.
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X-ray CT reconstruction
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15 Projections 30 Projections 60 Projections

20.83dB 23.79dB 25.81dB

24.04dB 28.08dB 31.29dB

Figure 1: Fan-beam imaging for a clinical X-ray scanned chest slice from 15, 30 and 60 projection views.

The second row: wavelet tight frame [DongLiShen2012]. The third row: the proposed MLR based method.

15   30      60

min
M⇢R⌧2

,f

X

x2I

k(RM,x

)(P(f))k⇤

s.t. P(f) ⇢ M, Af = g.

where g
i

=
R
`i
µ(~r)d` ⇡

P
NJ

j=1 aijfj = [Af ]
i

,
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Summary

41

 We propose to use solutions of PDEs to understand 
geometric structure of data represented as incomplete inter-
point distance. 

 We develop a systematic way of computing PDEs on 
distance data sampled from manifolds. 

 We also propose to use solutions of geometric PDEs to 
conduct global analysis, examples include global skeleton 
extraction, parameterization construction, and multi-scaled 
registration.

We also consider extensions to image processing based on 
manifold low-rank regularization
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