Understanding Data from Incomplete Inter-Point Distance via Locally Low-rank matrix completion and Geometric PDEs

Rongjie Lai Rensselaer Polytechnic Institute

Joint with Jia Li, Abiy Tasissa@ RPI

Motivation and problems

Global configuration from incomplete information

A network of sensors collaboratively measuring some quantity, the distance matrix is noisy and incomplete

• Protein Structuring

The nuclear magnetic resonance (NMR) spectroscopy provides distance between pairs of hydrogen atoms in a protein.

The measure is incomplete and noisy.

Can we understand the protein structure based on the incomplete measurement without reconstruction?

Motivation and problems

Assumption: Given an incomplete distance matrix $D = (d_{ij}^2)$, where $d_{ij} = dist(x_i, x_j)$ for a given point set $\{x_1, \dots, x_n\}$ sampled on a manifold $\mathcal{M} \subset R^D$.

Motivation and problems

Besides visualization, what geometric information can we have for data Without having global coordinate reconstruction?

PDEs on PC and Applications

Challenges

Unlike signals or images

- No global coordinates, only inter-point distance information is given and is with possible missing values and noise.
- No natural or good global parametrization that reveals intrinsic dimensionality and global structure.
- Highly unstructured geometric object in high dimension, difficult to analysis, organize, No natural basis for representation.

Our strategy

- Coherent structure inspires us to model distance data for points sampled from manifolds, where local structure can be extracted.
- Geometric PDEs on manifolds can be useful to "connect the dots" and reveal global structure and provide geometric understanding of data and the underlying manifolds.

No global coordinates reconstruction

Euclidean distance geometry (EDG) problem and matrix completion

Euclidean distance geometry (EDG) problem and matrix completion

Let write $\Omega \subset \{(i,j) \mid i,j = 1, \dots, n\}$ as the index set for available values of D. We consider the following matrix completion model to recover the Gram matrix B based on matrix completion theory [Candes-Recht'09,Recht-Fazel-Parrilo'10]

$$\min_{B \succeq 0} \|B\|_* \quad \text{s.t.} \quad \begin{cases} b_{ii} + b_{jj} - 2b_{ij} = d_{ij}^2, \quad (i,j) \in \Omega\\ \sum_j B_{i,j} = 0, \quad \forall 1 \le i \le n \end{cases}$$

- Instead of reconstructing D, we consider to reconstruct B as it has lower rank.
- The constraint $\sum_{j} B_{i,j} = 0$ is to remove possible ambiguity due to translation.

Local coordinate reconstruction via Non-orthogonal basis sensing

- Let $S = \{X = X^T, X1 = 0\}$, we rewrite the EDG relation $B_{i,i} + B_{jj} B_{ij} B_{ji} = D_{ij}, \sum_j B_{ij} = 0$ under an appropriate basis $\{\mathbf{w}_{ij} = \mathbf{e}_{ii} + \mathbf{e}_{jj} \mathbf{e}_{ij} \mathbf{e}_{ji} \mid i > j\}$.
- The dual basis of \mathbf{w}_{ij} can be written as $\mathbf{v}_{ij} = \sum_{kl} H^{ij,kl} \mathbf{w}_{kl}$ with $H_{ij,kl} = \langle \mathbf{w}_{ij}, \mathbf{w}_{kl} \rangle$. Any $X \in S$ can be written as $X = \sum_{ij} \langle X, \mathbf{w}_{ij} \rangle \mathbf{v}_{ij}$.
- Define $\mathcal{R}_{\Omega}(X) = \frac{L}{m} \sum_{(ij)\in\Omega} \langle X, \mathbf{w}_{ij} \rangle \mathbf{v}_{ij}$, then the EDG nuclear mini-

mization problem as

$$\underset{B \in \mathcal{S} \cap \{X \succeq 0\}}{\text{minimize}} \quad \|B\|_* \quad \text{s.t. } \mathcal{R}_{\Omega}(B) = \mathcal{R}_{\Omega}(B_T)$$

Local coordinate reconstruction via Non-orthogonal basis sensing

- 1. Entry sensing is under a special orthnormal basis $\{\mathbf{e}_{ij}\}$ [Candes-Recht'09].
- 2. Sensing under general orthonormal basis is consider in [Gross'11]
- 3. Restricted isometry property (RIP) is considered for general linear constraint [Recht-Fazel-Parrilo'10], but hard to check the RIP condition.

Definition 1. The $n \times n$ matrix B_T has coherence ν with respect to basis $\{\mathbf{w}_{\alpha}\}_{n=1}^{L}$ and $\{\mathbf{v}_{\alpha}\}_{n=1}^{L}$ if the following estimates hold

$$\max_{ij} \quad ||\mathcal{P}_{\mathcal{T}} \mathbf{w}_{ij}||_F^2 \le 8\nu \frac{r}{n}, \quad and \quad \max_{ij} \quad ||\mathcal{P}_{\mathcal{T}} \mathbf{v}_{ij}||_F^2 \le 32\nu \frac{r}{n}$$

where $\mathcal{P}_{\mathcal{T}}$ is the projection to the tangent space $\mathcal{T} = \{UP + QU^T\}$ of the rank r manifold at $B_T = UDU^T$.

Theorem 1. If $|\Omega| \ge O(rn\nu(1+\beta)\log^2 n)$, for $\beta > 1$, the solution to the above problem is unique and equal to B_T with probability at least $1 - n^{-\beta}$.

Numerical method for coordinate reconstruction

Define $\mathcal{A} : \mathbb{R}^{n \times n} \to \mathbb{R}^{|\Omega|} \times \mathbb{R}^n : B \mapsto \left(\{b_{ii} + b_{jj} - 2b_{ij}\}_{(ij)\in\Omega}, \sum_j B_{i,j} \right)$, and write $\tilde{\mathcal{A}}(B) = (\mathcal{P}_{\Omega}\mathcal{A}(B), \sum_j B_{i,j})$ and $D = (\{d_{ij}^2\}_{(ij)\in\Omega}, 0)$. By introducing an auxiliary variable C = B, we have the following equivalent version

$$\min_{B,C \succeq 0} \operatorname{Tr}(B), \quad \text{s.t.} \quad \mathcal{A}B - D = 0, \quad B = C$$

which can be iteratively solved by

$$\begin{cases} B^{k+1} = \arg\min_{B} \operatorname{Tr}(B) + \frac{\mu_{1}}{2} \|\mathcal{A}B - D + H_{1}^{k}\|_{2}^{2} + \frac{\mu_{2}}{2} \|B - C_{k} + H_{2}^{k}\|_{F}^{2} \\ C^{k+1} = \arg\min_{C \succeq 0} \frac{\mu_{2}}{2} \|B^{k+1} - C + H_{2}^{k}\|_{F}^{2}, \\ H_{1}^{k+1} = H_{1}^{k} + \mu_{1}(D - \mathcal{A}B), \\ H_{2}^{k+1} = H_{2}^{k} + \mu_{2}(C - B), \end{cases}$$

- Convergence of the above algorithm can be theoretically validated as the problem is convex.
- The most time consumption step is to compute the first k eigen-decompositiion with scale ${\cal O}(n^2k)$

Examples for coordinates reconstruction via matrix completion

γ Data		1%	2%	3%	5%	10%	20%
S 2	E_B	7.157E-1	1.376E-3	4.791E-4	2.474E-4	1.342E-5	4.262 E-5
	ρ	0%	92%	100%	100%	100%	100%
Cow	E_B	4.9427E-5	3.980E-4	1.837E-4	5.319E-5	1.4072 E-5	2.155E-5
	ρ	100%	100%	100%	100%	100%	100%
Swigg roll	E_B	2.722E-4	2.894E-4	1.633E-4	5.054 E-5	1.704E-5	1.114E-5
DW155 1011	ρ	100%	100%	100%	100%	100%	100%

Table 1: Rate of the successful reconstruction ρ and the average relative error E_B out of 50 tests.

R. Lai@ RPI

Laplace-Beltrami operator: A Bridge from Local to Global

Given a d-dimensional manifold (\mathcal{M}, g) ,

$$-\Delta_{\mathcal{M}}\phi_n = -\frac{1}{\sqrt{G}}\frac{\partial}{\partial x_i}(\sqrt{G}g^{ij}\frac{\partial\phi}{\partial x_j}) = \lambda_n\phi_n, \ n = 0, 1, 2, \cdots$$

- Intrinsicness. Invariant under isometric deformation \mathcal{M} .
- Inverse spectrum problem.

$$Z(t) = \int_{M} \sum_{i} e^{-\lambda_{i} t} \phi_{i}(x) \phi_{i}(y) dv = \frac{1}{4\pi t} (\sum_{i=0}^{\infty} c_{i} t^{i/2})$$

where $c_0 = area(M)$, $c_1 = -\frac{\sqrt{\pi}}{2} length(B)$, $c_2 = \frac{1}{3} \int_M K - 1/6$ [McKean-Singer'67]

- Generically, LB eigenfunctions are Morse functions [Uhlenbeck'76].
- LB eigenvalues + LB eigenfunctions uniquely fix a manifold up to isometry [Perard-Besson-Gassot'94]
- Estimation of LB eigenvalues and the geometry of underlying manifolds.

PDEs on PC and Applications

-1

Fourier basis

$$6 \int_B J.$$

Local tangent space approximation

 Local principle component analysis (PCA)

$$P_i = \sum_{k \in N(i)} (\mathbf{p}_k - \mathbf{c}_i)^T (\mathbf{p}_k - \mathbf{c}_i)$$

a local coordinate system $\langle \mathbf{p}_i; \mathbf{e}_1^i, \mathbf{e}_2^i, \mathbf{e}_3^i \rangle$ at each point, where eigenvectors $(\mathbf{e}_1^i, \mathbf{e}_2^i, \mathbf{e}_3^i)$ of P_i form an orthogonal frame associated with eigenvalues $(\lambda_1^i, \lambda_2^i, \lambda_3^i)$ with $\lambda_1^i \geq \lambda_2^i \gg \lambda_3^i \geq 0$.

Local manifold approximation using moving least square method

- KNN of \mathbf{p}_i have local coordinates (x_k^i, y_k^i, z_k^i)
- Local manifold approximation. Find a local degree two bivariate polynomial $z_i(x, y)$

$$\sum_{k \in N(i)} w(\|\mathbf{p}_k - \mathbf{p}_i\|) \left(z_i(x_k^i, y_k^i) - z_k^i \right)^2 \longrightarrow \Gamma_i = (x, y, z_i(x, y)) \& \text{ Metric } g$$

• Local function approximation. $\min_{f_{\overline{\mathbf{x}}} \in \Pi_m^d} \sum_{k=1}^K w(\|\mathbf{x}_k - \overline{\mathbf{x}}\|) \|f_{\overline{\mathbf{x}}}(\mathbf{x}_k) - f_k\|^2$

where $f_{\overline{\mathbf{x}}}(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{c}(\overline{\mathbf{x}}) = \mathbf{b}(\mathbf{x}) \cdot \mathbf{c}(\overline{\mathbf{x}})$ and $\mathbf{b}(\mathbf{x})$ is the polynomial basis vector. $w(d) = \begin{cases} 1 & \text{if } d = 0 \\ 1/k, & \text{if } d \neq 0 \end{cases}$, $w(d) = exp(-d^2/\sigma)$, $w(d) = (1 - \frac{d}{D})^4(\frac{4d}{D} + 1)$ Wendland function

• In the local coordinate system, \mathcal{M} and f are well defined function.

$$\nabla_{\mathcal{M}} f = \sum_{i,j=1}^{d} g^{ij} \frac{\partial f}{\partial x_j} \partial_{x_i} , \qquad \text{Div}_{\mathcal{M}} V = \frac{1}{\sqrt{G}} \sum_{i=1}^{d} \frac{\partial}{\partial x_i} (\sqrt{G} v^i) , \qquad \Delta_{\mathcal{M}} \phi = \frac{1}{\sqrt{G}} \sum_{i,j=1}^{d} \frac{\partial}{\partial x_i} (\sqrt{G} g^{ij} \frac{\partial \phi}{\partial x_j})$$

Theorem. Assume $f \in C^{m+1}(\mathbb{R}^d)$, $I \leq K$, $w(\cdot) > 0$. Let $h = \max_k ||\mathbf{x}_k - \overline{\mathbf{x}}||$ then

$$\left|c_{i} - \frac{1}{\alpha_{i}!}D^{\alpha_{i}}f(\overline{\mathbf{x}})\right| = Ch^{m+1-|\alpha_{i}|}$$

where C is a constant depends on w, f and α_i . (Liang-Zhao, natural extension of results in [Levin'98, Lipman et at'06])

Local Mesh Method [Lai-Liang-Zhao]

- 1. K nearest neighbor (KNN)
- 2. Local principal component analysis (PCA) on KNN

$$P_i = \sum_{k \in N(i)} (\mathbf{p}_k - \mathbf{c}_i)^T (\mathbf{p}_k - \mathbf{c}_i)$$

- 3. Projection on tangent planes.
- 4. Inherit triangle structure from the tangent space.

With the local connectivity $\{p_i; \mathcal{V}(i), \mathcal{R}(i)\}$, we have:

$$\nabla_{\mathcal{P}} f(p_i) \approx \frac{1}{W} \sum_{T \in \mathcal{R}(i)} Area(T) \nabla_T f(p_i), \qquad \operatorname{div}_{\mathcal{P}} \overrightarrow{V}(p_i) \approx \frac{1}{W} \sum_{T \in \mathcal{R}(i)} Area(T) \operatorname{div}_T \overrightarrow{V}(p_i)$$

- Only use the first ring structure, more accurate approximation can be obtained using the second ring structure.
- Alternatively, we can also combine the local mesh with the moving least square approximation to obtain better approximation.

PDEs on PC and Applications

Key features of our methods:

- No global coordinates or global parameterization is needed.
- Only local information such as K nearest neighbors are needs, which can be reconstructed by matrix completion.
- Our methods works for points sampled from manifolds with representation by incomplete distance. It naturally can work with data in any dimensions and co-dimension.

Solve LB eigenvalue problem based on distance of points on unit sphere

Figure 1: LB eigenfunctions corresponding to $\lambda = 2, 6, 12$ from 80% local distance (1002 points).

sample size	1002	1962	4002	7842	16002		
Noise free $(K = 9)$							
$\lambda = 20$	0.0469	0.0280	0.0175	0.0108	0.0046		
$\lambda = 72$	0.1292	0.0720	0.0420	0.0256	0.0161		
	Noise free $(K = 18)$						
$\lambda = 20$	0.0482	0.0250	0.0126	0.0065	0.0032		
$\lambda = 72$	0.3643	0.1178	0.0614	0.0328	0.0174		
local distance with Gaussian error of $\sigma = 5\% \cdot d_{\text{max}}$ (K = 18)							
$\lambda = 20$	0.0469	0.0216	0.0133	0.0081	0.0043		
$\lambda = 72$	0.3624	0.1123	0.0625	0.0280	0.0187		
Noise free $(K = 30)$							
$\lambda = 20$	0.0850	0.0454	0.0224	0.0115	0.0057		
$\lambda = 72$	0.6146	0.3452	0.1041	0.0563	0.0283		
local distance with Gaussian error of $\sigma = 10\% \cdot d_{\max}$ (K = 30)							
$\lambda = 20$	0.1023	0.0619	0.0393	0.0274	0.0232		
$\lambda = 72$	0.6248	0.3653	0.1147	0.0668	0.0395		

Table 1: E_{max} errors for Gaussian perturbed distance of uniformed distributed point clouds of a unit sphere. Assume the inaccurate distance comes from 80% of distance information and corrupted by some type of noise.

Figure 1: $E_{\text{max}}(\lambda = 20)$ for Gaussian perturbation corrupted distance of uniformed distributed point clouds on the unit sphere.

Local vs. Global: Time consumption comparisons

 $O(n^2m)$ vs. $O(nl^2m)$

number of points						
1002	1962	4002	7842	16002		
$\gamma = 1$	$\ell = 100\%, \qquad \ell = 100\%$, $\ell = 6$, available distance $= \gamma \ell / n$				
0.26	0.51	1.01	2.03	4.05		
$\gamma = 80\%, \qquad \ell = 9, \text{ available distance} = \gamma \ell / n$						
2.28	5.60	11.17	22.28	45.02		
$\gamma = 50\%, \ell = 18, \text{ available distance} = \gamma \ell / n$						
4.03	8.09	16.14	32.44	64.71		
$\gamma = 30\%, \ell = 30, \text{ available distance} = \gamma \ell / n$						
15.13	30.19	60.42	120.95	241.63		
global reconstruction using 3% distance ($\ell = 6$ for MLS)						
2.09	9.86	40.13	154.40	597.06		

Table 1: Comparisons of time consumption (minutes) of solving the LB eigenvalue problem based on local/global reconstruction methods.

R. Lai@ RPI

Solve LB eigenvalues for distance data from high-D manifolds

LB eigenkproblem for a 2 dimensional flat torus in \mathbb{R}^4 .

Figure 1: a 2D torus \mathbb{R}^4 with 2500 points. Bottom: Relative errors. Top: full distance. Bottom: 60% distance. Left: The largest 4 eigenvalues of inner-product matrix. Middle: Relative error for the fist 100 eigenvalues. Right: Convergence curves.

Solve LB eigenvalues for distance data from high-D manifolds

LB eigenkproblem for a 3 dimensional flat torus in \mathbb{R}^6 .

Figure 1: a 3D torus \mathbb{R}^6 with 12167 points. Bottom: Relative errors. Top: full distance. Bottom: 60% distance. Left: The largest 4 eigenvalues of inner-product matrix. Middle: Relative error for the fist 100 eigenvalues. Right: Convergence curves.

More examples for solving LB eigenvalue problem

1st and 2nd LB eigenvalues based on 50% local distance matrix. (For the first 2, mesh is only used for visualization)

R. Lai@ RPI

A non diffusion type: Eikonal equation from distance

The Eikonal equation for the distance map on \mathcal{M} :

$$\begin{cases} |\nabla_{\mathcal{M}} d(x)| = 1\\ d(x) = 0, \quad x \in \Gamma \subset \mathcal{M} \end{cases}$$

Uniform sampling on S^2					
sample size	1002	1962	4002	7842	16002
Dijkstra	0.008615	0.008606	0.008296	0.010642	0.011501
our method	0.008100	0.005890	0.004110	0.002877	0.002158
Non-uniform sampling on S^2					
Dijkstra	0.011209	0.016090	0.018380	0.016391	0.019953
our method	0.012016	0.008792	0.003742	0.001736	0.002765
Uniform sampling on swiss roll					
Dijkstra	0.013104	0.021242	0.024560	0.024311	0.026004
our method	0.003127	0.001637	0.001130	0.000783	0.000620
Non-Uniform sampling on swiss roll					
Dijkstra	0.016612	0.015779	0.014573	0.016587	0.018649
our method	0.004754	0.005189	0.003087	0.005171	0.007246

Table 1: Relative error of geodesic distances from north pole to south pole reconstructed from 60% of local distances in each point's 20 nearest neighbourhoods.

Construction of Skeleton

Reeb graph and skeleton structure obtained from LB eigenfunction ϕ :

Quotient space: $\mathcal{M}/\sim: x \sim y \iff \phi(x) = \phi(y)$. This can be used to medical image analysis and data analysis

Shape DNA [Reuter'06]

R. Lai@ RPI

Intrinsic comparisons using LB eigenmaps + optimal transportation [Lai-Zhao'16]

Rotation-Invariant sliced-Wasserstein distance for registration:

$$\operatorname{RSWD}((\mathcal{P},\mu^{\mathcal{P}}),(Q,\mu^{Q}))^{2} = \min_{R \in O(n)} \int_{S^{n-1}} \min_{\sigma \in \operatorname{ADM}(\pi^{\theta,R}_{\#}\mu^{\mathcal{P}},\pi^{\theta}_{\#}\mu^{Q})} \int_{\mathbb{R} \times \mathbb{R}} \|x-y\|_{2}^{2} \, \mathrm{d}\sigma(x,y) \, \mathrm{d}\theta$$

Theorem (Lai-Zhao). RSWD(\cdot, \cdot) defines a distance on the space \mathfrak{M}_n / \sim .

R. Lai@ RPI

Manifold stitching from distance

•
$$P \approx \sum_{i=1}^{N} \phi_i \alpha_i \longleftrightarrow \min_{\alpha} \|P - \Phi \alpha\|_F^2$$
.
The coefficients α do not depend on location.

• Stitching patches using LB eigenfunctions

$$\min_{\alpha, \{R_j\}, \{b_j\}} \sum_{j=1}^{N_p} \|Q_j - \Phi_j \alpha R_j - \mathbf{1} b_j\|_F^2,$$

s.t. $R_j^\top R_j = I_d$

Figure 1: 50% of local Euclidean distance. Armadillo (16519 points), Kitten (2884 points)

data methods	Armadillo	Kitten	Swiss roll
Global recon	35321.84	1315.50	622.65
Stitching	760.18	138.76	199.75

Computation

Dimension reduction using geodesic distance

Figure 1: Top: the swiss roll surface (left) and its dimensional reduction result (right) from randomly 3% of pair-wise geodesic distance. Bottom: local and global coordinates reconstruction of the swiss roll from its 80% local geodesic distance.

R. Lai@ RPI

Some extensions to other problems

Extension to Manifold low-rank for EDG

TxM My(x) $\min_{P} \sum_{i} \operatorname{rank}(R_{\Omega_{i}}(P)), \quad \text{s.t.}\mathscr{A}(PP^{\top}) = D.$ * $\min_{P} \sum_{i} \|R_{\Omega_{i}}(P)\|_{*}, \quad \text{s.t.} \mathscr{A}(PP^{\top}) = D.$ $T_x \mathcal{M} \sim R_\Omega(P)^T R_\Omega(P)$

Semi-supervised learning

6 <u>× 10</u>⁴ 1600 519

Rank histogram

we define the cluster functions $\{\phi_i(x)\}$ which is partially assigned from the training data S.

$$\phi_i(x) = \begin{cases} 1, & L(x) = i. \\ 0, & \text{otherwise.} \end{cases}, x \in S, & i = 0, 1, 2, \dots, l. \end{cases}$$

a rank-2 patch

$$\min_{\Phi} \sum_{x \in \mathscr{I}} \| (R_{\mathcal{M},x})\Phi \|_{*}, \quad \text{s.t.} \quad P \subset \mathcal{M}, \quad \Phi(x,i)|_{x \in S} = \begin{cases} 1, & L(x) = i. \\ 0, & \text{otherwise.} \end{cases}$$

Semi-supervised learning: MINST, 70K images

Figure 1: Success rate of label estimation by graph Laplacian, weighted graph Laplacian, and proposed MLR methods.

R. Lai @RPI

Extension to Image Processing: Patch Manifold and LDMM [Osher-Shi-Zhu'16]

$$\min_{f} \dim(\mathcal{M}(f)) + \frac{\mu}{2} \|Af - f_0\|^2$$

$$\prod_{f \in \mathbb{R}^{m \times n}, D, \mathcal{M} \subset \mathbb{R}^d} \frac{1}{2} \sum_{i=1}^d \int_{\mathcal{M}} |\nabla_{\mathcal{M}} a_i(p)|^2 \, \mathrm{d}\mathcal{M} + \frac{\mu}{2} \|Af - f_0\|^2, \quad \text{s.t.} \quad \mathcal{P}(f) \subset \mathcal{M}$$

A Patch manifold based low-rank regularization model [Lai-Li'17]

$$\min_{\mathcal{M} \subset \mathbb{R}^{\tau^2}, f} \sum_{x \in \mathscr{I}} \operatorname{rank}((R_{\mathcal{M},x})(\mathcal{P}(f)), \quad \text{s.t.} \quad \mathcal{P}(f) \subset \mathcal{M}, \quad \mathcal{A}f = g.$$

Inspired by matrix completion theory, we use nuclear norm to approximate rank which provides:

$$\min_{\mathcal{M} \subset \mathbb{R}^{\tau^2}, f} \sum_{x \in \mathscr{I}} \| (R_{\mathcal{M}, x})(\mathcal{P}(f)) \|_* \quad \text{s.t.} \quad \mathcal{P}(f) \subset \mathcal{M}, \quad \mathcal{A}f = g.$$

with diffusion:

$$\min_{\mathcal{M}\subset\mathcal{R}^{\tau^2},f} \sum_{x\in\mathscr{I}} \|R_{\mathcal{M},x}(\mathcal{P}(f))\|_* + \frac{\lambda}{2} \|\nabla_{\mathcal{M}}f\|_2^2, \quad \text{s.t.} \quad \mathcal{P}(f)\subset\mathcal{M}, \quad \mathcal{D}(f)=g,$$

Need to update manifold and f both;

It is a non-convex problem;

For each point, SVD is only applied to a small size matrix;

Example: Image inpainting

Figure 1: Image inpainting results of 256×256 Barbara image from 10% random available pixels using different methods

R. Lai @RPI

Image inpainting

Figure 1: Image inpainting for different images from 10% available pixels.

R. Lai @RPI

Image inpainting

MRL

Image inpainting

 $9.97 \mathrm{dB}$

21.24dB

R. Lai @RPI

Super-resolution

Bi-Cubic interpolation

LDMM method

MLR method

 $21.61 \mathrm{dB}$

 $22.33 \mathrm{dB}$

 $22.42 \mathrm{dB}$

Figure 1: Super resolution from average. Down sample rate 4×4 and 8×8 .

R. Lai @RPI

X-ray CT reconstruction

$$\min_{\mathcal{M} \subset \mathcal{R}^{\tau^2}, f} \sum_{x \in \mathscr{I}} \| (R_{\mathcal{M}, x}) (\mathcal{P}(f)) \|_*$$

s.t. $\mathcal{P}(f) \subset \mathcal{M}, \quad \mathcal{A}f = g.$

where
$$g_i = \int_{\ell_i} \mu(\vec{r}) d\ell \approx \sum_{j=1}^{N_J} a_{ij} f_j = [\mathbf{A}f]_i$$
,
^{15 Projections}

30 Projections

60 Projections

 $20.83 \mathrm{dB}$

24.04dB

28.08 dB

31.29 dB

Figure 1: Fan-beam imaging for a clinical X-ray scanned chest slice from 15, 30 and 60 projection views. The second row: wavelet tight frame [DongLiShen2012]. The third row: the proposed MLR based method.

Summary

- We propose to use solutions of PDEs to understand geometric structure of data represented as incomplete interpoint distance.
- We develop a systematic way of computing PDEs on distance data sampled from manifolds.
- We also propose to use solutions of geometric PDEs to conduct global analysis, examples include global skeleton extraction, parameterization construction, and multi-scaled registration.
- We also consider extensions to image processing based on manifold low-rank regularization

Rongjie Lai, Jia Li and Abiy Tasissa, Exact Reconstruction of Distance Geometry Problem Using Low-rank Matrix Completion, preprint, 2017

Rongjie Lai and Jia Li, Manifold Based Low-rank Regularization for Image Restoration and Semi-supervised Learning, submitted, 2017

Rongjie Lai and Jia Li, Solving Partial Differential Equations on Manifolds From Incomplete Inter-Point Distanc. submitted, 2017.

Rongjie Lai, Jian Liang and Hongkai Zhao, A local mesh method for PDEs on point clouds, Inverse Problem and Imaging, 7(3), pp. 737-755, 2013.

Jian Liang, Rongjie Lai, Tsz Wai Wong and Hongkai Zhao, Geometric Understanding of Point Clouds Using Laplace-Beltrami Operator, CVPR 2012.

Thanks for your attention!

Rongjie Lai (lair@rpi.edu)

http://www.rpi.edu/~lair/ Rensselaer Polytechnic Institute

R. Lai@ RPI