

Densities

Joan Bruna, Stéphane Mallat,

École Normale Supérieure

High-Dimensional Density Estimation -

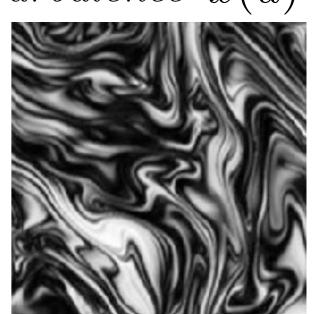
- Estimation $\tilde{p}(x)$ of a probability density p(x) for $x \in \mathbb{R}^d$ given n realizations $\{x_i\}_{i \leq n}$ of a random vector X.
 - p(x) is the space $\mathbf{C}^1(\mathbb{R}^d)$ of Lipschitz functions if then at best $\mathbb{E}(\|p \tilde{p}\|_2^2) = O(n^{\frac{-2}{d+2}})$

• If d > 10 then n must be huge: impossible.

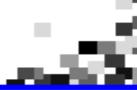
 $d = 10^6$ Turbulence x(u)

Problem:

Find regularity properties which can break the curse of dimensionality.



Markov Hypothesis



• Markov hypothesis: local conditional dependence

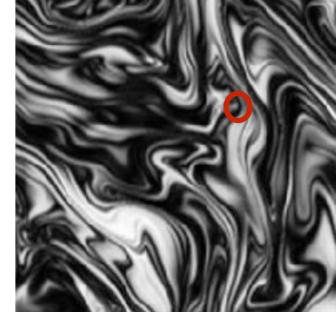
$$p(x(u)/x(u'), u' \neq u) = p(x(u)/x(u'), u' \in \mathcal{N}_u)$$

• Hammersely-Clifford theorem proves that

$$\log p(x) = \beta_0 + \sum_{k=1}^{K} \phi_k(x(u), u \in C_k)$$

separation over small cliques of neighbour variables of conditionnaly independent components.

• Problem: Markov hypothesis often not valid



Gibbs Distributions

Approximation of p(x) conditioned on K moments $\mathbb{E}_p(\phi_k(x))$ by \tilde{p} which maximizes the entropy $H_{\tilde{p}} = -\int \tilde{p}(x) \log \tilde{p}(x) dx$

Theorem [Canonical Gibbs] If $\tilde{p}(x)$ satisfies

$$\forall k \leq K$$
, $\mathbb{E}_{\tilde{p}}(\phi_k(x)) = \int_{\mathbb{R}^N} \phi_m(x) \ \tilde{p}(x) \, dx = \mathbb{E}_p(\phi_k(x))$

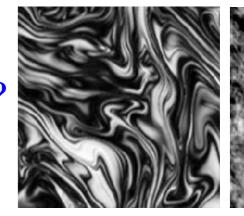
and maximizes $H_{\tilde{p}} = -\int \tilde{p}(x) \log \tilde{p}(x) dx$ then

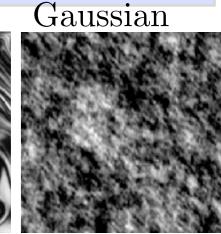
$$\log \tilde{p}(x) = \beta_0 + \sum_{k=1}^{K} \beta_k \, \phi_k(x) \quad \text{(separation)}$$

Kolmogorov

Problems:

- How to choose the ϕ_k to approximate p?
- Can abare quadrathe $\#_k \tilde{p}$ is Gaussian





Key Ideas

We want
$$\log p(x) \approx \log \tilde{p}(x) = \beta_0 + \sum_{k=1}^{\infty} \beta_k \, \phi_k(x)$$
: separation

- \Rightarrow the regularity of the ϕ_k is defined by the regularity of p
- Regularity of p(x) defined by diffeomorphism groups acting on x
- Separations are scale separations (not Markov) \Rightarrow wavelets
- $H_{\tilde{p}} \geq H_p$ and if $H_{\tilde{p}} = H_p$ then $\tilde{p} = p$ The ϕ_k should minimize the maximum entropy $H_{\tilde{p}}$ Obtained with sparsity and intersections of l^1 balls
- Approximate the canonical \tilde{p} by a microcanonical distribution
- Implemented by a deep convolutional network

Lipschitz Regularity on a Group ___

- Group G of operators acting on x with a metric.
- An f(x) is in $C^1(G)$ of Lipschitz functions for the action of G $\forall (g,x) \in G \times \mathbb{R}^d$, $|f(x) - f(g,x)| \leq C \operatorname{dist}(g,Id)$

The usual Lipschitz space is $\mathbf{C}^1(\mathbb{R}^d)$: g.x = x - g for $g \in \mathbb{R}^d$. dist(d, Id) = ||g||

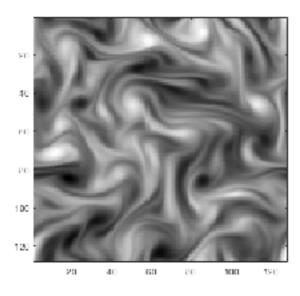
• Lipschitz continuity to spatial diffeomorphisms: deformations Images $x(u) \in \mathbf{L}^2(\mathbb{R}^2)$ g.x(u) = x(g(u)) for $g \in \text{Diff}(\mathbb{R}^2)$

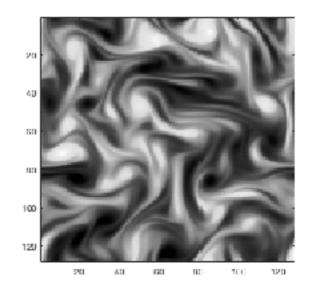
Weak topology: $\operatorname{dist}(g, Id) = \|\nabla g\|_{\infty}$

$$\Rightarrow |f(x) - f(g.x)| \le C \|\nabla g\|_{\infty} \Rightarrow \text{translation invariance}$$

Amplitude Diffeomorphisms

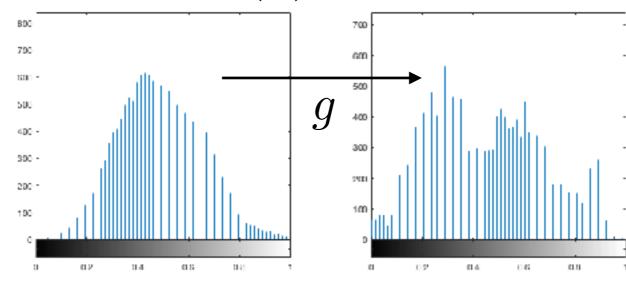
• Amplitude deformation of $x(u) \in \mathbf{L}^2(\mathbb{R}^2)$ with $g \in \mathrm{Diff}(\mathbb{R})$ g.x(u) = g(x(u))





histogram of x(u)

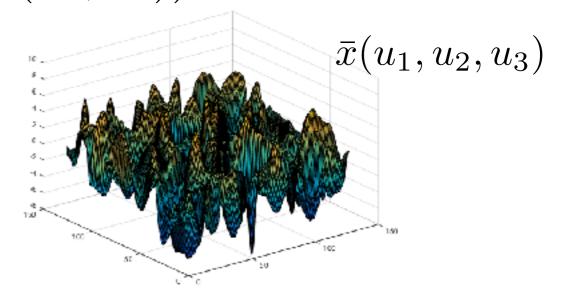
histogram of g.x(u)



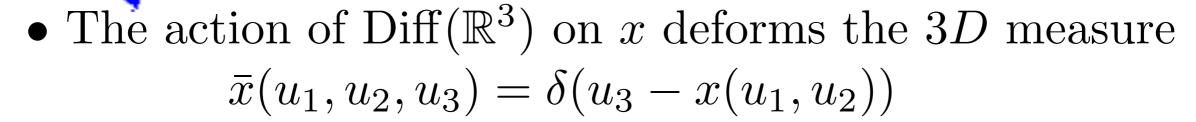
Amplitude-Space Deformations

• The action of Diff(\mathbb{R}^3) on x deforms the 3D measure $\bar{x}(u_1, u_2, u_3) = \delta(u_3 - x(u_1, u_2))$

$$x(u_1,u_2)$$

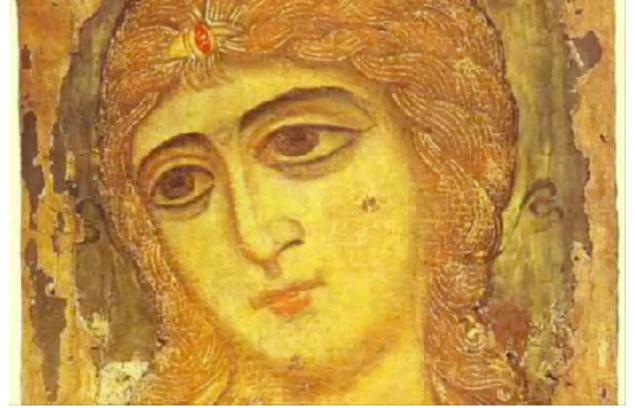


Amplitude-Space Deformations



$$x(u_1,u_2)$$
 \iff $\overline{x}(u_1,u_2,u_3)$

• Image classification functions are typically in $C^1(\text{Diff}(\mathbb{R}^3))$



Video of Philipp Scott Johnson

Lipschitz Approximations

• We want to approximate $\log p$ in $\mathbf{C}^1(\mathrm{Diff}(\mathbb{R}^3))$ with

$$\log \tilde{p}(x) = \sum_{k=0}^{K-1} \beta_k \phi_k(x) = \langle \Phi(x), \beta \rangle$$

$$\log \tilde{p} \in \mathbf{C}^1(\mathrm{Diff}) \text{ if } \Phi \text{ is in } \mathbf{C}^1(\mathrm{Diff}(\mathbb{R}^3))^\mathrm{K} \text{ with}$$

$$\|\Phi(x) - \Phi(g.x)\| \le C \|\nabla g\|_{\infty}$$

How can we build such Φ ?

Marginal Distributions

المورد الأحداث

Cramer-Wold theorem

- A stationary density p of X is characterised by the 1D marginals of $X \star \psi_{\alpha}(u)$ for all $\psi_{\alpha} \in \mathbb{R}^d$
- \Rightarrow choose a "large" family of $\{\psi_{\alpha}\}_{\alpha}$ Mumford, Zhu estimate the distribution of $X \star \psi_{\alpha}(u)$ with a histogram \tilde{p} : maximum entropy conditioned to these histogram values A bit too optimistic...

spatial deformations

• To approximate $\log p$ is in $\mathbf{C^1}(\mathrm{Diff}(\mathbb{R}^2))$ we need that $\forall \alpha \ , \ \|u \cdot \nabla \psi_{\alpha}(u)\|_1 \leq C$

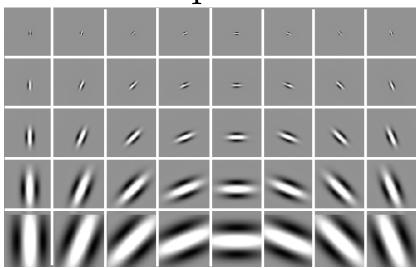
dilated filters: scale separation

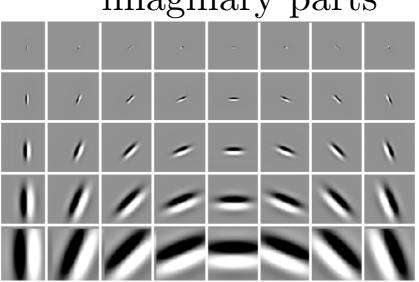
Scale separation with Wavelets

• Wavelet filter $\psi(u)$: +i

rotated and dilated: $\psi_{2^{j},\theta}(u) = 2^{-j} \psi(2^{-j}r_{\theta}u)$

real parts





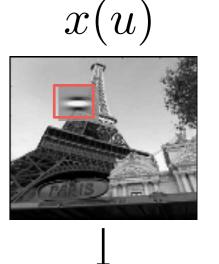
$$x \star \psi_{2^{j},\theta}(u) = \int x(v) \, \psi_{2^{j},\theta}(u-v) \, dv$$

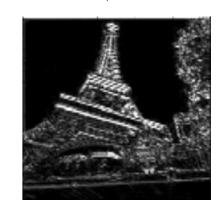
• Wavelet transform:
$$Wx = \begin{pmatrix} d^{-1} \sum_{u} x(u) \\ x \star \psi_{2^{j}, \theta}(u) \end{pmatrix}_{i, \theta}$$
: average in the integral of the entropy of the

average

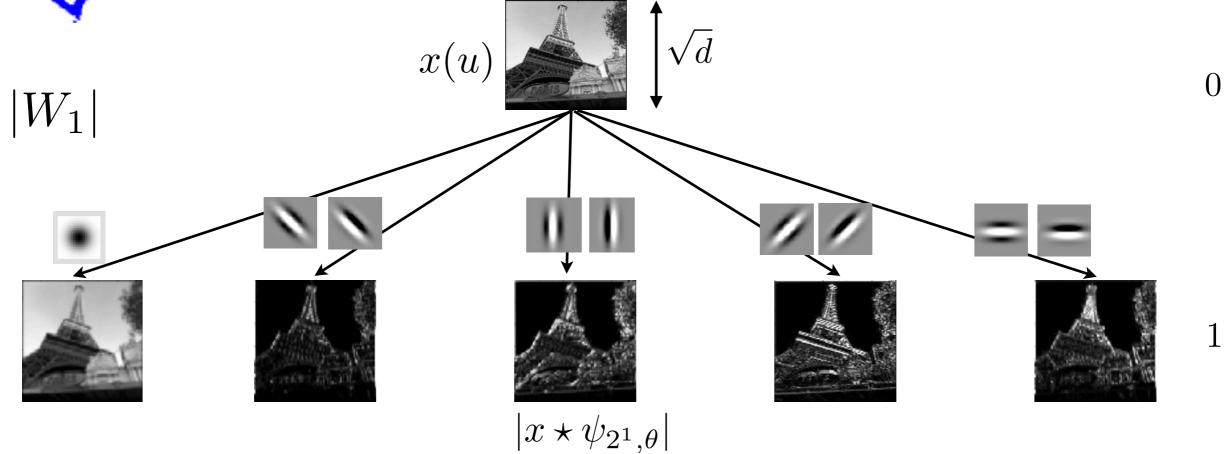
frequencies

Preserves norm: $||Wx||^2 = ||x||^2$.

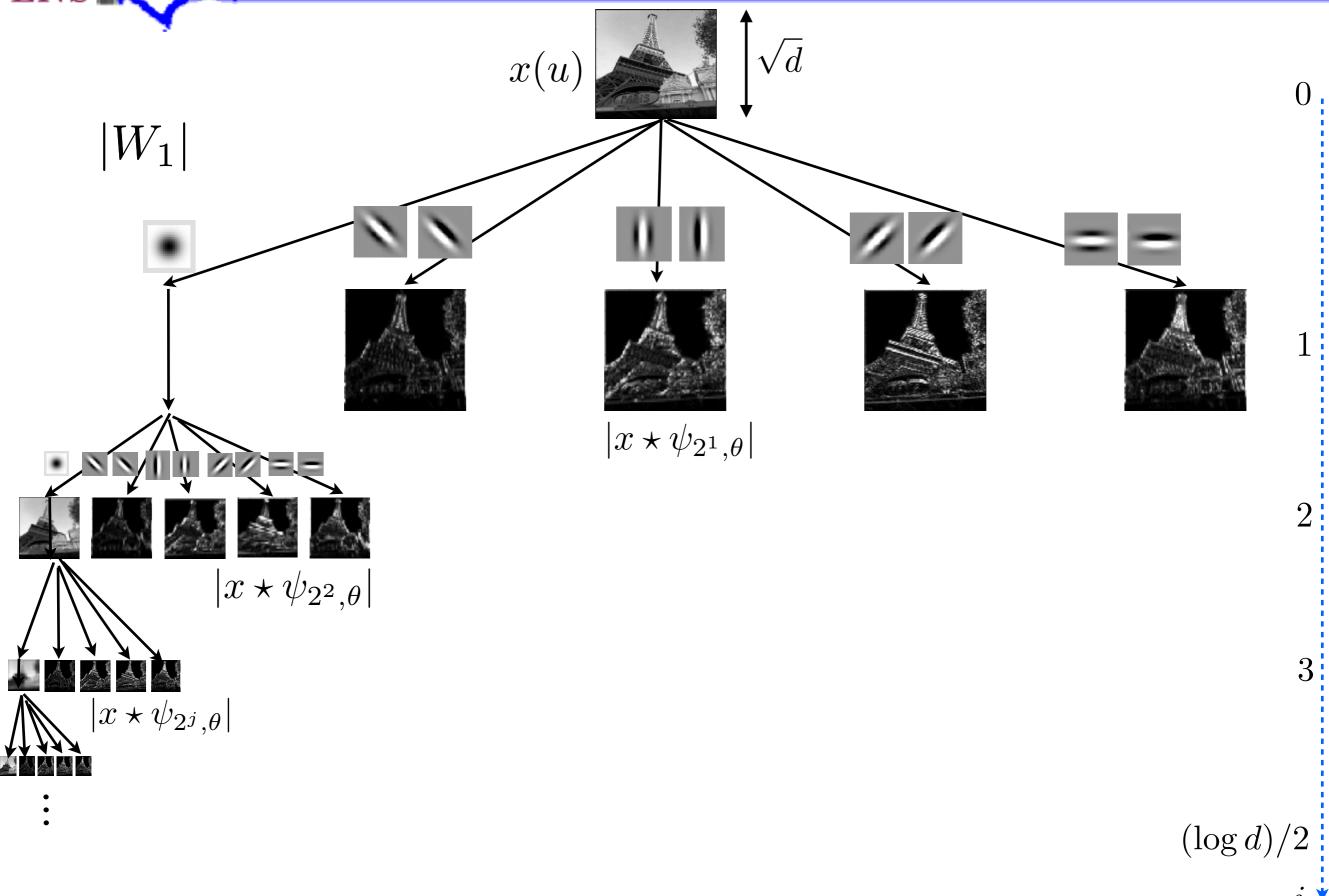




Fast Wavelet Filter Bank

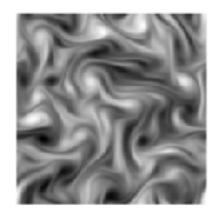


Wavelet Filter Bank

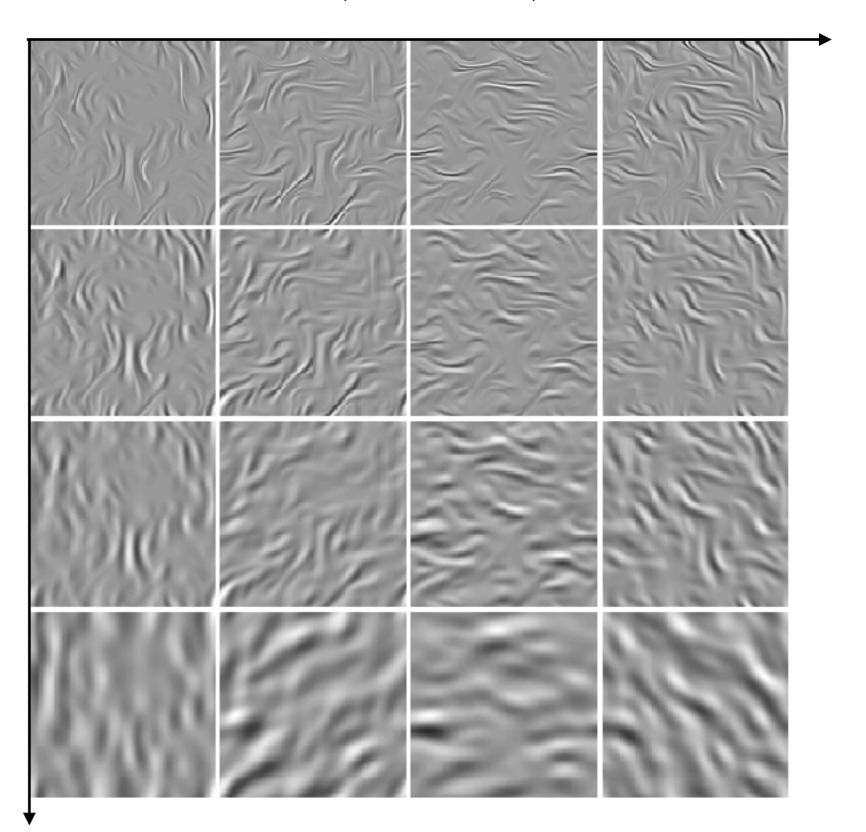


Wavelet transform

 ${\mathcal X}$

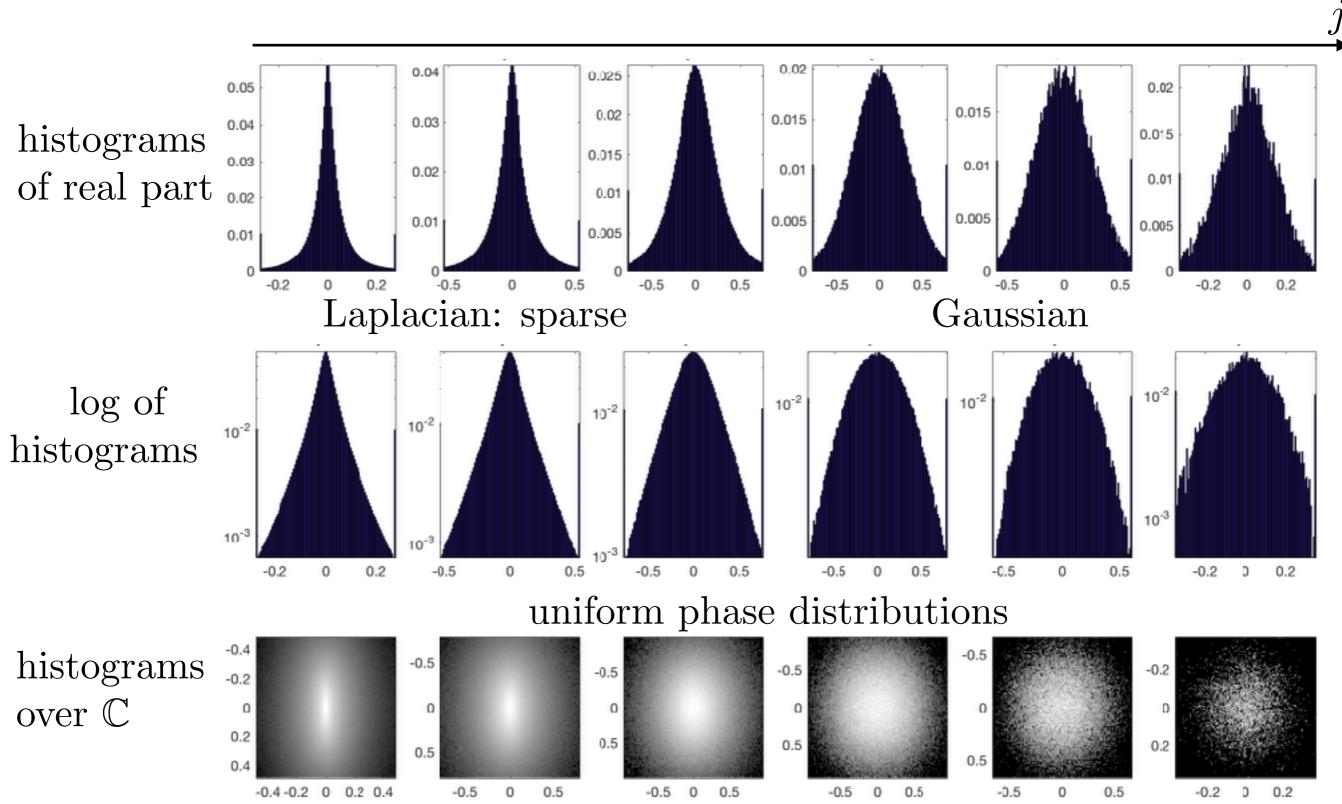


$$x \star \psi_{\lambda} \text{ (real part)} : \lambda = (2^{j}, \theta)$$



_Wavelet Transform Marginals

Marginal distribution of wavelet coeffs $X \star \psi_{j,\theta}(u)$



Sparsity and Gaussianization

• If $X \star \psi_{\lambda}(u)$ has a Laplacian density $\alpha e^{-\beta|y|}$ then

$$||X \star \psi_{\lambda}||_{1} = \sum_{u} |X \star \psi_{\lambda}(u)|$$

is a sufficient statistics of maximum entropy models.

• If $X \star \psi_{\lambda}(u)$ has a Gaussian density $\alpha e^{-\beta |y|^2}$ then

$$||X \star \psi_{\lambda}||_2^2 = \sum_{u} |X \star \psi_{\lambda}(u)|^2$$

is a sufficient statistics of maximum entropy models.

Wavelet Maximum Entropy

ullet Wavelet model

$$\Phi(x) = \left\{ \sum_{u} x(u) , \sum_{u} |x \star \psi_{j,\theta}(u)|, \sum_{u} |x \star \psi_{j,\theta}(u)|^{2} \right\}_{(j,\theta)}$$

- Separates scales j and angles θ
- Markovian along u over cliques of size $\sim 2^j$ for each j, θ

• Canonical max entropy distribution conditioned by $\mathbb{E}_p(\Phi(x))$ $\log \tilde{p}(x) = \langle \Phi(x), \beta \rangle + \beta_0.$

Problem: computing β is too expensive

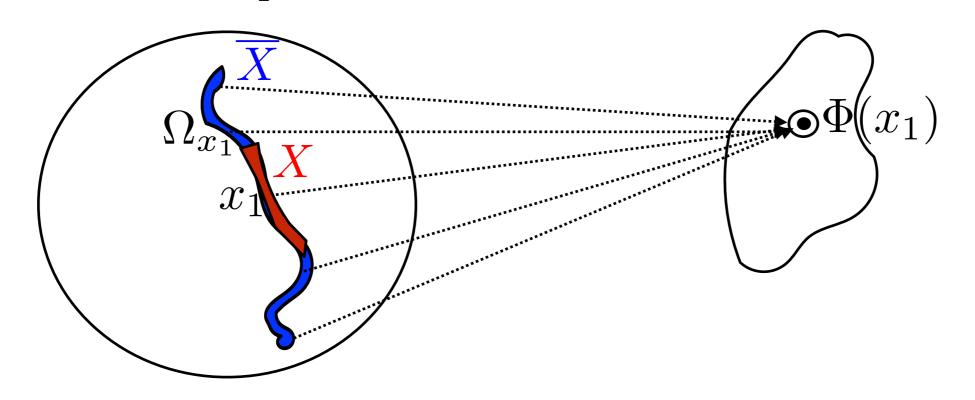
 \Rightarrow microcanonical approximation of \tilde{p}

Ergodic Microcanonical Model

Only n = 1 realisation x_1 of X is known

Microcanonical set:
$$\Omega_{x_1} = \{x : \|\Phi x - \Phi x_1\| \le \epsilon\}$$

Microcanonical model \bar{p} : maximum entropy supported in Ω_{x_1} \Rightarrow uniform in Ω_{x_1} if bounded set.



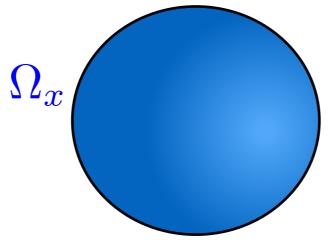
Ergodicity:
$$\operatorname{Prob}\left(|\Phi X - \mathbb{E}(\Phi X)| < \epsilon\right) \xrightarrow[d \to \infty]{} 1 \Rightarrow \Phi x_1 \approx \mathbb{E}(\Phi X)$$

Gibbs conjecture: conditioning on Φx_1 or on $\mathbb{E}(\Phi X)$ converges to the same Gibbs measure when d goes to ∞ .

Uniform Distribution on Balls

• Sphere in \mathbb{R}^d

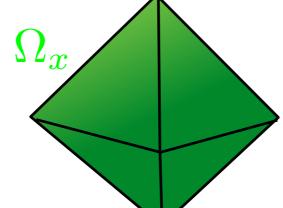
$$\Phi x = d^{-1} ||x||_2^2 = d^{-1} \sum_{k=1}^{\infty} |x(k)|^2$$



Borel 1914 Diaconis, Freedman 1987

$$\overline{X}(1),...,\overline{X}(d) \xrightarrow[d \to \infty]{} \text{i.i.d Gaussian} \sim e^{-u^2/2\sigma^2}$$

• Simplex in
$$\mathbb{R}^d$$
 $\Phi x = d^{-1} ||x||_1 = d^{-1} \sum_{k=1}^{\infty} |x(k)| = \mu$



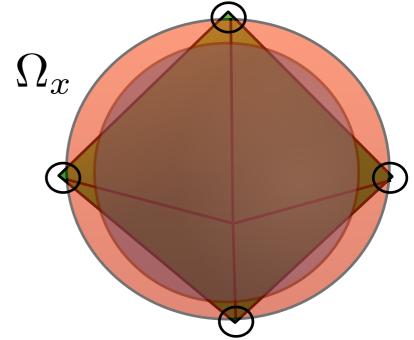
Diaconis, Freedman 1987

$$\overline{X}(1), ..., \overline{X}(d) \xrightarrow[d \to \infty]{} \text{i.i.d Exponential} \sim e^{-\lambda|u|}$$

Intersection of Sphere/Simplex

• Intersection of a Sphere and a Simplex in \mathbb{R}^d

$$\Phi x = (\|x\|_1, \|x\|_2^2)$$



Chatterjee 2015

• If d goes to ∞ then $\overline{X}(1),...,\overline{X}(d)$ converges to:

a canonical Gibbs: $e^{-\alpha|x|-\beta|x|^2}$ if $r = ||x||_2/||x||_1 < 2$

- Gaussian if $r = \sqrt{\pi/2}$
 - Laplacian if $r = \sqrt{2}$

a singular sparse distribution if r > 2

__ Gibbs Hypothesis



Theorem (H. Georgii)

If $\Phi x = \sum_u Ux(u)$ where Ux has a bounded range for $u \in \mathbb{Z}^d$ If the macro canonical distribution exists and converges to a unique Gibbs measure when d goes to ∞ then the microcanonical model converges to the same measure for a weak topology.

Proof: large deviation principle

Microcanonical Sampling Joan Bruna

• Sample max entropy \overline{X} in Ω_{x_1} : $\|\Phi \overline{X} - \Phi x_1\| \leq \epsilon$

Algorithm:

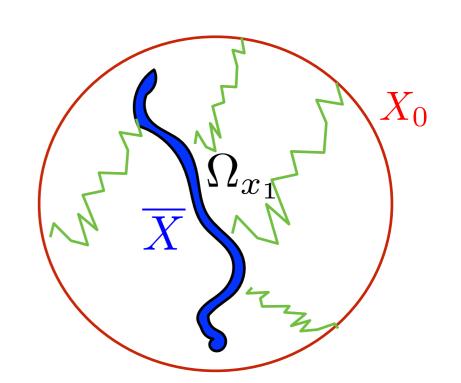
Initialized with X_0 Gaussian white noise

Iteratively reduce $\|\Phi X_n - \Phi x_1\|^2$ with gradient descent

• Proof of convergence to a stationary process X_{∞} The algorithm defines a transport of measure.

Math problems:

- No proof on maximum entropy
- Entropy lower bounds depend upon the Jacobian of Φ ...



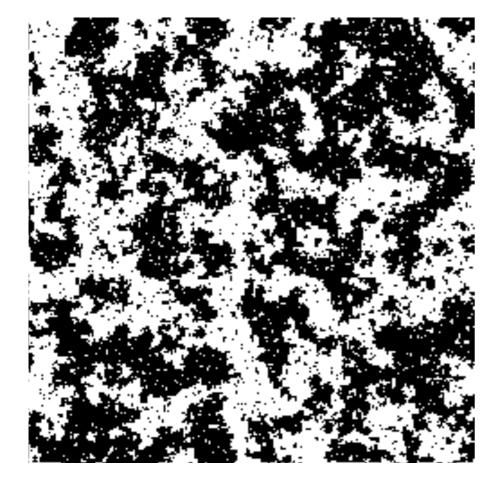
Ising at Critical Temperature

$$x(u) \in \{0, 1\}$$
 $p(x) = Z^{-1} \exp\left(\frac{1}{T} \sum_{(u, u') \in C_I} x(u) x(u')\right)$

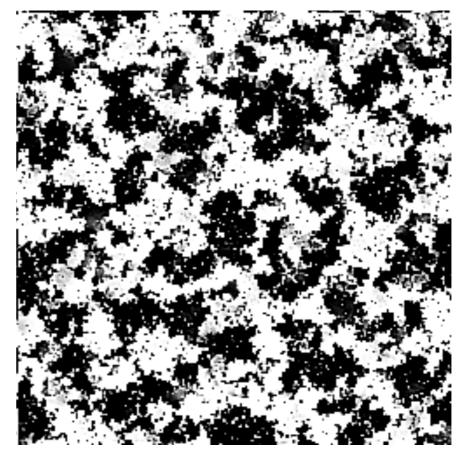
$$\Phi(x) = \left\{ d^{-1} \sum_{u} x(u) , \|x \star \psi_{\lambda}\|_{1}, \|x \star \psi_{\lambda}\|_{2}^{2} \right\}_{\lambda}$$

$$T = T_{\text{critic}} + \epsilon$$

Realization x_1 of X



Microcanonical X_{∞}

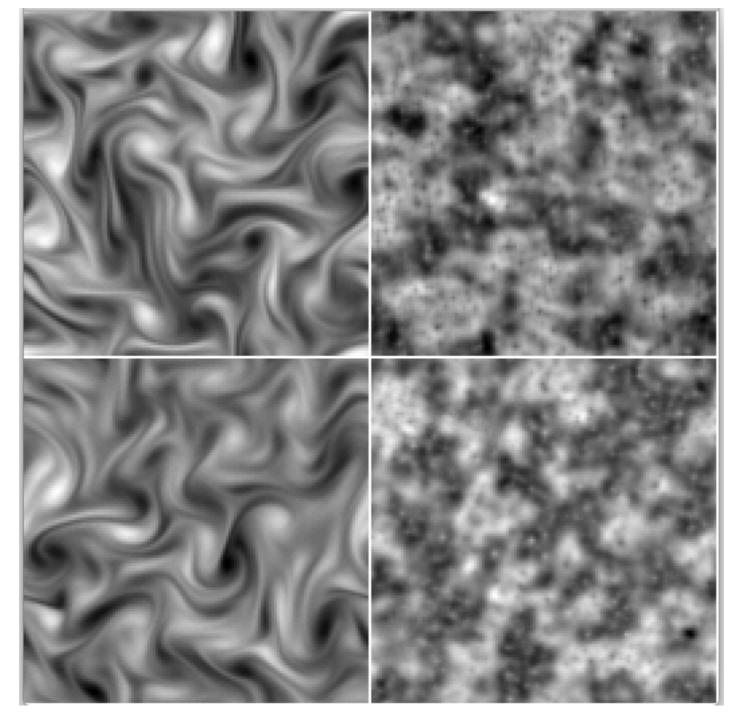


Microcanonical Reconstruction

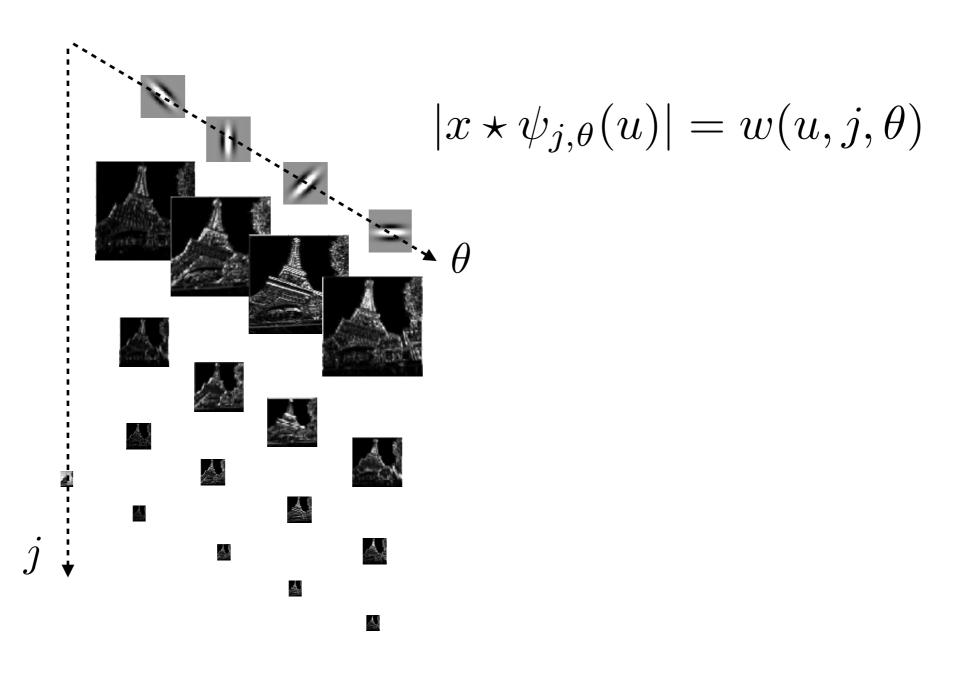
$$\Phi(x) = \left\{ d^{-1} \sum_{u} x(u) , \|x \star \psi_{\lambda}\|_{1}, \|x \star \psi_{\lambda}\|_{2}^{2} \right\}_{\lambda}$$

Realization x_1 of X

Microcanonical X_{∞}



Wavelet Model



$$\Phi(x) = \left\{ \sum_{u} x(u) , \sum_{u} |x \star \psi_{j,\theta}(u)|, \sum_{u} |x \star \psi_{j,\theta}(u)|^{2} \right\}_{(j,\theta)}$$

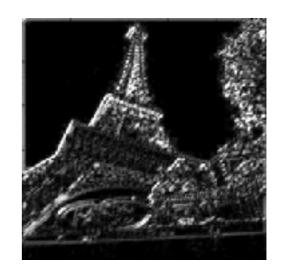
"Conditional independence" may be violated along u, θ , j

Higher Order Wavelet Coefficients -

Loss of information:

$$||x \star \psi_{\lambda_1}||_1 = \sum_{u} |x \star \psi_{\lambda_1}(u)|$$

eliminates all variations of $|x \star \psi_{\lambda_1}(u)|$ along u

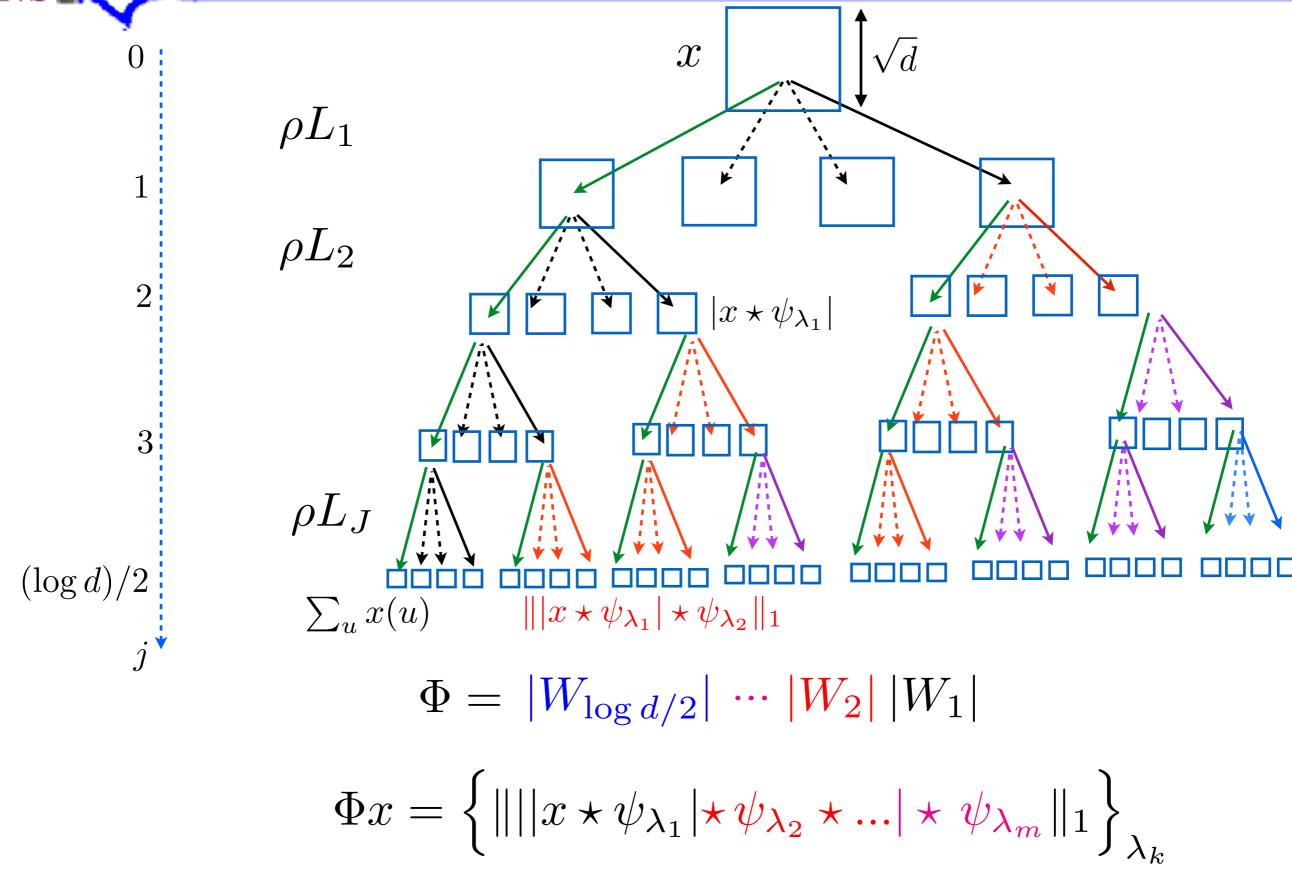


Lipschitz to diffeomorphisms:

recover them as wavelet coefficients of $|x \star \psi_{\lambda_1}(u)|$

$$|W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} \sum_{u} |x \star \psi_{\lambda_1}(u)| \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(u)| \end{array} \right)_{\lambda_2}$$

Wavelet Scattering Network



Scattering Properties

$$\Phi x = \begin{pmatrix} \sum_{u} x(u) \\ \|x \star \psi_{\lambda_{1}}\|_{1} \\ \||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}\|_{1} \\ \||x \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}\|_{1} \\ \dots \end{pmatrix}_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \dots} = \dots |W_{3}| |W_{2}| |W_{1}| x$$

$$||W_k x|| = ||x|| \Rightarrow ||W_k x| - |W_k x'|| \le ||x - x'||$$

Lemma: If $g \in \text{Diff}(\mathbb{R}^2)$ then

$$||[W_k, g]|| = ||W_k g - gW_k|| \le C ||\nabla g||_{\infty}$$

Theorem: For appropriate wavelets, a scattering is

contractive
$$\|\Phi x - \Phi y\| \le \|x - y\| : in \mathbf{C}^1(\mathbf{L}^2(\mathbb{R}^2))$$

 $preserves\ norms\ \|\Phi x\| = \|x\|$

Lipschitz on diffeomorphisms $\|\Phi x - \Phi(g.x)\| \le C \|\nabla g\|_{\infty}$

Energy conservation

$$||x|| = ||\Phi x|| \Rightarrow ||x \star \psi_{\lambda_1}||_2^2 = ||\Phi||x \star \psi_{\lambda_1}||_2^2$$

$$||x \star \psi_{\lambda_1}||_2^2 = \sum_{m=2}^{\infty} \sum_{\lambda_2, \dots, \lambda_m} ||||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \dots || \star \psi_{\lambda_m}||_1^2$$

All L^2 norms are derived from L^1 norms.

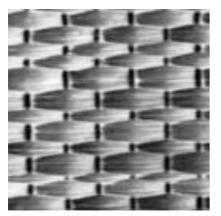
Non-negligible L^1 norms appear at order 1 and 2:

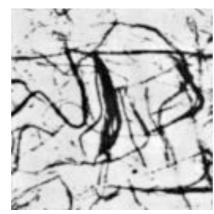
$$\Phi(x) = \left\{ \sum_{u} x(u) , \|x \star \psi_{\lambda_1}\|_1, \||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_1 \right\}_{\lambda_1, \lambda_2}$$

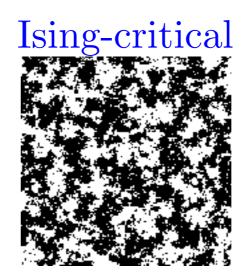
If $x \in \mathbb{R}^d$ then $\Phi x \in \mathbb{R}^{O(\log^2 d)}$

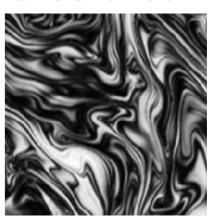
Texture Reconstructions Joan Bruna

Texture of d pixels

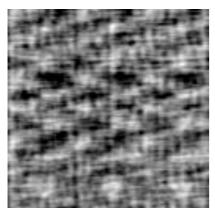


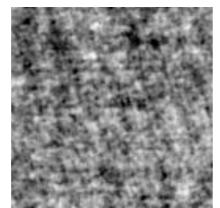


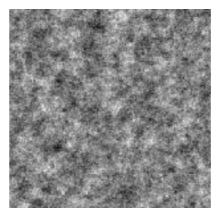


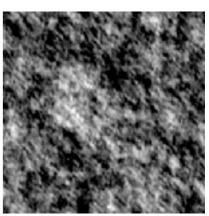


Gaussian process model with d second order moments

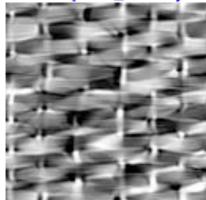


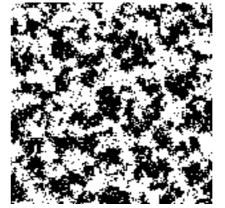


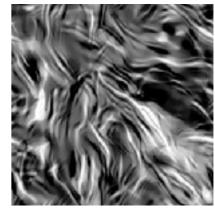




Reconstructions from $||X \star \psi_{\lambda_1}||_1$ and $|||X \star \psi_{\lambda_1}||_{\star} \psi_{\lambda_2}||_1$ $O(\log^2 d)$ scattering coefficients







Microcanonical Reconstructions

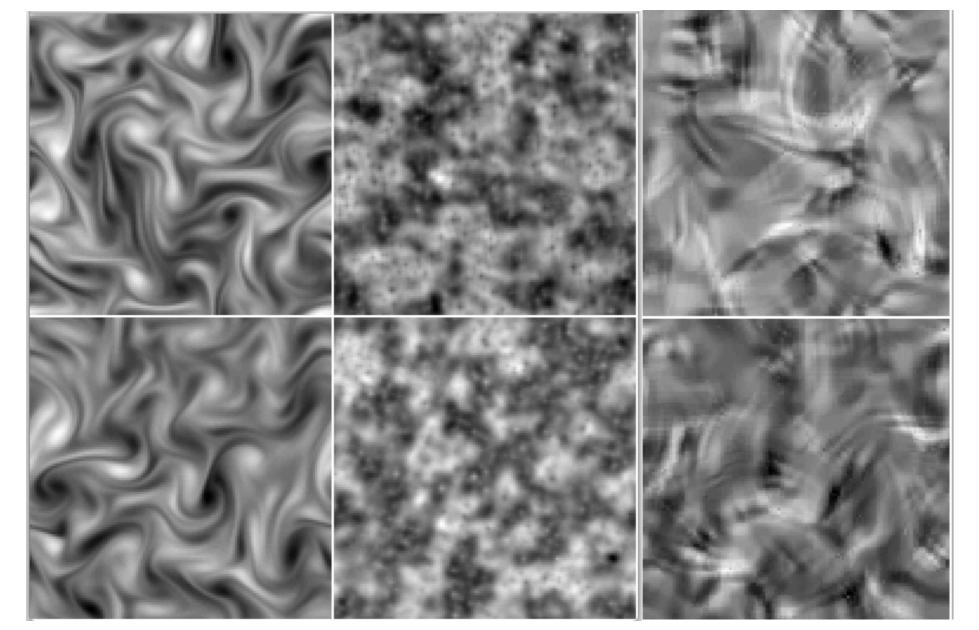
$$\Phi(x) = \left\{ \sum_{u} x(u) , \|x \star \psi_{\lambda_1}\|_1, \||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_1 \right\}_{\lambda_1, \lambda_2}$$

Microcanonical X_{∞}

Realization x_1 of X

order 1

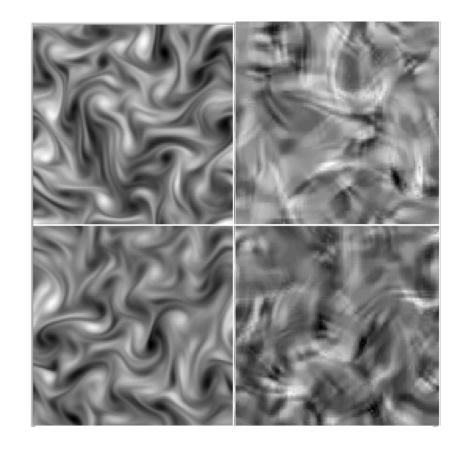
order 2



Must further reduce entropy

Reduction of Model Entropy

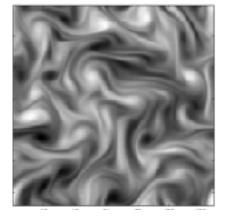
• Scattering model of too high entropy $|x\star\psi_{\theta,j}(u)|=w(u,\theta,j)$



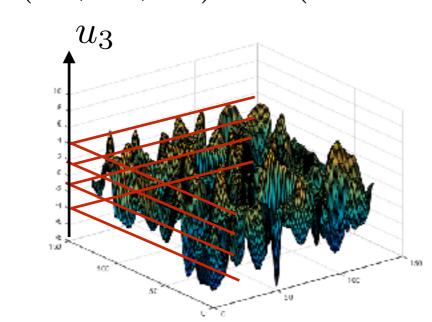
- not sparse at intermediate scales 2^j but not Gaussian
- joint dependance in $(u, \theta) \Rightarrow$ wavelet transforms in (u, θ)
- dependence on amplitude values?

3D Scattering for Amplitude

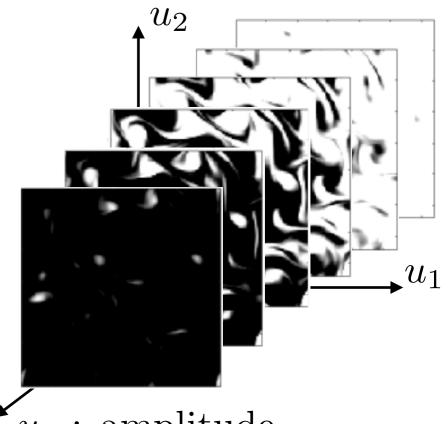




 $\bar{x}(u_1, u_2, u_3) = \delta(u_3 - x(u_1, u_2))$



sigmoids



 u_3 : amplitude

We want Φ in $\mathbf{C}^1(\mathrm{Diff}(\mathbb{R}^3))$

3D wavelets: $\psi_{\lambda}(u_1, u_2, u_3) = 2^{-2j}\psi(2^{-j}r_{\theta}(u_1, u_2)) 2^{-\ell}\psi(2^{-\ell}u_3)$ Joint dependance on amplitude and spatial geometry

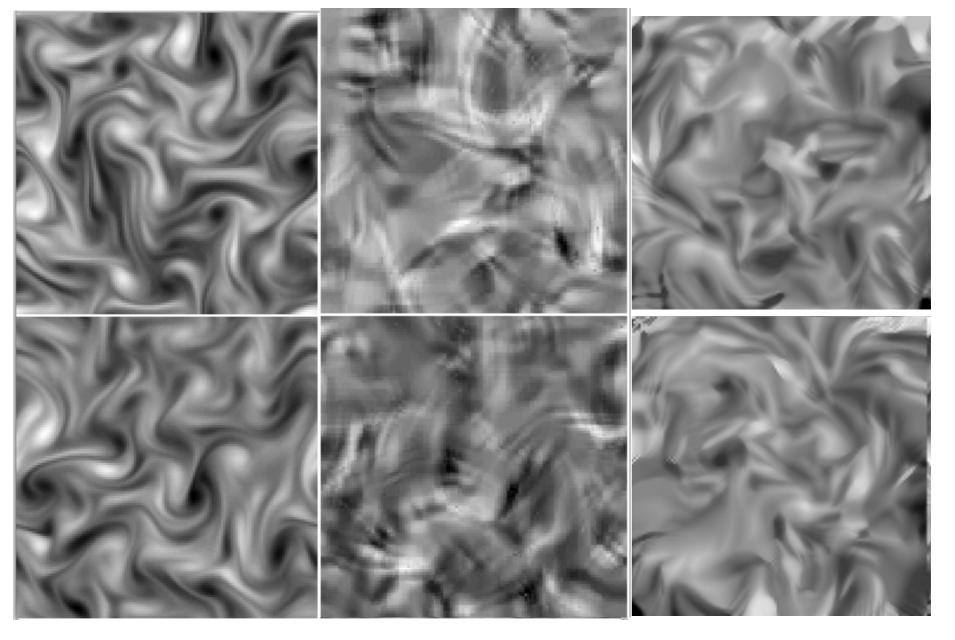
$$\Phi \bar{x} = \begin{pmatrix} \sum_{u} \bar{x}(u) \\ \|\bar{x} \star \psi_{\lambda_1}\|_1 \\ \|x \star \psi_{\lambda_1}\| \star \psi_{\lambda_2}\|_1 \\ \dots \end{pmatrix}$$

Wavelet coefficients are much more sparse at intermediate scales

3D Scattering Models

Preliminary results

Realization x_1 of X 2D Scat on x 3D Scat on \bar{x}



Conclusions

 Regularity in high dimension as regularity to action of diffeomorphisms on different groups

• Long range dependence: variable separation through scales

• Entropy reduction with sparsity: L1 geometry

