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Thank the organizer for the invitation to attend this
workshop and give a talk on mathematical framework
for spatially distributed networks.
Thank professor Waishing Tang for his invitation to visit
Department of Mathematics, National University of
Singapore.
This talk is based on a joint work with Yingchun Jiang
and Cheng Cheng; more

Math philosophy: Think global, act local by Patrick
Geddes.
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Outline

Spatially distributed networks and their topologies

Graph description for signal sampling and
reconstruction systems

Sensing matrices and local stability criterion

Distributed implementation for signal reconstruction
algorithms
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Part I: Spatially distributed networks (SDN)

Spatially distributed network (SDN) contains large amount
of small devices with sensing, data processing, and
telecommunications capabilities feasible.

sensing capability
limited telecommunication range
certain data processing ability (computing power)
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Part I: SDNs and our study

Our model of SDNs: wireless sensor networks with
remote sensors deployed over a region and
communication available only within a spatial range;
smart power grids with sparse interconnection
topologies, multi-agent systems with nearest-neighbor
coupling structures, and perhaps image denoising by
patch-based local models.
Our study: mathematical framework on SDN adaptive
to signal sampling and reconstruction.
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Part I: Advantage of SDS

An SDN could give unprecedented capabilities for signal
sampling and reconstruction, especially when

creating a data exchange network requires significant
efforts (due to physical barrier such as interference in
relatively inexpensive infrared lasers)
establishing a centralized processor presents the
daunting challenge of processing all the information
(such as big-data problem, reliable (wired)
communication unavailable).
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Part I: Graph description of SDNs

We describe the topology of an SDN by a graph G = (G,S),
a vertex represents a sensing device
an edge between two vertices means that direct
communication link to exchange messages exists
between those two devices.
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Part I: What we want to do for SDNs?

We study SDNs for signal sampling and reconstruction.
What we need and what we can do?

Stability (robust against sampling error)

Local and real-time reconstruction (signals
reconstructed from neighboring sampling data
approximately, signals on a manifold)

Limited computation and communication for sensing
devices (Depending only on neighbors, not the size of
the system)

Feasibility (supplement, replacement, and impairment
of sensing devices)
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Our strategy

How to solve for spatially distributed
sampling/reconstruction systems:

divide an SDN into overlapped subsystems with limited
size, and use the uniform stability of spatially
distributed subnetworks to study robustness of the SDN
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Reconstruct signal locally via subnetworks and then
stitch the patch solutions of subsystems to form an
approximation of the true signal.

Signal sampling and reconstruction on an SDN?
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Part II: Graph structure of sampling system

Question: How to describe a spatially distributed sampling
system?
Answer: connected simple graph G := (G,S)

Vertex: spatial location of a device with sensing,
computing and telecommunications capabilities.
Edge: direct communication exists between devices at
two vertices(spatial locations).
connected: communication across the entire network
simple (undirected, unweighted, no graph loops or
multiple edges).
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Part II: Graph structure of sampling system

simple graph: undirected, unweighted, no graph loops or
multiple edges.

undirected: bi-directional direct communication links
unweighted: evices with almost same communication
specification
no graph loops: No communication within each device
no multiple edges: no multiple direct communication
channels between devices exist
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Part II: Graph structure of sampling system

Geodesic distance: ρG(λ, λ′) is the number of edges in
a shortest path connecting two distinct vertices.
Counting measure µG : µG(F ) := ](F ) for F ⊂ G.
Measure of a ball µG(BG(λ, r))?
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Part II: Dimension and density of sampling
system

Polynomial growth: if there exist positive constants
D1(G) and d(G) such that

µG(BG(λ, r)) ≤ D1(G)(1 + r)d(G) for all λ ∈ G and r ≥ 0.

Beurling dimension:

d(G) = lim sup
r→∞

sup
λ∈G

lnµG(BG(λ, r))
ln(1 + r)

Maximal sampling density:

D1(G) = sup
r≥0

sup
λ∈G

µG(BG(λ, r))
(1 + r)d(G) .
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Part III: What kind of signals we want to study?

spatial signals f =
∑

i∈V ciϕi , where ϕi is the
generating signal at innovative position i ∈ V , and
amplitudes ci , i ∈ V , are bounded.1

bandlimited signals, spline signals, global positioning
system, ultra wide-band communication, mass
spectrometry.

1M. Vetterli, P. Marziliano, and T. Blu, IEEE Trans. Signal Proc., 2002. and
Q. Sun, Adv. Comput. Math., 2008.
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Part III: Signals and SDNs

Question: How to connect signal to sampling graph?

For every innovative position i ∈ V , we associate it with
locations λ ∈ G of principal sensing devices.

Let T contain all pairs of innovative positions and
locations of their principal sensing devices, and let
T ∗ = {(λ, i) ∈ G × V , (i , λ) ∈ T}.
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Part III: Distributed sampling and
reconstruction system

Recall: spatial signals f =
∑

i∈V ciϕi , where ϕi is the
generating signal at innovative position i ∈ V , and
amplitudes ci , i ∈ V , are bounded.
Our distributed sampling/reconstruction system (DSRS) by
the connected undirected graph

H := (G ∪ V ,S ∪ T ∪ T ∗).

Figure: Signal sampling/reconstruction system
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Part V: Sampling

Consider spatial signals f =
∑

i∈V ciϕi , where ϕi is the
generating signal at innovative position i ∈ V , and
amplitudes ci , i ∈ V , are bounded.2

Then the sensing vector

y = (〈f , ψλ〉)λ∈G (1)

where ψλ is the impulse response of the sensing device
located at position λ ∈ G.

2M. Vetterli, P. Marziliano, and T. Blu (2002); and Q. Sun (2008)
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Part V: Sensing matrices for sampling

The sensing matrix associated with our SDS is given by

S = (〈ψλ, ϕi〉)λ∈G,i∈V , (2)

where ψλ reflects characteristic of the acquisition
device at sensing location λ ∈ G, and ϕi is the
generating signal at innovative position i ∈ V .
sampling procedure: The sensing matrix S maps the
amplitude vector c = (ci)i∈V of a signal f =

∑
i∈V ciϕi

into its sensing vector y = (〈f , ψλ〉)λ∈G,

y = Sc. (3)
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Part V: Sensing matrices with off-diagonal
decay

Off-diagonal decay:
Acquisition devices in our SDS has limited sensing
ability and they could essentially catch signals not from
their locations.

Jaffard class Jα(G,V)3:

Jα(G,V) :=
{
(a(λ, i))λ∈G,i∈V ,

sup
λ∈G,i∈V

(1 + ρH(λ, i))α|a(λ, i)|, α ≥ 0}.

3S. Jaffard, Ann. Inst. Henri Poincaré, 7(1990), 461-476.



Spatially
distributed

sampling and
reconstruction

systems

Qiyu Sun
(University of

Central
Florida)

Part VI: Reconstruction in presence of bounded
noise

Reconstructing a signal from sampling data in the presence
of noises is a leading problem in sampling theory.

How to reconstruct c approximately from noisy samples

z = Sc + ηηη.

Sampling error

‖Sc1 − Sc2‖∞ ≤ C‖S‖Jα(G,V)‖c1 − c2‖∞ (4)

for all c1,c2 ∈ `∞.
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Part VI: Conventional minimization method

Consider the scenario that sampling data is corrupted by
bounded noise η,

z = Sc + ηηη, (5)

where c, ηηη ∈ `∞.
Conventional signal reconstruction:

d := argmind∈`∞‖Sd− z‖∞. (6)

Expectation:
‖d− c‖∞ ≤ C‖ηηη‖∞, (7)

where C is a positive constant.
How to meet our expectation?
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Part VI: Stability of sensing matrices

For 1 ≤ p ≤ ∞, a matrix A is said to have `p-stability if

A‖c‖p ≤ ‖Ac‖p ≤ B‖c‖p, c ∈ `p. (8)

Meet the expectation if the sensing matrix S of our SDS has
`∞-stability:

Proof. Given noise data z = Sc + η, corrupted by bounded noise η, do
minimization d := argmind∈`∞‖Sd− z‖∞. Then

‖Sd− Sc− ηηη‖∞ = ‖Sd− z‖∞ ≤ ‖Sc− z‖∞ = ‖ηηη‖∞,

which implies that
‖Sd− Sc‖∞ ≤ 2‖ηηη‖∞.
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Our main mathematical contributions

How to verify `∞-stability.

How to solve `∞ minimization

Our first topic: Verification `∞-stability⇐ `2-stability
(positive eigenvalues of ST S)⇐ local stability criterion

Our second topic: `∞ minimization (global linear
programming)⇐ least square solution d̃ is sub-optimal

‖d̃− c‖∞ ≤ C‖ηηη‖∞. (9)
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Part VII: From `2-stability to `∞-stability

Theorem 1 (Cheng, Jiang and S.)

Assume that S ∈ Jα(G,V) for some α > d. If S has
`2-stability, then it has `p-stability for all 1 ≤ p ≤ ∞.

By the Theorem 1, the `∞-stability of a matrix A in
Jα(G,V) reduces to its `2-stability.

How to verify the `2-stability?
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Part VII: Local criterion for stability of sensing
matrices

The `2-stability of a sensing matrix S is equivalent to
positive eigenvalues of ST S. But it is not practical, as
eigenvalue of ST S cannot be evaluated by the SDS itself.

For λ ∈ G and positive integer N, define

χN
λ : (c(i))i∈V 7−→

(
c(i)χBH(λ,N)∩V (i)

)
i∈V
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Theorem 2 (Cheng, Jiang and S.)

Let S ∈ Jα(G,V), α > d. The it has `2-stability if and only if
its quasi-main submatrices χ2N

λ AχN
λ , λ ∈ G, of size O(Nd)

have uniform `2-stability for large (but fixed) N,

‖χ2N
λ AχN

λ c‖2 ≥ A‖A‖Jα(G,V)‖χ
N
λ c‖2, c ∈ `2(V ), (10)

for all λ ∈ G.



Spatially
distributed

sampling and
reconstruction

systems

Qiyu Sun
(University of

Central
Florida)

Part VIII: Least squares

Recall: z = Sc + ηηη.
The "least squares" solution

d̃ = (ST S)−1ST z

of the linear system Ad = z is well-defined if S ∈ Jα(G,V)
for some α > d and it has `2-stability. Moreover, it is a
suboptimal reconstruction.

Theorem 3 (Cheng, Jiang and S.)
There exists a positive constant C such that

‖d̃− c‖∞ ≤ C‖ηηη‖∞. (11)
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Part VIII: `∞-minimization and `2-minimization

Conventional minimization:

d := argmind∈`∞‖Sd− z‖∞.

"least squares" solution

d̃ = (ST S)−1ST z = argmind∈`2‖Sd− z‖2

Comparison:
The ”least square” solution d̃ has explicit expression
and it depends on the noisy sampling data z linearly,
The optimal solution d does not have a closed form,
and it depends on z nonlinearly. (global linear
programming)
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Part IX: Spatially distributed algorithm I

Question: How to find least squares d̃ = (ST S)−1ST z?

Let c ∈ `∞(V ) and y = Sc be sampling data vector. Set
initial c0 = 0 and y0 = y, and define cn,yn,n ≥ 1, iteratively
by 

zn;λ,N = Rλ,Nyn, λ ∈ G,

zn =
∑
λ∈G χ

N
λzn;λ,N∑

λ∈G χB(λ,N)
,

cn+1 = cn + zn,
yn+1 = yn − Szn,

(12)

where
Rλ,N =

(
χ2N
λ STχ4N

λ Sχ2N
λ

)−1
χ2N
λ STχ4N

λ .
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Part IX: Spatially distributed algorithm II

The implementation of the algorithm (12) can be distributed
for devices in an SDS in each iteration.

zn;λ,N = Rλ,Nyn, λ ∈ G

(i) For the device located at λ ∈ G, first get data yn(γ)
from neighboring devices located at γ ∈ B(λ,4N), and
then generate local correction zn,λ,N ;
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Part IX: Spatially distributed algorithm III

zn =

∑
λ∈G χ

N
λ zn;λ,N∑

λ∈G χB(λ,N)

(ii) Then send the correction zn,λ,N to neighboring devices
located at γ ∈ B(λ,N) and compute the correction zn.
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Part IX: Spatially distributed algorithm IV

cn+1 = cn + zn

(iii) Next add the correction zn to old prediction cn to create
new prediction cn+1.
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Part IX: Spatially distributed algorithm V

yn+1 = yn − Szn

(iv) Send zn(λ) to neighboring devices at γ ∈ B(λ,M) and
compute new correction yn+1 on sampling data, where
M is the bandwidth of the sensing matrix S.
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Part IX: Exponential Convergence of our
distributed algorithm

The complexity of the above distributed algorithm (using
data processing and communication capabilities).

Storage requirement O(Nd)
Computing power O(Nd) for each iteration
Communication cost O(Nd+β) if the communication
cost between two devices λ, λ′ is propositional to
ρ(λ, λ′))β (usually β = 1)
Number of iteration ln(1/ε)

ln N , where ε is accuracy
requirement.

Theorem 4 (Cheng, Jiang and S.)

If an SDS has `2-stability. Then for large N, the sequence
cn,n ≥ 0, converges to c exponentially,

‖cn − c‖∞ ≤ rn
1 ‖c‖∞. (13)
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Part X: Simulations

Figure: Top is the signal f =
∑

1≤l≤L clφl with 2-D Gaussian
kernel; Bottom is the difference of the original signal and the
reconstructed signal using the algorithm with N = 4.
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Part IX: faster convergence

Minimal storage, computing, and communications
capabilities by selecting smaller integer N.
Fast convergence (less delay for reconstruction) by
selecting large N when large storage and better
computing and communications capabilities available.
For sufficiently large N, no iteration necessary, cf.
finite-section method.
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Math and Philosophy

Philosophy: Think global, act local: Local criterion for
stability, distributed algorithms
Mathematics: Property of matrices (operators,
functions) by preserved by certain mapping, such as
inverse.

1 Wiener’s lemma: If A has certain off-diagonal decay
and it is invertible, then A−1 has the same off-diagonal
decay. For instance, if A = (a(m,n))m,n∈Z has
polynomial off-diagonal decay,

|a(m,n)| ≤ C(1 + |m − n|)−α, m,n ∈ Z

and A has bounded inverse, then A−1 has the same
off-diagonal decay.

2 A 7−→ A−1 (Inverse-closed algebra). 4

4I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman, 1989; S. Jaffard,
1990; J. Sjöstrand, 1994; Shin and Sun, 2009. K. Gröchenig and M.
Leinert, 2011; S., 2007, 2009; N. Motee and Q. Sun, Siam Optimization
2017.
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Summary

Framework for spatially distributed system for signal
and sampling.
Stability of sensing matrices.
Distributed algorithm for fast reconstruction
Distributed algorithms for global optimization

argmin ‖Ax − b‖22 + λ‖Bx‖1.

Philosophy: Think global, act local; Mathematics:
Property of matrices (operators, functions) by
preserved by certain mapping, such as inverse.

Thank You!


