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Motivation

Medical imaging: quantify morphology, cardiac motion,…

Graphics: simulation of object motion, animation …

Visions: shape analysis, classification, recognition, video tracking…

Analyzing shape deformation and extracting the deformation pattern of 
shapes over time…  

Quantify morphology
Analysis of cardiac motion



Analysis of deformations
 Shape deformation as a transformation of the domain in 

which the object is embedded;
 Deformation = Combination of local and global 

deformations of different scales and locations;
 Focus on: Foldover-free shape deformation (bijective 

transformation);
 GOAL: Develop an algorithm to decompose a 

deformation into different components of different scales 
and locations.



Challenge:
 Each component of the decomposition remains bijective

(describe foldover-free deformations at multiple scales);
 Applying multiscale decomposition (e.g. Fourier) on the 

coordinate functions cannot preserve bijectivity.

Fourier compression on the 
coordinate functions



Related works:
 Abeyratne et al.: apply Cauchy-Navier equation to describe 

the elastic deformation, a wavelet-based approach is developed 
for multiscale deformation analysis;

 Sommer et al.: proposed multiscale decomposition using 
multiscale kernel bundle to represent large deformations, 
under the Large Deformation Diffeomorphic Metric Mapping 
(LDDMM) framework.

 Donoho et al. : proposed morphlet transform to transform a 
deformation into multiple scales; inverse transform is a 
bijection; 

 Tong et al.: proposed variational multiscale decomposition of 
vector fields



Propose method:
 Apply the Beltrami coefficient to represent the bijective

deformation;
 Wavelet transform on the Beltrami coefficient to obtain a 

multi-scale decomposition of a deformation.
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Beltrami coefficient & Bijective deformations

Illustration of local geometric distortion

 Every orientation-preserving 
homeomorphism between Riemann surfaces 
satisfies the Beltrami’s equation:

with:

 is called the Beltrami 
coefficient;

 A complex-valued function measuring the 
local geometric distortion

 Locally, we have

Scaling Stretch map



Example

Zero BC
(Conformal)

Non-zero BC
(Quasiconformal)

Zero Beltrami coefficient Non-zero Beltrami 
coefficient 



Measurable Riemann mapping Theorem

Measurable Riemann Mapping Theorem



Reconstruction of deformation from BC

1. Beltrami Holomorphic flow (BHF) method:
[Iterative modification of the mapping according to the variation of BC ]

The variation can be approximated by solving the Least Square Beltrami 
energy



Experimental results



Computational algorithms for QC

Linear Beltrami Solver (LBS)
[Converting the Beltrami’s equation into elliptic PDEs]

(Beltrami’s equation)

Taking divergence on both sides, we get the generalized Laplace’s equation

Subject to suitable boundary conditions, the above equation can be 
solved by efficiently conjugate gradient method.



Experimental results



Bijectivity preservation
 Adjusting the mapping by adjusting the BC can preserve the bijectivity

much easier;
 Manipulating the mapping through adjusting the coordinate functions 

may cause flips or folds.

Demonstration:

Method:
1.Represent bijective surface maps by BCs;
2.Write BCs as Fourier decomposition;

3.Truncate the high-frequency components for compression.



Bijectivity preservation

Fourier decomposition of BC:

Demonstration:

< 5% < 10%

< 20% < 50%

< 5% < 10%

< 20% < 50%



Bijectivity preservation

Fourier decomposition of coordinate functions:

Demonstration:
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Extraction of deformation
 Formulate a foldover-free deformation as a bijective

transformation of the domain in which the shape is 
embedded.

 An object is often captured by an image.
 Suppose the image of the object at the initial (t=0) and 

final (t=1) times are respectively:
and      

 Extract the deformation by finding the image registration:

where:



Image registration model using Beltrami coefficient
Large deformation image registration models: 

Solve the optimization problem over the space of Beltrami differentials:

(Landmark-based registration algorithm)

Landmark correspondences are given to guide the registration



Image registration model using Beltrami coefficient
Hybrid image registration models:
(Combining landmark correspondences and intensity matching) 

Solve the optimization problem over the space of Beltrami differentials:

Intensity matching term

(Hybrid registration algorithm)

Finding image registration that matches landmarks and intensities



QC Registration model for large deformation
Splitting method to solve the optimization problem:



QC Registration model for large deformation
Splitting method to solve the optimization problem:



Registration model for large deformation
Experimental results: 

Large deformation landmark registration

Large deformation hybrid registration



Registration model for large deformation
Experimental results: 



Applications of QC Registration

Medical applications:

Geometric matching Hippocampus registration to analyze Alzheimer’s disease

Brain surface registration (find one-one correspondence) for brain cortical surface comparison
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Multiscale decomposition of deformations 

 Extract bijective deformation                   using image registration;
 Represent the bijective transformation using Beltrami coefficient:

 Wavelet transform on the Beltrami coefficient to obtain a multi-scale 
decomposition of the Beltrami coefficient.

 Obtain the multiscale components of the deformation by reconstructing 
the transformation from BCs, through solving:

Key idea:

Determined by BC

Subject to suitable boundary conditions.



Multiscale representation (MSR) of deformations

 Let              ,                   ,                  and                  be the 2D 
scaling and wavelet functions. Define:

 Given a bijective transformation     representing a foldover-free 
deformation. Let          be the BC of     .

 Decompose the BC as follows: 

where: 



Multiscale representation (MSR) of deformations
Some terminologies:



Multiscale representation (MSR) of deformations

Definition of MSR of a foldover-free deformation

Some remarks:

 The truncation operator can simply be chosen as:



Some theoretical results (1):

Remarks:

 In fact: 
 Also, our proposed method decomposes a deformation into its MSR:

 The above theorem shows that our proposed MSR                    starts 
from an identity transformation, which is called the trivial deformation.

 The sequence of deformation will capture finer and finer details.



Some theoretical results (2):

Remarks:

 Our algorithm allows us to project an input deformation to a 
component, such that its deviation from the original deformation 
with respect to the local geometric distortion is within a 
prescribed error.



Some theoretical results (3):

Remarks:

 The above theorem shows that the deformation component converges 
to the original deformation as j increases.

 In other words, our decomposition gives a sequence of transformations, 
which capture finer and finer geometric details from the coarsest level, 
until it resembles to the original deformation.



Some theoretical results (4):

Remarks:

 The above theorem tells us the bijectivity of the extracted 
deformation components can be achieved by enforcing the norm 
of BC to be strictly less than one.

 All deformation components from our multiscale decomposition 
are foldover free.



Some theoretical results (5):

Remarks:

 The above theorem show that the extracted deformation component 
and its first derivatives are close to the actual ones in Lp-sense, when 
the extracted BC is close to the BC of the actual deformation 
component.

 The application of BC in our algorithm can lead to good 
approximations of the deformation components up to their first 
derivatives.



Some theoretical results (6):

Remarks:

 The above theorem shows that the differentiability of the extracted 
transformation is one degree higher than its associated BC. 

 The application of BC in our algorithm enhances the differentiability 
(smoothness) of the extracted deformation component.



Algorithm:
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Experimental results
Example 1:

Deformation from a circle to a star-shaped contour. The unit circle and the deformed star-shaped contour are shown in 
(a) and (b) respectively. The boundaries of the object in the original and deformed images are labeled in blue and black 

respectively as landmarks. (c) and (d) show the real and imaginary part of the BC associated to the deformation.



Experimental results
Example 1: (Continued)

Multi-scale representation of the deformation from a circle to a star-shaped contour. (a) and (b) respectively show the 
reconstruction of the real and imaginary part of BC using the full set of coefficients. (c) and (d) show the local and global

deformation components respectively. (e) shows the spectrum of the wavelet decomposition coefficients.



Experimental results
Example 2:

(a) and (b) show the original mesh and the registration result of Example 2, where the landmarks and targets are marked 
in blue and black respectively. (c), (d) and (e) show the local, intermediate and global deformation components 

respectively.



Experimental results
Example 3:

(a) and (b) show the original mesh and the registration result of Example 3, where the landmarks and targets are marked in 
blue and black respectively. (c) and (d) show the mask for the wavelet decomposition coefficients for extracting the regional
local and global deformation components. (e) shows the spectrum of the wavelet decomposition coefficients. The black 

dotted vertical line shows the boundary of the mask introduced.



Experimental results
Example 3: (Continued)

(a), (b) and (c) show the global, left and right local deformation components extracted by our proposed algorithm. (d) and 
(e) show the extraction results obtained by directly applying the wavelet transform on the vector fields of the mapping. 
Note that abnormal squeezing and foldovers can be observed.



Experimental results
Example 4:

(a) and (b) show the original and deformed mesh of Example 4. (c) and (d) shows the mask for extracting the decomposition 
coefficients of Example 4, which are divided into four regions. (e) shows the spectrum of the wavelet decomposition 

coefficients of Example 4.

(a) shows the extracted global deformation component of Example 4. (b), (c), (d) and (e) shows the local deformation 

components at the bottom-left, bottom-right, top-right and top-left regions respectively.



Experimental results
Example 5: Spine deformation

(a) shows the original spine image. (b) shows the deformed spine image of a grown-up patient. (c) and (d) respectively 
show the landmark points in (a) and (b) marked in blue. A triangular mesh is built on each images. (e) and (f) show the 
global and local components of the spine deformation extracted by our proposed algorithm. (g) and (h) show the 
corresponding deformed images.



Experimental results
Example 6: Corpus Callosum

(a) shows the image of a healthy corpus callosum. (b) shows the image of the corpus callosum of a patient suffering from 
progressive supranuclear palsy (PSP). (c) and (d) show the feature landmarks (blue and red) which extract the corpus 
callosum in (a) and (b) respectively. Triangular meshes are built on each images for registration. (e) and (f) show how the mesh
of the image from the healthy subject is deformed under the extracted global and local deformations respectively. The 

deformed images by the global and local deformations are shown in (g) and (h) respectively.



Experimental results
Example 7: Corpus Callosum

(a) shows the image of a healthy corpus callosum. (b) shows the image of the corpus callosum of a patient suffering from 
Normal pressure Hydrocephalus (NPH). (c) and (d) show the feature landmarks (blue and red) which extract the corpus 
callosum in (a) and (b) respectively. Triangular meshes are built on each images for registration. (e) and (f) show how the 
meshes of the image from the healthy subject is deformed under the extracted global and local deformations respectively. 
The deformed images by the global and local deformations are shown in (g) and (h) respectively.



Conclusion:
 Described a method for the multiscale decomposition of 

deformation using Beltrami coefficients;
 Using BC, we can effective preserve the bijectivity of the 

bijective deformation (modeled as a bijective transformation)
 A deformation can be decomposed into different 

components with various geometric scales and locations.

Future works:
 Applications to cardiac motion analysis;
 Extension to n-D cases;
 Restoration of turbulence-distorted video with moving objects.



Comparison with (x-y) based methods



Comparison with (x-y) based methods


