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Motivation

The optimal transport distance between histograms plays a vital role in
many applications:

I Image segmentation;

I Statistics; Machine learning ;

I Mean field games .
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Motivation

It can also be applied to image alignment, which has many applications
in computer version, drug design, and robotics:

(a) Some nice movies here.
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Earth Mover’s distance

What is the optimal way to move (transport) some materials with shape
X, density ρ0(x) to another shape Y with density ρ1(y)?

The question leads to the definition of the Earth Mover’s distance
(EMD), also called the Wasserstein metric, or the Monge-Kantorovich
problem.
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Problem statement

Consider

EMD(ρ0, ρ1) := inf
π

∫
Ω×Ω

d(x, y)π(x, y)dxdy

s.t. ∫
Ω

π(x, y)dy = ρ0(x) ,

∫
Ω

π(x, y)dx = ρ1(y) , π(x, y) ≥ 0 .

In this talk, we will present fast and simple algorithms for EMD and
related applications. Here we focus on two different choices of d, which
are homogenous degree one:

d(x, y) = ‖x− y‖2 (Euclidean) or ‖x− y‖1 (Manhattan) .

This choice of d was originally proposed by Monge in 1781.
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Dynamic formulation

There exists a crucial reformulation of the problem. Since

d(x, T (x)) = inf
γ
{
∫ 1

0

‖γ̇(t)‖dt : γ(0) = x , γ(1) = T (x)} ,

where ‖ · ‖ is 1 or 2-norm, the problem thus can be reformulated into an
optimal control setting (Brenier-Benamou 2000):

inf
m,ρ

∫ 1

0

∫
Ω

‖m(t, x)‖dxdt

where m(t, x) is a flux function satisfying zero flux condition
(m(x) · n(x) = 0 on ∂Ω), such that

∂ρ(t, x)

∂t
+∇ ·m(t, x) = 0 .
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Main problem: L1 minimization

By Jensen’s inequality, EMD is equivalent to the following minimal flux
problem:

inf
m
{
∫

Ω

‖m(x)‖dx : ∇ ·m(x) + ρ1(x)− ρ0(x) = 0} .

This is an L1 minimization problem, whose minimal value can be
obtained by a linear program, and whose minimizer solves a PDE system,
known as the Monge-Kantorovich equation:{

p(m(x)) = ∇Φ(x) , ∇ ·m(x) + ρ1(x)− ρ0(x) = 0 ,

‖∇Φ(x)‖ = 1 ,

where p is the sub-gradient operator and Φ is the Lagrange multiplier.
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L1 minimization

From numerical purposes, the minimal flux formulation has two benefits

I The dimension is much lower, essentially the square root of the
dimension in the original linear optimization problem.

I It is an L1-type minimization problem, which shares structure with
problem arising in compressed sensing. We borrow a very fast and
simple algorithm used there.
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Current methods

Linear programming

P: Many tools;

C: Involves quadratic number of variables and does not use the
structure of L1 minimization.

Alternating direction method of multipliers (ADMM) 1

P: Fewer iterations;

C: Solves an elliptic equation at each iteration; Not easy to parallelize.

In this talk, we apply the Primal-Dual method of Chambolle and Pock.

1(Benamou et.al, 2014), (Benamou et.al, 2016), (Solomon et.al, 2014)
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Settings

Introduce a uniform grid G = (V,E) with spacing ∆x to discretize the
spatial domain, where V is the vertex set and E is the edge set.
i = (i1, · · · , id) ∈ V represents a point in Rd.

Consider a discrete probability set supported on all vertices:

P(G) = {(pi)Ni=1 ∈ RN |
N∑
i=1

pi = 1 , pi ≥ 0 , i ∈ V } ,

and a discrete flux function defined on the edge of G :

mi+ 1
2

= (mi+ 1
2 ev

)dv=1 ,

where mi+ 1
2 ev

represents a value on the edge (i, i+ ev) ∈ E,

ev = (0, · · · ,∆x, · · · , 0)T , ∆x is at the v-th column.
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Minimization: Euclidean distance

We first consider EMD with the Euclidean distance. The discretized
problem becomes

minimize
m

‖m‖1,2

subject to div(m) + p1 − p0 = 0 ,

which can be formulated explicitly

minimize
m

N∑
i=1

√√√√ d∑
v=1

|mi+ 1
2 ev
|2

subject to
1

∆x

d∑
v=1

(mi+ 1
2 ev
−mi− 1

2 ev
) + p1

i − p0
i = 0 .
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Chambolle-Pock Primal-dual algorithm

We solve the minimization problem by looking at its saddle point
structure. Denote Φ = (Φi)

N
i=1 as a Lagrange multiplier:

min
m

max
Φ

‖m‖+ ΦT (div(m) + p1 − p0) .

The iteration steps are as follows:{
mk+1 = arg minm ‖m‖+ (Φk)Tdiv(m) +

‖m−mk‖22
2µ ;

Φk+1 = arg maxΦ ΦTdiv(2mk+1 −mk + p1 − p0)− ‖Φ−Φk‖22
2τ ,

where µ, τ are two small step sizes. These steps are alternating a
gradient ascent in the dual variable Φ and a gradient descent in the
primal variable m.
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Algorithm: 2 line codes

Primal-dual method for EMD-Euclidean metric

1. For k = 1, 2, · · · Iterates until convergence

2. mk+1
i+ 1

2

= shrink2(mk
i+ 1

2

+ µ∇Φk
i+ 1

2

, µ) ;

3. Φk+1
i = Φki + τ{div(2mk+1

i −mk
i ) + p1

i − p0
i } ;

4. End

Here the shrink2 operator for the Euclidean metric is

shrink2(y, α) :=
y

‖y‖2
max{‖y‖2 − α, 0} , where y ∈ R2 .

Method 15



Minimization: Manhattan distance

Similarly, the discretized problem becomes

minimize
m

‖m‖1,1 +
ε

2
‖m‖22 =

∑
|mi+ 1

2
|+ ε

2

∑
|mi+ 1

2
|2

subject to div(m) + p1 − p0 = 0 .

Here a quadratic modification is considered with a small ε > 0. This is to
overcome the non strict convexity and hence possible non uniqueness of
minimizers in the original problem
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Algorithm: 2 line codes

Primal-dual method for EMD-Manhattan distance

1. For k = 1, 2, · · · Iterates until convergence

2. mk+1
i+ ev

2
= 1

1+εµ shrink(mk
i+ ev

2
+ µ∇Φki+ ev

2
, µ) ;

3. Φk+1
i = Φki + τ{div(2mk+1 −mk)i + p1

i − p0
i } ;

4. End

Here the shrink operator for the Manhattan metric is

shrink(y, α) :=
y

|y|
max{|y| − α, 0} , where y ∈ R1 .
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Optimal flux I

(b) EMD with Euclidean distance. (c) EMD with Manhattan distance.
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Optimal flux II

(d) EMD with Euclidean distance. (e) EMD with Manhattan distance.
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Manhattan vs Euclidean

Grids number (N) Time (s) Manhattan Time (s) in Euclidean
100 0.0162 0.1362
400 0.07529 1.645
1600 0.90 12.265
6400 22.38 130.37

Table: We compute an example for Earth Mover’s distance with respect to
Manhattan or Euclidean distance.

This is result by using Matlab in a serial computer. In a parallel code
using CUDA, it takes around 1 second to find a solution in a 256× 256
grid for the Euclidean metric. It speeds up roughly 104 times.
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Importance of ε

(f) ε = 0. (g) ε = 0. (h) ε small.

Two different minimizers above on left are for ε = 0.
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PDEs behind ε

It is worth mentioning that the minimizer of the ε regularized problem

inf
m
{
∫

Ω

‖m(x)‖+
ε

2
‖m(x)‖2dx : ∇ ·m(x) + ρ1(x)− ρ0(x) = 0} ,

satisfies a nice (formal) system{
m(x) = 1

ε (∇Φ(x)− ∇Φ(x)
|∇Φ(x)| ) ,

1
ε (∆Φ(x)−∇ · ∇Φ(x)

|∇Φ(x)| ) = ρ0(x)− ρ1(x) ,

where the second equation holds when |∇Φ| ≥ 1.

Notice that the term ∇ · ∇Φ(x)
|∇Φ(x)| is the mean curvature formula.
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Unbalanced optimal transport

The original problem assumes that the total mass of given densities
should be equal, which often does not hold in practice. E.g. the
intensities of two images can be different.

Partial optimal transport seeks optimal plans between two measures ρ0,
ρ1 with unbalanced masses, i.e.∫

Ω

ρ0(x)dx 6=
∫

Ω

ρ1(y)dy .
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Unbalanced optimal transport

A particular example is the weighted average of Earth Mover’s metric and
L1 metric, known as Kantorovich-Rubinstein norm. One important
formulation is

inf
u,m
{
∫

Ω

‖m(x)‖dx : ∇ ·m(x) + ρ0(x)− u(x) = 0 , 0 ≤ u(x) ≤ ρ1(x)} .

Our method can solve the problem by 3 line codes.
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Algorithm: 3 lines code

Primal-dual method for Partial optimal transport
Input: Discrete probabilities p0, p1;

Initial guess of m0, parameter ε > 0, step size µ, τ , θ ∈ [0, 1].
Output: m and ‖m‖.

1. for k = 1, 2, · · · Iterates until convergence

2. mk+1
i+ ev

2
= 1

1+εµ shrink(mk
i+ ev

2
+ µ∇Φki+ ev

2
, µ) ;

3. uk+1
i = ProjCi

(uki − µΦki ) ;

4. Φk+1
i = Φki + τ

{
div(2mk+1 −mk)i + 2uk+1

i − uki )− p0
i

}
;

5. End
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Partial optimal flux
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(k) Euclidean distance.
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(l) Manhattan distance.

Figure: Unbalanced transportation from three delta measures concentrated at
two points (red) to five delta measures (blue).
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Image segmentation

Given a grey-value image I : Ω→ R. The problem is to find two regions
Ω1, Ω2, such that Ω1 ∪ Ω2 = Ω , Ω1 ∩ Ω2 = ∅.

Idea of Mumford-Shah model:

min
Ω1,Ω2

λPer(Ω1,Ω2) + Dist(Ω1, a) + Dist(Ω2, b) .

where a, b are some given references generated by the image I(x), known
as the supervised terms, and Dist is some functional which estimates the
closeness between region and references. There are some famous models,
such as Mumford-Shah, Chan-Vese, Chan, Ni et al. 2007, Rabin et al.
2017.

Models and Applications 28



Orignal Monge-Kantorovich+ Segmentation

I It avoids overfitting of features (Swoboda and Schnorr (2003));
I It is L1 minimization, which is great for computations.

Given intensity I(x), the proposed model is:

min
u

λ

∫
Ω

|∇u(x)|dx+ EMD(HIu, a) + Dist(HI(1− u), b) ,

where u is the indicator function of region, HI is a linear operator
depending on I which changes u into histograms, a, b are histograms in
the selected red or blue regions:

Models and Applications 29



Problem formulation

inf
u,m1,m2

λ

∫
Ω

‖∇xu(x)‖dx+

∫
F
‖m1(y)‖dy +

∫
F
‖m2(y)‖dy ,

where the infimum is taken among u(x) and flux functions m1(y), m2(y)
satisfying

0 ≤ u(x) ≤ 1

∇y ·m1(y) +HI(u)(y)− a(y)

∫
F
HI(u)(y)dy = 0

∇y ·m2(y) +HI(1− u)(y)− b(y)

∫
F
HI(1− u)(y)dy = 0 .

Here x ∈ Ω, y ∈ F , HI : BV(Ω)→ Measure(F) is a linear operator.

Our algorithm can be easily used into this area. It contains only 6 simple
and explicit iterations using the Chamolle-Pock primal dual method.

Models and Applications 30



Segmentation with multiple dimensional features

(a) Histogram of intensity, Mean (b) Histogram of intensity, Mean, Texture

We take λ = 1, the mean and texture (Sochen et. al) are values chosen
in 3× 3 patches near each pixel.
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Segmentation with multiple dimensional features

(c) Histogram of intensity, Mean (d) Histogram of intensity, Mean, Texture
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Segmentation with multiple dimensional features

(e) Histogram of intensity, Mean (f) Histogram of intensity, Mean, Texture
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PDEs behind segmentation

It is interesting to observe that there are three mean curvature formulas
in both spatial and feature domains.

Primal-Dual method avoids solving nonlinear PDEs directly!!!
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Image alignment via Monge-Kantorovich problem
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Discussion

Our method for solving L1 Monge-Kantorovich related problems

I handles the sparsity of histograms;

I has simple updates and is easy to parallelize;

I introduces a novel PDE system (Mean curvature formula in Monge
Kantorovich equation).

It has been successfully used in partial optimal transport, image
segmentation, image alignment and elsewhere.
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Thanks!
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