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 Correlation
 Shortcoming of Pearson's linear correlation
 Related works 
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 Pearson’s linear correlation coefficient:
Corr(X,Y) ஼௢௩ሺ௑,௒ሻ

௏௔௥ ௑ ௏௔௥ሺ௒ሻ
 Karl Pearson (1895)
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 Dependency could be complicated
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 Alternating Conditional Expectations or 
backfitting algorithm (ACE). Breiman and 
Friedman. JASA 1985. 

 Kernel Canonical Correlation Analysis (KCCA). 
Bach and Jordan. JMLR 2002.

 (Copula) Maximum Mean Discrepancy (MMD, 
CMMD). Gretton, Borgwardt, Rasch, Scholkopf, 
and Smola. JMLR 2012. Poczos, Ghahramani, and 
Schneider. ICML, 2012.

 Maximal Information Coefficient (MIC). Reshef et 
al. Science, 2011.

 Randomized Dependence Coefficient (RDC). 
Lopez-Paz, Hennig, and Scholkopf. NIPS 2013.
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 Science, 2011
 "A Correlation 

for the 21st 
Century" -
Terry Speed 
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D N Reshef et al. Science 2011;334:1518-1524

Computing 
MIC For each 
pair (X, Y), the 
MIC algorithm 
finds the x-by-
y grid with the 

highest 
induced 
mutual 

information. 

dependence distCorr fastAlgo Simulations Application



 1938
 Let ଵ ଵ ଶ ଶ ௡ ௡ be a set of 

observations of the joint random variables 
and respectively

 Kendall  coefficient

௜ ௝ ௜ ௝
ଵஸ௜ழ௝ஸ௡

 1
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 Comparison between dependence measures
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Name of 
Coeff.

Comp. cost

Pearson’s ࣋ ݊
Spearman’s ߩ ݊ log ݊
Kendall’s ߬ ݊ log ݊
CCA ݊
KCCA ݊ଷ
ACE ݊
MIC 2௡
MMD ݊ଶ
CMMD ݊ଶ
RDC ݊ log ݊
dCor ݊ଶ → ݊	 log ݊
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1. Distance correlation
2. Sample dCor
3. An example
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 Independence: f(x,y) f(x)f(y)
◦ Joint density is the multiplication of two marginal 

densities
 Hope: 
◦ X and Y independent if and only if corr(X,Y)=0
◦ If X=ܿଵY+ܿଶ, then corr(X,Y)=1

 Pearson’s correlation coefficient not effective
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 Gabor J. Szekely, 2005, 2007 (AoS), 2009 
(AoAS), 2012 (SPL), 2014 (AoS)

 Distance covariance: (population version)
ଶ

௑,௒ ௑ ௒ ௪
ଶ

௑,௒ ௑ ௒
ଶ

ோ೛శ೜

where ௑,௒, ௑ ௒ are characteristic func.
 Weight ௣

ଵା௣
௤
ଵା௤ ିଵ to ensure the 

above integral is well defined…
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 Correlation: 
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 An equation: 

ଶ
ஶ

ିஶ

ଶ

ଶ

ஶ

ିஶ

 Distance correlation ~ difference between 
cumulative distribution functions. 
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Distance correlation

dependence distCorr fastAlgo Simulations Application



 Pairwise distances: ௜௝ ௜ ௝
 Similarly, ௜௝ ௜ ௝
 Centered matrix:

௜௝ܣ ൌ ቐܽ௜௝ െ
∑ ܽ௜ℓ௡
ℓୀଵ
݊ െ 2 െ

∑ ܽ௞௝௡
௞ୀଵ
݊ െ 2 ൅

∑ ܽ௞ℓ௡
௞,ℓୀଵ

݊ െ 1 ݊ െ 2 , ݅ ് ݆;

	0, 																																																																									݅ ൌ ݆
 Similarly, ܤ௜௝.
 An unbiased estimator of ࣰଶ ܺ, ܻ :

ܣ ∙ ܤ ൌ
∑ ௜௝௜ஷ௝ܤ௜௝ܣ

݊ሺ݊ െ 3ሻ

1 June 2017NUS/IMS 16

dependence distCorr fastAlgo Simulations Application



 Same examples
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 Reformulation
 Partials sums 
 2-D dyadic partitioning and updating 
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 Requiring pairwise distances undesirable ( ଶ)
 Denote ௜∙ ௜ℓ

௡
ℓୀଵ ; similarly for 

௜∙
 Denote ∙∙ ௜ℓ

௡
௜,ℓୀଵ ; similarly for ∙∙

 We have 

௜௝ ௜௝௜ஷ௝ ௜∙ ௜∙
௡
௜ୀଵ

∙∙ ∙∙
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 ௜⋅ and ௜⋅ can be related to partial sums –
O(n) algorithm

 We designed a dyadic updating scheme to 
compute for

௜௝ ௜௝
௜ஷ௝

௜ ௝
௜ஷ௝

௜ ௝

 An O(n log n) algorithm
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 Recall ௜∙ ௜௟
௡
௟ୀଵ ௜ ௟

௡
௟ୀଵ

 Sorting ଵ ଶ ௡ takes (on average) 

 Computes ALL ௜ ௟:	௫೗ழ௫೔ takes 
 Computes ALL ௜ ௟௟:	௫೗ழ௫೔ takes 
 Note

௜∙ ௜

௡

௜ୀଵ
௜ ௜ ௜

 Overall, computing for ALL ௜∙’s takes 
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 Recall we want to compute for

௜௝ ௜௝
௜ஷ௝

௜ ௝
௜ஷ௝

௜ ௝

 Define ௜௝ ௜ ௝ ௜ ௝
 We have 
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 We need to compute for all ,
௝ ௜௝௝:௝ஷ௜

 For an , we have

௝ ௜௝
௝:௝ஷ௜

௝
௝

௜ ௝
௝:௝ழ௜

௝
௝:	௬ೕழ௬೔

௝
௝:௝ழ௜,௬ೕழ௬೔
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Partial sum

Need some efforts!
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Recall Kendall  coefficient

߬ ൌ
1
݊
2

෍ signሾሺݔ௜ െ ௜ݕ௝ሻሺݔ െ ௝ሻሿݕ
ଵஸ௜ழ௝ஸ௡

ൌ
1
݊
2

෍ ௜ܵ௝
ଵஸ௜ழ௝ஸ௡

•Equivalent to ௝ܿ ≡ 1
•Knight (JASA 1966) and Christensen (2005)
•AVL tree structure (Adelson-Velskii and Landis 1962)
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 For an , need to compute for 

௝
௝:௝ழ௜,௬ೕழ௬೔

 An dyadic partitioning/updating scheme:
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݅

݆

… … … … …
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 Implementation
 Effects of large sample simulation
 Convergence
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 Compare with direct implementation

 When sample size > 2000, MATLAB is out of 
memory
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 Running 
time vs 
sample size 
(n)

 For n=1M, 
about 3min. 
on a laptop

 Dash line: 
O(n log n)   

complexity
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 Small sample (n=40)
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(1) 0.76; 0.72 (2) 0.97; 0.96 (3) 0.28; 0.37

(4) -0.20; 0.31 (5) -0.13; 0.20 (6) 0.26; 0.44

(7) 0.10; 0.24 (8) -0.01; 0.14 (9) 0.05; -0.20
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 Small sample (n=400)
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(1) 0.84; 0.80 (2) 0.98; 0.97 (3) 0.03; 0.36

(4) 0.02; 0.11 (5) 0.02; 0.13 (6) -0.01; 0.41

(7) 0.10; 0.26 (8) 0.02; 0.20 (9) -0.02; -0.05
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 Large sample (n=10,000)
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(1) 0.80; 0.75 (2) 0.98; 0.97 (3) 0.00; 0.34

(4) 0.01; 0.13 (5) 0.00; 0.14 (6) -0.01; 0.43

(7) -0.01; 0.26 (8) 0.00; 0.19 (9) 0.00; -0.01
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 Convergence of sample correlations
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 Sure independence screening
 DC-SIS 
 Improvement
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 Sure screening
 Li. et al JASA 2012, propose dCor in SURE 

screening
 More extensive simulation studies with 

sample size from n=200 to n=20,000… 
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 Setting 
ଵ ଶ ௣

 is large; # of observation, small
 sure independence screening (SIS), Fan and Lv

(JRSS-B 2008): 
◦ Compute marginal utility function
◦ Retain the largest few
◦ Asymptotic theory: “sure screening property”
◦ marginal utility function: the Pearson's correlation
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 sure independence screening procedure 
based on the distance correlation

 marginal utility function: distance correlation
 Li. et al (JASA 2012)
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 Experiment setting 

 . . 
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 When 
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 When 

dependence distCorr fastAlgo Simulations Application



 A fast algorithm to 
measure dependence: 
fast dCor

 Nearly linear 
complexity: O(n log n)

 Reference: “Fast 
Computing for Distance 
Covariance”, 
Technometics 2016
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Name of 
Coeff.

Comp. cost

Pearson’s ࣋ ݊
Spearman’s ߩ ݊ log ݊

Kendall’s ߬ ݊ log ݊
CCA ݊
KCCA ݊ଷ
ACE ݊
MIC 2௡
MMD ݊ଶ
CMMD ݊ଶ
RDC ݊ log ݊
dCor ݊ଶ → ݊	 log ݊
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