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Stating the Problem

Solving for a system of linear equations is perhaps the most fundamental
mathematical problem in just about all areas of science and engineering
applications. Here we have an unknown vector x ∈ Fd where F = R or C.
We would like to recover x through a set of linear measurements Ax. In
other words,

Solve: Ax = b.

The problem is that there are some constraints:

A ∈ FN×d where N may be significantly smaller than d .

x lies on some nonlinear manifold M.
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Example 1: Compressive Sensing

This is probably the example that is most familiar to people. It arises in
numerous applications. The setup is that we would like to solve for
Ax = b where x is sparse.

A ∈ FN×d where N maybe significantly smaller than d .

x ∈ Fd
k , the set of all vectors in Fd with sparsity 0 ≤ k � d .

Note that Fd
k is nonlinear.
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Example 2: Low Rank Matrix Recovery

This problem has gained a lot of attention in recent years due to many
applications in various fields like online recommendation systems, image
processing, etc. Here our unknown “vector” is a matrix X = (xmn) ∈ Fp×q

with rank(X ) ≤ r . We are given a set of linear measurements
{Lj(X ) = bj}Nj=1. We wish to recover X .

If Lj(X ) = xmjnj then we are looking at the Netflix Problem of
recovering missing entries.

More generally each Lj(X ) = tr(AT
j X ) for some Aj ∈ Fp×q. Every

linear function on Fp×q can be expressed in this form. For example,
L(X ) = xmn = tr(ET

mnX ).

Note here the manifold is M = {X ∈ Fp×q : rank(X ) ≤ r}.
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Example 3: Phase Retrieval

This problem has been extensively studied due to its numerous
applications, such as X-ray diffraction and other imaging applications,
communication, waveform, etc. Here we would like to recover an unknown
x ∈ Fd through a set of quadratic measurements
b1 = |〈f1, x〉|2, b2 = |〈f2, x〉|2, . . . , bN = |〈fN , x〉|2.

“Linearization”: Set X = xx∗ and Aj = fj f
∗
j . Then we have

bj = |〈fj , x〉|2 = x∗fj f
∗
j x

= x∗Ajx = tr(Ajxx
∗) = tr(AjX ).

So we are now recovering X ∈ Fd×d from a set of linear measurements,
with X lying on the manifold

M = {X ∈ Fd×d : X ≥ 0, rank(X ) ≤ 1}.
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Example 4: Other Matrix Retrieval Problem

An example of this type of problems is the Projection Retrieval problem,
where we would like to recover an unknown orthogonal projection matrix
P ∈ Fd×d of rank r through a set of measurements via sample points
xj ∈ Fd :

b1 = ‖Px1‖2, b2 = ‖Px2‖2, . . . , bN = ‖PxN‖2.

Again, set Aj = xjx
∗
j . Then

bj = ‖Pxj‖2 = x∗j PP
∗x∗j = x∗j Pxj = tr(xjx

∗
j P) = tr(AjP).

So we are recovering P ∈ Fd×d from a set of linear measurements, with P
lying on the manifold M of all orthogonal projection matrices of rank at
most r . Of course, here one can replace M by other manifolds.
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Example 5: The Missing Distance Problem

Let x0, x1, . . . , xn ∈ Fd be a finite set of points and set dij = ‖xi − xj‖. It
is well-known that the point cloud (xj) is uniquely determined up to an
isometry by these distances (dij). But what if some dij are missing?
Without loss of generality let x0 = 0. Set

X = [x1, x2, · · · , xn] ∈ Fd×N , P := X ∗X = [〈xi , xj〉]

Note that each dij is a linear function of P:

d2
ij = ‖xi − xj‖2 = 〈xi , xi 〉+ 〈xj , xj〉 − 2〈xi , xj〉.

Thus the Missing Distance problem is equivalent to recovering P ∈ Fd×d

from a set of linear measurements, with P lying on the manifold

M = {P ∈ Fn×n : P ≥ 0, rank(P) ≤ d}.
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Injectivity

Let Lj(x), j = 1, . . . ,N be linear functions on Fd . Define L : Fd−→FN

L(x) := (L1(x), L2(x), . . . , LN(x))T .

Definition

Let M⊆ Fd . We say {Lj(x)}Nj=1 has the M-recovery property if the map
L is injective on M. We say it has the almost everywhere M-recovery
property if L−1(L(x)) = {x} for almost all x ∈M.

M-recovery property ⇔ every x ∈ Fd can be recovered from L(x).

Almost everywhere M-recovery property ⇔ almost all x ∈ Fd can be
recovered from L(x).
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Minimality Questions

What is the minimal number N for which a set of linear
measurements {Lj(x)}Nj=1 can have the M-recovery property?

If we randomly pick our linear measurements {Lj(x)}Nj=1, how many
are needed for them to have the M-recovery property with “high”
probability?

What is the minimal number N for which a set of linear measurements
{Lj(x)}Nj=1 can have the almost everywhere M-recovery property?

If we randomly pick our linear measurements {Lj(x)}Nj=1, how many
are needed for them to have the M-recovery property with “high”
probability?

These questions for some of the aforementioned examples are answered,
but many remain unresolved.
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Background from Algebraic Geometry

It turns out that it is more appropriate to discuss projective varieties rather
than manifolds. Here we shall define a projective variety in Cd to be the
zero locus of a finite set of homogeneous polynomials.

The set of all symmetric matrices in Cp×p is a projective variety,
which can be defined by homogeneous polynomials A = AT .
However, the set of all Hermitian matrices in Cp×p is not.

The set of all rank r or less matrices in Cp×q is a projective variety,
called the determinantal variety. It has dimension (p + q)r − r2.

The set of all rank r or less matrices in Cp×q satisfying AT = A and
A2 = cA for some c ∈ C is a projective variety.

Basic Concepts: Irreducibility, dimension, union and intersection.
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Dimension and Intersection

Proposition

Let M be a projective variety and P be a hyperplane in Cd . Then
dim(M∩P) ≥ dim(M)− 1. Furthermore, if P does not contain an
irreducible component of M then dim(M∩P) = dim(M)− 1.

Thus a hyperplane P in “generic position” will have
dim(M∩P) = dim(M)− 1. Note the result doesn’t hold for real
projective varieties.

Definition

Let M be a projective variety in Cd with dimM > 0 and let
{`α(x) : α ∈ I} be a family of (homogeneous) linear functions. We say M
is admissible with respect to {`α(x)} if dim(M∩ {`α(x) = 0}) < dimM
for all α ∈ I .
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Dimension and Intersection

Fortunately the admissibility condition is easy to verify and satisfy. In just
about all cases we are interested in studying, the condition holds.

Another extremely useful result, which we need to use to handle recovery
problems on Rd , is the following:

Proposition

Let M be a projective variety in Cd . Let MR be the restriction of M on
the reals, i.e. MR =M∩ Rd . Then MR is a real projective variety and
its real dimension satisfies dimR(MR) ≤ dim(M).

We can also take a real projective variety V in Rd and “lift” it to a
projective variety V̄ in Cd . Clearly we have dim(V̄ ) ≥ dimR(V ).
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Signal Recovery: Ideas from an Example

Let M =Mp×q,r (C), the set of all matrices in Cp×q with rank
r < min(p, q)/2.

Let A1, . . . ,AN be i.i.d. Gaussian random matrices in Cp×q and for
X ∈M consider the linear measurements

L(X ) :=
(
tr(AT

1 X ), tr(AT
2 X ), . . . , tr(AT

NX )
)
.

How big should N be for L to be injective on M?

This is equivalent to L(X − Y ) = 0 iff X − Y = 0 where X ,Y ∈M, or in
other words, L(Z ) = 0 iff Z = 0 where Z ∈M−M =Mp×q,2r (C).

Theorem

L is injective ⇒ N ≥ 2r(p + q)− 4r2 = dim(M−M).
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Signal Recovery: Ideas from an Example

Proved in [Xu 2015]

(1) The result is sharp. N ≥ 2r(p + q)− 4r2 random measurements give
M-recovery property with probability 1.

(2) The result is false if we change C to R.

Reasons: (1) Each random measurement defines a hyperplane in generic
position in the projective space. So its intersection with a given projective
variety cuts the dimension by exactly one. After N = 2r(p + q)− 4r2

intersections the dimension becomes 0.

(2) The dimension drop for the intersection can be > 1 for real projective
variety. Thus result is false in the real case. Counter example was given.
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M-Recovery from random measurements

Theorem (YW and Xu 2016)

Let M be a projective variety in Cp×q with dim(M−M) = K . Let
A1,A2, . . . ,AN be randomly chosen matrices in Cp×q according to some
absolutely continuous probability distribution. Set

L(X ) :=
(
tr(AT

1 X ), tr(AT
2 X ), . . . , tr(AT

NX )
)
.

(1) If N < K then L is not injective on M. Thus {tr(AT
1 X )}Nj=1 does

not have the M-recovery property.

(2) If N ≥ K then L is injective on M with probability 1. Thus
{tr(AT

1 X )}Nj=1 has the M-recovery property with probability 1.
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Diving Deeper into the Example

In the previous example of recovering rank r matrices, what if we restrict
the measurement matrices to some special manifold (projective variety)?
For example, suppose we require A1,A2, . . . ,AN be randomly chosen rank
1 matrices in Cp×q, will L(X ) still be injective?

The answer is still Yes! Note here Aj lie on a lower dimensional variety so
we can no longer use the generic position argument. We need to have a
“generic position” argument on a lower dimensional variety. This is done
through the Admissibility condition.
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Admissibility Condition

Definition (YW and Xu 16)

Let V be a projective variety in Cd with dimV > 0 and let {`α(x) : α ∈ I}
be a family of linear functions on Cd . We say V is admissible with respect
to {`α(x)} if dim(V ∩ {`α(x) = 0}) < dimV for all α ∈ I .

Without getting into the technical details, the basic message is that the
admissibility condition can be rather easily checked, and it is satisfied in
virtually all cases we care about.

There are definitely counterexamples, e.g. V is the set of all symmetric
matrices and `α is of the form tr(ATX ) where A is skew-symmetric.
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General Case

General Setup of the Problem

Let M⊆ Fp×q be a projective variety. Let A1,A2, . . . ,AN ∈ Fp×q and set

L(X ) :=
(
tr(AT

1 X ), tr(AT
2 X ), . . . , tr(AT

NX )
)
.

Assume that each Aj is restricted to some subset Vj of Fp×q. When will L
be injective on M, namely, when will the M-recovery property hold? And
when will the almost everywhere M-recovery property hold?

Through proper transformations we can always assume the above setup
without loss of generality.
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Main Result

Theorem (YW and Xu 16)

Let M be a projective varieties in Cp×q. Let Aj ∈ Vj be generic, where Vj

is a projective variety satisfying “appropriate” admissibility condition.
Then for N ≥ dim(M−M)

L(X ) :=
(
tr(AT

1 X ), tr(AT
2 X ), . . . , tr(AT

NX )
)

is injective on M. In other words, the maps {tr(AT
j X )}Nj=1 have the

M-recovery property.

On the other hand, if N < dim(M−M) then L is not injective on M.

• Here “appropriate” admissibility condition is in fact quite explicit and
easily checked. We skip the details.
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Main Result: Real Case

Theorem (YW and Xu 16)

Let M be a projective varieties in Rp×q. Let Aj ∈ Vj be generic, where Vj

is a projective variety in Rp×q. Then for N ≥ dim(M−M)

L(X ) :=
(
tr(AT

1 X ), tr(AT
2 X ), . . . , tr(AT

NX )
)

is injective on M, provided that M̄ and V̄j satisfy “appropriate”
admissibility condition and

dimR(M−M) = dim(M̄ − M̄), dimR(Vj) = dim(V̄j).

• The additional conditions are typically satisfied by the cases we care
about.
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Application to Various Examples

For M = the set of all rank r matrices in Fp×q, r ≤ min(p, q)/2, we
have N ≥ 2(p + q)r − 4r2. For complex this is sharp, but for real it is
not.

For M = the set of all rank r symmetric matrices in Fp×p, r ≤ p/2,
we have N ≥ r(2p− 2r + 1). For the set of p× p Hermitian matrices,
we have N ≥ 4r(p − r) (not sharp).

For compressive sensing, we have N ≥ 2k where k is the sparsity
(sharp).

For phase retrieval in Fd we have N ≥ 2d − 1 for F = R (sharp) and
N ≥ 4d − 4 for F = C (not sharp).

• There are many other examples that similar result can be established.
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Lower Bound

In the real case the results from dimension and intersection theory from
algebraic geometry are usually not sharp. This leads to several open
questions:

Can we find sharp lower bound for N? This appears to be intractable
in general, but in many special cases sharp lower bound can be
obtained.

Lower bound can be obtained using the results on manifold
embedding into Euclidean space. This is a classic area and is difficult
for people not in the field. But we can apply know results. Typically
we get a gap of O(log d).

It is also conjectured that generically the N we obtain through this
framework is optimal.

• I shall skip the details on the lower bound question.
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Almost Everywhere M-Recovery: Complex Case

Theorem (Rong, YW and Xu 17)

Let M be a projective varieties in Cp×q. Let Aj ∈ Vj be generic, where Vj

is a projective variety satisfying “appropriate” admissibility condition.
Then for N > dim(M)

L(X ) :=
(
tr(AT

1 X ), tr(AT
2 X ), . . . , tr(AT

NX )
)

is almost everywhere injective on M. In other words, the maps
{tr(AT

j X )}Nj=1 have the almost everywhere M-recovery property.

On the other hand, if N < dim(M) then L is not injective on M.

• Here “appropriate” admissibility condition is the same as in the
previous theorem
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Almost Everywhere M-Recovery: Real Case

Theorem (Rong, YW and Xu 17)

Let M be a projective varieties in Rp×q. Let Aj ∈ Vj be generic, where Vj

is a projective variety in Rp×q. Then for N > dim(M)

L(X ) :=
(
tr(AT

1 X ), tr(AT
2 X ), . . . , tr(AT

NX )
)

is almost everywhere injective on M, provided that M̄ and V̄j satisfy
“appropriate” admissibility condition and

dimR(M−M) = dim(M̄ − M̄), dimR(Vj) = dim(V̄j).

On the other hand, if N < dim(M) then L is not injective on M.

• The additional conditions are the same as in previous theorem.
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Various Examples of Almost Everywhere M-Recovery

For M = the set of all rank r matrices in Fp×q, r ≤ min(p, q)/2, we
have N > (p + q)r − r2.

For M = the set of all rank r symmetric matrices in Fp×p, r < p, we
have N > r(2p − r + 1)/2. For the set of p × p Hermitian matrices,
we have N > r(2p − r).

For compressive sensing, we have N > k where k is the sparsity.

For phase retrieval in Fd we have N > d for F = R (sharp) and
N ≥ 2d for F = C.

• Not known for many of the above whether they are sharp.

Yang Wang (HKUST) Signal Recovery on a Manifold May 29, 2017 26 / 28



How About Computation?

These results do not address the computational side of things.
Generally it is a challenging problem.

For many problems it is feasible computationally to perform recovery
where the measurements are randomly chosen.

“Conjecture”: Stable recovery from random measurements can be
done using C dim(M−M) samples if M is “nice”, say it is
irreducible, or C dim(M−M) log d samples if M is “not nice” (say
many irreducible components).
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Thank You!
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