1/36

 $L_1 - L_2$

Minimizing the Difference of L_1 and L_2 Norms with Applications

Yifei Lou

Department of Mathematical Sciences University of Texas Dallas

May 31, 2017

Partially supported by NSF DMS 1522786

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

L1-L2 2/36 Vifei Lou L1-L2 model Algorithms Applications

Outline

1 A nonconvex approach: L_1 - L_2

2 Minimization algorithms

Some applications

*L*₁-*L*₂ 3/36 Yifei Lou *L*₁-*L*₂ model Algorithms

Algorithms Applications

Background

We aim to find a sparse vector from an under-determined linear system,

```
\hat{x}_0 = \operatorname{argmin}_x ||x||_0 \text{ s.t. } Ax = b.
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This is NP-hard.

$L_1 - L_2$ 3/36 Yifei Lou L_1 - L_2 model **Algorithms Applications**

Background

We aim to find a sparse vector from an under-determined linear system,

```
\hat{x}_0 = \operatorname{argmin}_x ||x||_0 s.t. Ax = b.
```

This is NP-hard.

A popular approach is to replace L_0 by L_1 , i.e.,

 $\hat{x}_1 = \operatorname{argmin}_x \|x\|_1$ s.t. Ax = b.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

```
L1-L2 3/36
Yifei Lou
L1-L2 model
Algorithms
Applications
```

Background

We aim to find a sparse vector from an under-determined linear system,

```
\hat{x}_0 = \operatorname{argmin}_x ||x||_0 s.t. Ax = b.
```

This is NP-hard.

A popular approach is to replace L_0 by L_1 , i.e.,

 $\hat{x}_1 = \operatorname{argmin}_x ||x||_1$ s.t. Ax = b.

The equivalence between L_0 and L_1 norms holds when the matrix *A* satisfies the restricted isometry property (RIP).

Candes-Romberg-Tao (2006)

L₁-L₂ model Algorithms Applications Conclusions

Coherence

Another sparse recovery guarantee is based on coherence.

$$||x||_0 \leq \frac{1}{2}(1+\mu(A)^{-1}),$$

where coherence of a matrix $A = [a_1, \dots, a_N]$ is defined as

$$\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\| \|a_j\|} \; .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

L₁-L₂ 4/36 Yifei Lou L₁-L₂ model

Coherence

L₁-L₂ model Algorithms Applications

Another sparse recovery guarantee is based on coherence.

$$||x||_0 \leq \frac{1}{2}(1+\mu(A)^{-1}),$$

where coherence of a matrix $A = [a_1, \cdots, a_N]$ is defined as

$$\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\| \|a_j\|}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Two extreme cases are

- $\mu \sim 0 \Rightarrow$ incoherent matrix
- $\mu \sim 1 \Rightarrow$ coherent matrix

L₁-L₂ model Algorithms Applications Conclusions

Coherence

Another sparse recovery guarantee is based on coherence.

$$||x||_0 \leq \frac{1}{2}(1+\mu(A)^{-1}),$$

where coherence of a matrix $A = [a_1, \cdots, a_N]$ is defined as

$$\mu(A) = \max_{i \neq j} \frac{|a_i^T a_j|}{\|a_i\| \|a_j\|}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Two extreme cases are

- $\mu \sim 0 \Rightarrow$ incoherent matrix
- $\mu \sim 1 \Rightarrow$ coherent matrix

What if the matrix is coherent?

*L*₁-*L*₂ **5/36**

Yifei Lou

L₁-L₂ model Algorithms Applications Conclusions

L_1 - L_2 works well for coherent matrix

We consider an over-sampled DCT matrix with each column as

$$\mathbf{a}_j = \frac{1}{\sqrt{N}} \cos(\frac{2\pi j \mathbf{w}}{F}), j = 1, \cdots, N$$

where w is a random vector of length M.

The larger *F* is, the more coherent the matrix. Take a 100×1000 matrix for an example:

F	coherence		
1	0.3981		
10	0.9981		
20	0.9999		

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

P. Yin, Y. Lou, Q. He and J. Xin, SIAM Sci. Comput., 2015 Y. Lou, P. Yin, Q. He and J. Xin, J. Sci. Comput., 2015

*L*₁-*L*₂ 6/36

Yifei Lou L₁-L₂ model Algorithms Applications

Figure: Success rates of incoherent matrices, F = 1.

・ロト・(四ト・(川下・(日下))

*L*₁-*L*₂ 6/36

Figure: Success rates of coherent matrices, F = 20.

・ロト・四ト・日本・日本・日本・日本

*L*₁-*L*₂ 7/36

Yifei Lou

L₁-L₂ model Algorithms Applications Conclusions

Comparing metrics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Figure: Level lines of three metrics: L_2 (strictly convex), L_1 (convex), and $L_1 - L_2$ (nonconvex).

*L*₁-*L*₂ 8/36

Yifei Lou

L₁-L₂ model Algorithms Applications Conclusions

Comparing nonconvex metrics

Consider a matrix *A* of size 17×19 and $V \in \mathbb{R}^{19 \times 2}$ be the basis of the null space of *A*, i.e. AV = 0.

So the feasible set is a two-dimensional affine space, i.e. $\{x : Ax = Ax_g\} = \{x = x_g + V \begin{bmatrix} s \\ t \end{bmatrix} : s, t \in \mathbb{R}\}.$

Visualize objective functions L_0 , $L_{1/2}$, and L_1 - L_2 over 2D *st*-plane.

(日) (日) (日) (日) (日) (日) (日)

L₁-L₂ 9/36

Yifei Lou

L₁-L₂ model Algorithms Applications Conclusions

L_0 : incoherent (left) and coherent (right)

L₁-L₂ model Algorithms Applications Conclusions

$L_{1/2}$: incoherent (left) and coherent (right)

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

L₁-L₂ model Algorithms Applications Conclusions

L_1 - L_2 : incoherent (left) and coherent (right)

Model failure v.s. algorithm failure

*L*₁-*L*₂ **12/36**

Yifei Lou

L₁-L₂ model Algorithms Applications Conclusions

Truncated L_1 - L_2

$$\|\mathbf{x}\|_{t,1-2} := \sum_{i \notin \Gamma_{\mathbf{x},t}} |x_i| - \sqrt{\sum_{i \notin \Gamma_{\mathbf{x},t}} x_i^2},$$

where $\Gamma_{\mathbf{x},t} \subseteq \{1, \dots, N\}$ with cardinality *t* is a set containing the indices of the entries of **x** with the *t* largest magnitudes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

T. Ma, Y. Lou, and T. Huang, SIAM Imaging Sci., to appear 2017

Advantages of L_1 - L_2

· Lipschitz continuous

Advantages of *L*₁-*L*₂

· Lipschitz continuous

• Correct *L*₁'s biasedness by subtracting something with smooth gradient a.e.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Advantages of L_1 - L_2

· Lipschitz continuous

• Correct *L*₁'s biasedness by subtracting something with smooth gradient a.e.

• Exact recovery of 1-sparse vectors (truncated version yields exact recovery of *t*-sparse vectors)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Advantages of *L*₁-*L*₂

· Lipschitz continuous

• Correct *L*₁'s biasedness by subtracting something with smooth gradient a.e.

• Exact recovery of 1-sparse vectors (truncated version yields exact recovery of *t*-sparse vectors)

· Good for coherent compressive sensing

Outline

Algorithms Applications Conclusions

1 A nonconvex approach: L_1 - L_2

2 Minimization algorithms

3 Some applications

L1-L2 16/36 Yifei Lou L1-L2 model Algorithms Applications

Algorithms

We consider an unconstrained $L_1 - L_2$ formulation, i.e.,

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|Ax - b\|_2^2 + \lambda(\|x\|_1 - \|x\|_2).$$

Our first attempt is using the difference of convex algorithm (DCA) by composing decompose F(x) = G(x) - H(x) into

$$\begin{cases} G(x) = \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1 \\ H(x) = \lambda ||x||_2. \end{cases}$$

An iterative scheme is,

$$x^{n+1} = \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1 - \langle x, \frac{\lambda x^n}{\|x^n\|_2} \rangle.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

L₁-L₂ 17/36

Yifei Lou

We then derive a proximal operator for L_1 - αL_2 ($\alpha \ge 0$)

$$x^* = \arg\min_{x} \lambda \left(\|x\|_1 - \alpha \|x\|_2 \right) + \frac{1}{2} \|x - y\|_2^2,$$

which has a closed-form solution:

1 If $||y||_{\infty} > \lambda$, then $x^* = z(||z||_2 + \alpha\lambda)/||z||_2$, where $z = \operatorname{shrink}(y, \lambda)$;

2 if $||y||_{\infty} = \lambda$, then $||x^*||_2 = \alpha \lambda$, $x_i^* = 0$ for $|y_i| < \lambda$;

3 If (1 − α)λ < ||y||_∞ < λ, then x* is 1-sparse vector satisfying x_i^{*} = 0 for |y_i| < ||y||_∞;

4 If
$$\|y\|_{\infty} \leq (1-\alpha)\lambda$$
, then $x^* = 0$.

Y. Lou and M. Yan, J. Sci Comput., to appear 2017

Remarks

L_1 - L_2 model

Algorithms Applications Most L₁ solves are applicable for L₁-αL₂ by replacing soft shrinkage with this proximal operator.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Remarks

L₁-L₂ model Algorithms Applications

- Most L₁ solves are applicable for L₁-αL₂ by replacing soft shrinkage with this proximal operator.
- The algorithm of combining ADMM and this operator (nonconvex-ADMM), is much faster than the DCA.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Remarks

L₁-L₂ model Algorithms Applications

- Most L₁ solves are applicable for L₁-αL₂ by replacing soft shrinkage with this proximal operator.
- The algorithm of combining ADMM and this operator (nonconvex-ADMM), is much faster than the DCA.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Both nonconvex-ADMM and DCA converge to stationary points.

Remarks

L₁-L₂ model Algorithms Applications

- Most L₁ solves are applicable for L₁-αL₂ by replacing soft shrinkage with this proximal operator.
- The algorithm of combining ADMM and this operator (nonconvex-ADMM), is much faster than the DCA.
- Both nonconvex-ADMM and DCA converge to stationary points.
- However, nonconvex-ADMM does not give better performance than DCA for coherent CS.

Figure: Success rates of coherent matrices, F=20.

・ロット 御マ キョマ キョン

ъ

Figure: Success rates of incoherent matrices, F=5.

L1-L2 21/36

> DCA is more stable than nonconvex-ADMM, as each DCA subproblem is convex.

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

L1-L2 21/36 Yifei Lou

- DCA is more stable than nonconvex-ADMM, as each DCA subproblem is convex.
- Since it is convex at $\alpha = 0$, we consider a continuation scheme of gradually increasing α from 0 to 1, referred to as "weighted".

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

L1-L2 21/36 Yifei Lou

- DCA is more stable than nonconvex-ADMM, as each DCA subproblem is convex.
- Since it is convex at $\alpha = 0$, we consider a continuation scheme of gradually increasing α from 0 to 1, referred to as "weighted".

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How to update the weight α?

L1-L2 21/36 Yifei Lou

- DCA is more stable than nonconvex-ADMM, as each DCA subproblem is convex.
- Since it is convex at $\alpha = 0$, we consider a continuation scheme of gradually increasing α from 0 to 1, referred to as "weighted".
- How to update the weight α?
 - For incoherence matrices, a linear increase for α with a large slope until reaching one;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

L1-L2 21/36 Yifei Lou

- DCA is more stable than nonconvex-ADMM, as each DCA subproblem is convex.
- Since it is convex at $\alpha = 0$, we consider a continuation scheme of gradually increasing α from 0 to 1, referred to as "weighted".
- How to update the weight α?
 - For incoherence matrices, a linear increase for α with a large slope until reaching one;
 - For coherent cases, a sigmoid function to update α , which may or may not reach one.

Figure: Different ways of updating α for incoherent (blue) or coherent (red) matrices.

Figure: Success rates of coherent matrices, F=20.

・ロット 御マ キョマ キョン

ъ

Applications

Outline

1 A nonconvex approach: L_1 - L_2

2 Minimization algorithms

Some applications

Super-resolution

The super-resolution problem discussed here is different to image zooming or magnification, but aiming to recover a real-valued signal from its low-frequency measurements.

A mathematical model is expressed as

$$b_k = rac{1}{\sqrt{N}} \sum_{t=0}^{N-1} x_t e^{-i2\pi kt/N}, \qquad |k| \le f_c,$$

where $x \in \mathbb{R}^N$ is a vector of interest, and $b \in \mathbb{C}^n$ is the given low frequency information with $n = 2f_c + 1$ (n < N).

Theorem by Candés and Fernandez-Granda 2012

Let $T = \{t_j\}$ be the support of *x*. If the minimum distance obeys

$$\triangle(T) \geq 2 \cdot N/f_c,$$

then *x* is the unique solution to L_1 minimization. If *x* is real-valued, then the minimum gap can be lowered to $1.26 \cdot N/f_c$.

L₁-L₂ 27/36 Yifei Lou L₁-L₂ model

Applications

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Y. Lou, P. Yin and J. Xin, J. Sci. Comput., 2016

L1-L2 28/36 Yifei Lou L1-L2 model Algorithms Applications Conclusions

Low-rank recovery

Replacing nuclear norm with truncated L_1 - L_2 of the singular values

T. Ma, Y. Lou, and T. Huang, SIAM Imaging Sci., to appear 2017

 L_1-L_2 29/36 Yifei Lou L_1-L_2 model Algorithms Applications

Image processing

We consider

$$J(u) = \|D_x u\|_1 + \|D_y u\|_1 - \alpha \|\sqrt{|D_x u|^2 + |D_y u|^2}\|_1,$$

which turns out to be a weighted difference of anisotropic and isotropic TV:

$$J(u) = J_{ani} - \alpha J_{iso},$$

where $\alpha \in [0, 1]$ is a weighting parameter.

Gradient vectors (u_x, u_y) are mostly 1-sparse, and α takes into account the occurrence of non-sparse gradient vectors.

Y. Lou, T. Zeng, S. Osher and J. Xin, SIAM J. Imaging Sci., 2015

MRI reconstruction

L_1 - L_2 31/36 Yifei Lou L_1 - L_2 model Algorithms

Applications

Block-matching

Figure: Illustration of constructing groups by block-matching (BM). For each $w \times w$ reference patch from an $n_1 \times n_2$ image, we use block-matching to search its n - 1 best matched patches in terms of Euclidean distance, and then vectorize and combine those patches to form a group of size $w^2 \times n$.

Block-matching inpainting

BM3D PSNR=26.71,SSIM=0.8419

SAIST 9 PSNR=29.53,SSIM=0.9147

OUIS PSNR=30.65,SSIM=0.9264

T. Ma, Y. Lou, T. Huang and X. Zhao, ICIP, to appear 2017

L₁-L₂ 33/36 Yifei Lou L₁-L₂ model

Applications

Logistic regression

Given a collection of training data $\mathbf{x}_i \in \mathbb{R}^n$ with a label $y_i \in \{\pm 1\}$ for $i = 1, 2, \cdots, m$, we aim to find a hyperplane defined by $\{\mathbf{x} : \mathbf{w}^T \mathbf{x} + v = 0\}$ by minimizing the following objective function,

$$\min_{\mathbf{w}\in\mathbb{R}^n,v\in\mathbb{R}}F(\mathbf{w},v)+l_{avg}(\mathbf{w},v)$$

where the second term is called averaged loss defined as

$$l_{avg}(\mathbf{w}, v) = \frac{1}{m} \sum_{i=1}^{m} \ln\left(1 + \exp(-y_i(\mathbf{w}^T \mathbf{x}_i + v))\right).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Preliminary results

Real data of patients with inflammatory bowel disease (IBD) for years 2011 and 2012. For each year, the data set contains 18 types of medical information, such as prescriptions, number of office visits, and whether the patient was hospitalized. We used the 2011 data to train our classifier and the 2012 data to validate its performance.

	L_1	L_2	L_1 - L_2
Recall	0.6494	0.6585	0.6829
Precision	0.0883	0.0882	0.0912
F-Score	0.0573	0.0581	0.0622
AUC	0.7342	0.7321	0.7491

UCLA REU project in 2015, followed by Q. Jin and Y. Lou for a journal submission

(ロ) (同) (三) (三) (三) (○) (○)

Conclusions

L₁-L₂ model Algorithms Applications Conclusions

1 L_1 - L_2 is always better than L_1 , and is better than L_p for highly coherent matrices.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

L₁-L₂ model Algorithms Applications Conclusions

- 1 L_1 - L_2 is always better than L_1 , and is better than L_p for highly coherent matrices.
- 2 Proximal operator can accelerate the minimization, but it tends to obtain a suboptimal solution.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

L₁-L₂ model Algorithms Applications Conclusions

- 1 L_1 - L_2 is always better than L_1 , and is better than L_p for highly coherent matrices.
- Proximal operator can accelerate the minimization, but it tends to obtain a suboptimal solution.
- In general, nonconvex methods have better empirical performance compared to convex ones, but lack of provable grounds.

(ロ) (同) (三) (三) (三) (○) (○)

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ