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Background

We aim to find a sparse vector from an under-determined
linear system,

x̂0 = argminx‖x‖0 s.t. Ax = b.

This is NP-hard.

A popular approach is to replace L0 by L1, i.e.,

x̂1 = argminx‖x‖1 s.t. Ax = b.

The equivalence between L0 and L1 norms holds when the
matrix A satisfies the restricted isometry property (RIP).

Candes-Romberg-Tao (2006)
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Coherence

Another sparse recovery guarantee is based on coherence.

‖x‖0 6
1
2

(1 + µ(A)−1),

where coherence of a matrix A = [a1, · · · , aN ] is defined as

µ(A) = max
i 6=j

|aT
i aj|

‖ai‖‖aj‖
.

Two extreme cases are

• µ ∼ 0⇒ incoherent matrix
• µ ∼ 1⇒ coherent matrix

What if the matrix is coherent?
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L1-L2 works well for coherent matrix

We consider an over-sampled DCT matrix with each column
as

aj =
1√
N

cos(
2πjw

F
) , j = 1, · · · ,N

where w is a random vector of length M.

The larger F is, the more coherent the matrix. Take a
100× 1000 matrix for an example:

F coherence
1 0.3981

10 0.9981
20 0.9999

P. Yin, Y. Lou, Q. He and J. Xin, SIAM Sci. Comput., 2015

Y. Lou, P. Yin, Q. He and J. Xin, J. Sci. Comput., 2015
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Figure: Success rates of incoherent matrices, F = 1.
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Comparing metrics
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Figure: Level lines of three metrics: L2 (strictly convex), L1
(convex), and L1 − L2 (nonconvex).
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Comparing nonconvex metrics

Consider a matrix A of size 17× 19 and V ∈ R19×2 be the
basis of the null space of A, i.e. AV = 0.

So the feasible set is a two-dimensional affine space, i.e.

{x : Ax = Axg} = {x = xg + V
[

s
t

]
: s, t ∈ R}.

Visualize objective functions L0, L1/2, and L1-L2 over 2D
st-plane.
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L0: incoherent (left) and coherent (right)
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L1/2: incoherent (left) and coherent (right)
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L1-L2: incoherent (left) and coherent (right)
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Model failure v.s. algorithm failure
L1 L1/2
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F (x̄) < F (x)
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L1-L2 truncated L1-L2
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Truncated L1-L2

‖x‖t,1−2 :=
∑

i/∈Γx,t
|xi| −

√∑
i/∈Γx,t

x2
i ,

where Γx,t ⊆ {1, . . . ,N} with cardinality t is a set containing
the indices of the entries of x with the t largest magnitudes.
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T. Ma, Y. Lou, and T. Huang, SIAM Imaging Sci., to appear 2017
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Advantages of L1-L2

• Lipschitz continuous

• Correct L1’s biasedness by subtracting something with
smooth gradient a.e.

• Exact recovery of 1-sparse vectors (truncated version
yields exact recovery of t-sparse vectors)

• Good for coherent compressive sensing
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Algorithms

We consider an unconstrained L1 − L2 formulation, i.e.,

min
x∈RN

F(x) =
1
2
‖A x − b‖2

2 + λ(‖x‖1 − ‖x‖2).

Our first attempt is using the difference of convex algorithm
(DCA) by composing decompose F(x) = G(x)− H(x) into{

G(x) = 1
2‖A x − b‖2

2 + λ‖x‖1
H(x) = λ‖x‖2.

An iterative scheme is,

xn+1 = arg min
x∈RN

1
2
‖A x − b‖2

2 + λ‖x‖1 − 〈x,
λxn

‖xn‖2
〉.



L1-L2
17/36

Yifei Lou

L1-L2 model

Algorithms

Applications

Conclusions

We then derive a proximal operator for L1-αL2 (α ≥ 0)

x∗ = arg min
x
λ (‖x‖1 − α‖x‖2) +

1
2
‖x − y‖2

2,

which has a closed-form solution:

1 If ‖y‖∞ > λ, then x∗ = z(‖z‖2 + αλ)/‖z‖2, where
z = shrink(y, λ);

2 if ‖y‖∞ = λ, then ‖x∗‖2 = αλ, x∗i = 0 for |yi| < λ;

3 If (1− α)λ < ‖y‖∞ < λ, then x∗ is 1-sparse vector
satisfying x∗i = 0 for |yi| < ‖y‖∞;

4 If ‖y‖∞ ≤ (1− α)λ, then x∗ = 0.

Y. Lou and M. Yan, J. Sci Comput., to appear 2017
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Remarks

• Most L1 solves are applicable for L1-αL2 by replacing
soft shrinkage with this proximal operator.

• The algorithm of combining ADMM and this operator
(nonconvex-ADMM), is much faster than the DCA.

• Both nonconvex-ADMM and DCA converge to
stationary points.

• However, nonconvex-ADMM does not give better
performance than DCA for coherent CS.
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Figure: Success rates of coherent matrices, F=20.
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• DCA is more stable than nonconvex-ADMM, as each
DCA subproblem is convex.

• Since it is convex at α = 0, we consider a continuation
scheme of gradually increasing α from 0 to 1, referred
to as “weighted”.

• How to update the weight α?

• For incoherence matrices, a linear increase for α with a
large slope until reaching one;

• For coherent cases, a sigmoid function to update α,
which may or may not reach one.
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Figure: Different ways of updating α for incoherent (blue) or
coherent (red) matrices.
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Super-resolution

The super-resolution problem discussed here is different to
image zooming or magnification, but aiming to recover a
real-valued signal from its low-frequency measurements.

A mathematical model is expressed as

bk =
1√
N

N−1∑
t=0

xte−i2πkt/N , |k| ≤ fc,

where x ∈ RN is a vector of interest, and b ∈ Cn is the given
low frequency information with n = 2fc + 1 (n < N).
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Point source with minimum separation

Theorem by Candés and Fernandez-Granda 2012
Let T = {tj} be the support of x. If the minimum distance
obeys

4(T) ≥ 2 · N/fc,

then x is the unique solution to L1 minimization. If x is
real-valued, then the minimum gap can be lowered to
1.26 · N/fc.



L1-L2
27/36

Yifei Lou

L1-L2 model

Algorithms

Applications

Conclusions

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

0

10

20

30

40

50

60

70

80

90

100

MSF

 

 

Constrained L
1
 (SDP)

Constrained L
1−2

Unconstrained L
1−2

Unconstrained CL
1

Unconstrained L
1/2

Y. Lou, P. Yin and J. Xin, J. Sci. Comput., 2016
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Low-rank recovery

Replacing nuclear norm with truncated L1-L2 of the singular
values
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T. Ma, Y. Lou, and T. Huang, SIAM Imaging Sci., to appear 2017
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Image processing

We consider

J(u) = ‖Dxu‖1 + ‖Dyu‖1 − α‖
√
|Dxu|2 + |Dyu|2‖1 ,

which turns out to be a weighted difference of anisotropic
and isotropic TV:

J(u) = Jani − αJiso,

where α ∈ [0, 1] is a weighting parameter.

Gradient vectors (ux, uy) are mostly 1-sparse, and α takes
into account the occurrence of non-sparse gradient vectors.

Y. Lou, T. Zeng, S. Osher and J. Xin, SIAM J. Imaging Sci., 2015
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MRI reconstruction

original k-space data sampling mask

FBP, ER=0.99 L1,ER = 0.1 L1 − L2,ER ∼ 10−8
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Block-matching

Block−matching Grouping

Reference patch

Similar patches

Vectorization
w × w → w2 × 1

w2 × n

Figure: Illustration of constructing groups by block-matching
(BM). For each w× w reference patch from an n1 × n2 image, we
use block-matching to search its n− 1 best matched patches in
terms of Euclidean distance, and then vectorize and combine
those patches to form a group of size w2 × n.
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Block-matching inpainting
Barbara 85% missing

BM3D SAIST ours
PSNR=26.71,SSIM=0.8419 PSNR=29.53,SSIM=0.9147 PSNR=30.65,SSIM=0.9264

T. Ma, Y. Lou, T. Huang and X. Zhao, ICIP, to appear 2017
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Logistic regression

Given a collection of training data xi ∈ Rn with a label
yi ∈ {±1} for i = 1, 2, · · · ,m, we aim to find a hyperplane
defined by {x : wT x + v = 0} by minimizing the following
objective function,

min
w∈Rn,v∈R

F(w, v) + lavg(w, v)

where the second term is called averaged loss defined as

lavg(w, v) =
1
m

m∑
i=1

ln
(
1 + exp(−yi(wT xi + v))

)
.
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Preliminary results

Real data of patients with inflammatory bowel disease (IBD) for
years 2011 and 2012. For each year, the data set contains 18
types of medical information, such as prescriptions, number of
office visits, and whether the patient was hospitalized. We used
the 2011 data to train our classifier and the 2012 data to validate
its performance.

L1 L2 L1-L2

Recall 0.6494 0.6585 0.6829
Precision 0.0883 0.0882 0.0912
F-Score 0.0573 0.0581 0.0622
AUC 0.7342 0.7321 0.7491

UCLA REU project in 2015, followed by Q. Jin and Y. Lou for a journal submission
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Conclusions

1 L1-L2 is always better than L1, and is better than Lp for
highly coherent matrices.

2 Proximal operator can accelerate the minimization, but
it tends to obtain a suboptimal solution.

3 In general, nonconvex methods have better empirical
performance compared to convex ones, but lack of
provable grounds.
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Thank you!
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