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We aim to find a sparse vector from an under-determined
linear system,

Xo = argmin, |[x|lo s.t. Ax =b.
This is NP-hard.
A popular approach is to replace Ly by Ly, i.e.,

x; = argmin,|jx||; s.t. Ax=0b.

The equivalence between Ly and L; norms holds when the
matrix A satisfies the restricted isometry property (RIP).

Candes-Romberg-Tao (2006)
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Yifei Lou

Another sparse recovery guarantee is based on coherence.

Ixllo < 2 (1 + u(a) ™),

2
where coherence of a matrix A = [ay, - - - ,ay] is defined as
|af )]
f1(A) = max :
i |aillllal

Two extreme cases are
« u ~ 0 = incoherent matrix
« u ~ 1 = coherent matrix

What if the matrix is coherent?
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Ll les We consider an over-sampled DCT matrix with each column
as

where w is a random vector of length M.

The larger F is, the more coherent the matrix. Take a
100 x 1000 matrix for an example:

F coherence

1 0.3981
10 0.9981
20 0.9999

P.Yin, Y. Lou, Q. He and J. Xin, SIAM Sci. Comput., 2015
Y. Lou, P. Yin, Q. He and J. Xin, J. Sci. Comput., 2015
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Figure: Success rates of incoherent matrices, F = 1.
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Figure: Success rates of coherent matrices, F = 20.
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Figure: Level lines of three metrics: L, (strictly convex), L,
(convex), and L, — L, (nonconvex).
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Ly-L, model
Consider a matrix A of size 17 x 19 and V € R'9*2 be the

basis of the null space of A, i.e. AV = 0.

So the feasible set is a two-dimensional affine space, i.e.
{x:Ax =Ax,} ={x=x,+V [ j ] :s,t € R}

Visualize objective functions L, Ly, and L;-L, over 2D
st-plane.



Ly: incoherent (left) and coherent (right)
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Li-L,: incoherent (left) and coherent (right)




Ly-Ly
12/36

Yifei Lou

Li-L, model

Model failure v.s. algorithm failure
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o 1 2
Ix[lr1—2 == 4Ty, il = /D ire, i

where I'y; C {1,...,N} with cardinality 7 is a set containing
the indices of the entries of x with the r largest magnitudes.

GO =
O~ Lasso i <-Lasso
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T. Ma, Y. Lou, and T. Huang, SIAM Imaging Sci., to appear 2017
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Li-L, model

Lipschitz continuous

Correct L;’s biasedness by subtracting something with
smooth gradient a.e.

- Exact recovery of 1-sparse vectors (truncated version
yields exact recovery of ¢-sparse vectors)

+ Good for coherent compressive sensing



ws  Outline

Yifei Lou

L;-L, model

Algorithms

SDRICSUONS © A nonconvex approach: Li-L,
Conclusions
® Minimization algorithms

© Some applications

O Conclusions



we  Algorithms
Yifei Lou

We consider an unconstrained L; — L, formulation, i.e.,

Algorithms

1
in F(x) = =||[Ax — b|j3 + A — :
min () = SllAx = bl + Alllxllr = [lx]2)

Our first attempt is using the difference of convex algorithm
(DCA) by composing decompose F(x) = G(x) — H(x) into

{ G(x) = 3]l 4x — b3 + Allx;
H(x) = Allx]l2-

An iterative scheme is,

Ax
+
v * Tl

1
1 . 2
—arg min —||Ax — bl||5 + A||x||; — .
gm N2H 12+ Allxll = ¢ )
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. . 1 2
Algorithms x* = argrr;ln)\(Hle — allx]]2) + §||x—yH2,

which has a closed-form solution:

O If [[ylloo > A, then x* = z(||z]l2 + @) /||z]|2, where
z = shrink(y, \);

O if [[y]lcoc = A, then ||x*||2 = a\, xF =0 for |yi| < A;

O If (1 —a)X <|yllo < A, then x* is 1-sparse vector
satisfying x; = 0 for |yi| < ||y|c0;

O I |[y] < (1 —a)\, then x* = 0.

Y. Lou and M. Yan, J. Sci Comput., to appear 2017
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Algorithms « Most L; solves are applicable for L;-aL, by replacing
soft shrinkage with this proximal operator.

+ The algorithm of combining ADMM and this operator
(nonconvex-ADMM), is much faster than the DCA.

« Both nonconvex-ADMM and DCA converge to
stationary points.

+ However, nonconvex-ADMM does not give better
performance than DCA for coherent CS.
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Figure: Success rates of incoherent matrices, F=5.
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- DCA is more stable than nonconvex-ADMM, as each

_ DCA subproblem is convex.
Algorithms

- Since it is convex at « = 0, we consider a continuation
scheme of gradually increasing « from 0 to 1, referred
to as “weighted”.

+ How to update the weight ?

« For incoherence matrices, a linear increase for o with a
large slope until reaching one;

- For coherent cases, a sigmoid function to update «,
which may or may not reach one.
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Figure: Different ways of updating « for incoherent (blue) or
coherent (red) matrices.
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The super-resolution problem discussed here is different to
image zooming or magnification, but aiming to recover a
real-valued signal from its low-frequency measurements.

Applications

A mathematical model is expressed as

N—1
1 .
by = Wi > xie PTHIN k| < £,
=0

where x € R" is a vector of interest, and b € C" is the given
low frequency information with n = 2f. + 1 (n < N).
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Applications

Theorem by Candés and Fernandez-Granda 2012
Let T = {1;} be the support of x. If the minimum distance
obeys

AN(T) >2-N/fe,

then x is the unique solution to L; minimization. If x is
real-valued, then the minimum gap can be lowered to
1.26 - N /f..
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Y. Lou, P. Yin and J. Xin, J. Sci. Comput., 2016
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Replacing nuclear norm with truncated L,-L, of the singular
values

Applications

805
g -O-FPC
30458 -o-FPCA

0.3 -A-LMaFit

02 ¢-IRucLg-M

0.1

%O 14 18 22 26 30
Rank

T. Ma, Y. Lou, and T. Huang, SIAM Imaging Sci., to appear 2017
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We consider
AT J(u) = |[Dxully + [Dyullt — all\/IDu* + [Dyul?[|1
which turns out to be a weighted difference of anisotropic

and isotropic TV:
J(u) = Jani — OCJiS()a

where « € [0, 1] is a weighting parameter.

Gradient vectors (u,, u,) are mostly 1-sparse, and « takes
into account the occurrence of non-sparse gradient vectors.

Y. Lou, T. Zeng, S. Osher and J. Xin, SIAM J. Imaging Sci., 2015
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original k-space data sampling mask

Applications

FBP, ER=0.99 Li,ER =0.1 L —Ly,ER~ 1078
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Block-matching
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Figure: lllustration of constructing groups by block-matching
(BM). For each w x w reference patch from an n; x n, image, we
use block-matching to search its n — 1 best matched patches in
terms of Euclidean distance, and then vectorize and combine
those patches to form a group of size w? x n.
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85% missing

Applications

BM3D | SAIST T ours

PSNR=26.71,SSIM=0.8419 PSNR=29.53,SSIM=0.9147 PSNR=30.65,SSIM=0.9264

T. Ma, Y. Lou, T. Huang and X. Zhao, ICIP, to appear 2017
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Given a collection of training data x; € R”" with a label

yi € {£1}fori=1,2,--- ,m, we aim to find a hyperplane
defined by {x : w/'x + v = 0} by minimizing the following
objective function,

Applications

in F l
weRnveR (W, )+ g (W, v)

where the second term is called averaged loss defined as

avg Z 11’1 1+ eXp yi(WTXi + V))) .
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Real data of patients with inflammatory bowel disease (IBD) for
years 2011 and 2012. For each year, the data set contains 18

Applications types of medical information, such as prescriptions, number of
office visits, and whether the patient was hospitalized. We used
the 2011 data to train our classifier and the 2012 data to validate
its performance.

L L, Li-L,

Recall 0.6494 | 0.6585 | 0.6829
Precision | 0.0883 | 0.0882 | 0.0912
F-Score | 0.0573 | 0.0581 | 0.0622
AUC 0.7342 | 0.7321 | 0.7491

UCLA REU project in 2015, followed by Q. Jin and Y. Lou for a journal submission
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© Li-L, is always better than L;, and is better than L, for
Conclusions highly coherent matrices.

@ Proximal operator can accelerate the minimization, but
it tends to obtain a suboptimal solution.

©® In general, nonconvex methods have better empirical
performance compared to convex ones, but lack of
provable grounds.
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Thank you!
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