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Mathematical representation of images

{v } _,:system {c } ,: coefficients

A good system for image representation:
¢ {c_}has physical meanings.

& {c _} is sparse.

# {v,}is an orthonormal basis or a tight frame.

f=), (fv)v, VieC
& Atoms vn's are localized.



Two kinds of widely used systems

Gabor or Cosine systemin L (R):

{g(t—ak)e™™}, , or {g(t—ak)cos(mb/t)}
¢ Example:
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¢ Provide accurate local time-frequency analysis
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periodic cosine transform

¢ Discretization of Gabor or Cosine systems: sampling the
continuous atoms

¢ Drawback: lack of multi-scale property



Cont'd

Wavelet system in L (R): {2"*y (2"t —k)}
¢ Example: linear spline wavelet

RVA

¢ Providing local discontinuity measurements in multi-scales
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piecewise smooth linear spline framelet

¢ Discrete wavelet systems are generated by the filter bank

¢ Drawback: weak local time-frequency analysis



2D system: tensor product of 1D systems
¢ 2D filters (elementary atoms)
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2D system: tensor product of 1D systems
¢ 2D filters (elementary atoms)
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linear spline wavelet local DCT

¢ Geometrical structures in images




2D system: tensor product of 1D systems
¢ 2D filters (elementary atoms)
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linear spline wavelet local DCT

¢ Geometrical structures in images




Gabor function for optimal orientation selectivity

2ri(w.t,+o.t,)

¢ 2D tensor product Gabor functions g(t,)g(t,)e™ " ™~
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¢ 2D tensor product Gabor filters g(m)g(n)e
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Outline of the work

¢ Motivation: ideal discrete representation for images
4 orientation selectivity
¢ local time-frequency analysis
¢ multi-scale structure

¢ Main results
¢ Construction of discrete (tight) frames with Gabor structure

¢ Relationship between digital Gabor filters and MRA-based wavelet
tight frames

¢ Applications in image restoration



Definitions and notations

H is a Hilbert space. {v } ,
= a Riesz sequence: there exists €,=C >0 s.t.

C, ) lem<| > ey, <C,> eV,

nel nel 2 nel

CHis

for any {c(n)} _ e ¢*().
= an orthonormal sequence: a Riesz sequence with ¢, =C,=1.
= a frame for H : there exist B>A>0 s.t.

ANFIPSY Kf v YP<BIFIP, VfeH.

nel

= a tight frame for H : a frame with A=B=1.
= {u } _ isthe dual frame of {v_} _

f=2fv u=X(fu)v, VfeH

nel nel



Characterization of frame property of discrete
Gabor systems

¢ Gabor system X =(K,L)_in Cc":
{g, ,(m)=g((m-ak)modN) e*""",0<m< N}

keK teL’

with K:={0,1,...,N /a-1}, L={0,1,...,b"' -1}

¢ Define the adjoint system of a Gabor system:

system X=(K,L), X =(L,K"),

shift parameter (a,b) (1/b1/a)
| K={01,..N/a-1} | L={0,1,. ,Nb—1}
lattices L={01,..,b " -1} K'={01,..,a-1}




Cont'd

Theorem 1 (Duality principle)

1

. X is a frame for C"if and only if (ab) 2X"is a Riesz

seguence,

1

I. Xis a tight frame for C" if and only if (ab) X" is an

orthonormal sequence




Cont'd

Theorem 1 (Duality principle) .

. X is a frame for C"if and only if (ab) 2X"is a Riesz
sequence; )

I. Xis a tight frame for C" if and only if (ab) X" is an
orthonormal sequence

Theorem 2 (Construction of Gabor tight frames)

Suppose g e R" is non-negative with support {0,1,...,p—1}.
X=(K,L), is a tight frame for C" if and only if

N/a-1

(i) b<p™; and (ii) ), (g((-—ak)modN))*=b.




Removing nonzero DC offset of Gabor tight frames

% Phenomenon of nonzero DC offset

Example: Cubic B-spline with nodes [0,1,2,3,4] and
a=1,b=1/3.
V2 V2 NG V2 J6

6 6
=2[1,21]; 8. =~—=[2,-2,~1]+i~—[0,-2,1]; g, = ~—[2,—2,~1]+i~—[0,2,—1].
g, 6[ I8, 12[ | 12[ I8, 12[ | 12[ ]



Removing nonzero DC offset of Gabor tight frames

% Phenomenon of nonzero DC offset

Example: Cubic B-spline with nodes [0,1,2,3,4] and
a=1,b=1/3.

J2 J2 J6 J2 J6
=2[1,21]; 8. =~—=[2,-2,~1]+i~—[0,-2,1]; g, = ~—[2,—2,~1]+i~—[0,2,—1].
g, 6[ I8, 12[ | 112[ I8, 12[ | 112[ ]

¢ Gabor induced frame with zero DC offset and explicit
dual frame

8, = ei%g( —H8,
V2 V2 J6 V2 J6

_ 2 _ , _ N6
g8, = 121l g, =—-[-12-1+i——[1,0-1]; g, = —~[-1.2-1]+i——{-1,0.1]



Analysis of orientation selectivity

¢ Definition 1 (Orientation selectivity)

h € C”? has strong selectivity w.r.t. orientation @ if
1) all maximum points of |ﬁ| are on @, cos@+m,sinf =0 ;
2) the values of |h| away from @, cos0+ @, sin€ =0 are negligible.
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Absolute value of Fourier
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Analysis of orientation selectivity

¢ Definition 1 (Orientation selectivity)

h € C”? has strong selectivity w.r.t. orientation @ if
1) all maximum points of |ﬁ| are on @, cos@+m,sinf =0 ;
2) the values of |h| away from @, cos0+ @, sin€ =0 are negligible.

OS-=E=-2 EHHHHMNHE
=== DEANNANS
|AE=EREN RN
MR EEFPORE - -
Iag=iEEE A KRR
NS RN
=== [DERRNNRE
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of Real(g; )

Gabor induced frames
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What we have done:
Derive duality principle for discrete Gabor systems

Construct discrete Gabor tight frame and Gabor induced
frame providing

Local time frequency analysis
Optimal orientation selectivity

Question to ask:
Can we introduce the multi-scale property into Gabor
systems?

Next goal:
Construct MRA-based wavelet tight frame with Gabor
structure



Multi-resolution analysis (MRA)

* If (6)=p).a (k) d(pt—k), teR,

keZ

« peZ(p>1) : dilation factor,
- a,€l(Z) :refinement mask;
= 9L (R) : p-dilation refinable function.
¢ Assume ¢ is p-refinable and ¢(0)=1, define {V,}.., by

V. = span{g(p" —k)},...
¢ .}, forms a multi-resolution analysis (MRA) for L,(R)if
DV cv._, (i)uV=L(R), (i) V ={0}.

(high scale)

Image low resolution

Pyramid:

(low scale)
high resolution




MRA based wavelet system and discrete Gabor filters
¢ By v,(t)=p)a, (m)¢(pt—m) (teR), define:

meZ

- Y={y, }_ :asetof wavelet functions;
= a,c/(Z)(1<(<r) : wavelet masks.
¢ Define p-dilation wavelet system x(¥)

XW)={v,, . ="y " -k} __.

n,keZ n,keZ

¢ Discrete multi-scale wavelet tight frames for ¢_(Z)
are generated by the filter bank
{a,,a,...a }.



MRA based wavelet system and discrete Gabor filters
¢ By v,(t)=p)a, (m)¢(pt—m) (teR), define:

meZ

= W={y,}_, :asetof wavelet functions;
= a,c/(Z)(1<(<r) : wavelet masks.

¢ Define p-dilation wavelet system x(¥)

XW)={v,, . ="y " -k} __.

n,keZ n,keZ

¢ Discrete multi-scale wavelet tight frames for ¢_(Z)
are generated by the filter bank
{a,,a,...a }.
Question: can these filter be replaced by Gabor filters with
orientation selectivity?

1/b-1
=0

Window: g(m)=0 if me [0,q — 1], masks:{g (m)=g(m) e """}



Answer

Theorem 4 (UEP based characterization of Gabor filters
induced wavelet tight frames)

¢ defined from g generates an MRA forL,(R) and X(¥) form a
tight frame forL (R), if the followings hold true:
1

1. 5261;
2. Zg(n)zl;

nez

b . .
3. lgnl= o, Where jeZ/pZ, Q= (pL+])"supp(g)

neQ .
j




Answer

Theorem 4 (UEP based characterization of Gabor filters
induced wavelet tight frames)

¢ defined from g generates an MRA forL,(R) and X(¥) form a
tight frame forL (R), if the followings hold true:
1

1. 5261;
2. Zg(n)zl;

nez

b . .
3. lgnl= v Where jeZ/pZ, Q= (pL+ )" supp(g)

neQ .
j

¢ Unitary Extension Principle (UAEP, [1])
Let g L (R) be refinable with¢(0)=1, and a is finitely supported
Then X(¥) forms a tight frame for L (R), if for anyv e p™Z\ Z

iﬁg(a))ég(a) +2nv)=6(v), ae.we[-r,r]




Cont'd

Theorem 5 (Solutions to UEP-based characterization)
Finitely supported window g satisfies Condition 1, 2, 3 for
some b, if and only if g=5(...,0,0,1....1,0,..) and ;> €Z.

1/b

Theorem 6 (Refinable functions in continuum space)
¢ is refinable with ¢(0)=1, and g =p‘k(1,...,1)eIR{”k (k>2)
Then¢ is a (k—1)th order spline.




Example

¢ Example 2
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Example

¢ Example 3

11111111

p=8, refinable mask: g:(8'8'8'8'8'8'8'8)

(7=
WAZESNN
e
e

)
(ISl
NS )
IVSSE==27
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Application: sparsity based image restoration

Observation: Truth:

Blurred
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Application: sparsity based image restoration

Observation:
vy, ,

| | P ‘1‘? \ %

Blurred isy
¢ Solve linear system
b=Af+n,

where b is the observation, f is the truth and n is the

noise.
¢ Suppose f = znel CV = W;c, and ¢ = Wyf IS sparse.



lImage recovery using proposed (tight) frame

Recovered image u = Zu y Is solved from sparsity based
k=1
multi-layer composite model,

min zz, IW,ul, st 1A u)-bl,<e
k=1

N
{u,,...u_}cR



lImage recovery using proposed (tight) frame

Recovered image u = Zu _ is solved from sparsity based
k=1
multi-layer composite model,

min_ A4 IW,ul, st 1A u)-bl,<e
k=1 k=1

N
{u,,...u_}cR™ 5 _

¢ Proposed and comparison methods:
= ¥ : Gabor induced frame by cubic B-splinea=2,b=1/7,L=7,;
Y :Gabor induced frame by cubic B-spline a=4,b=1/15,L=15.

= ¥ : MRA based wavelet tight frame with Gabor structure
p=2,b=1/8,L=8.



Results

Table 1: PSNR values of denoised images

: Linear spline | DT-CWT | Multi Gabor tight frame
'mage ™ framelet [2] [3] induced frame w / p=8
Barbara 26.84 29.25 28.90 30.39 29.38
Bowl 29.24 30.15 29.43 30.58 30.40
Cameraman | 28.83 29.00 28.94 29.26 29.29
Lena 30.71 31.10 31.49 31.74 31.39
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(d) DT-CWT (e) Gabor induced frame (c) tight frame with p=8
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(d) DT-CWT (e) Gabor induced frame (c) tight frame with p=8




Results

Table 2: PSNR values of deblurred images

mage | kemel | Tv. | ERERNE | OTOWT | ame | wipes
disk 24.77 25.17 25.15 25.65 25.48
Barbara motion 24.64 24 .97 25.00 25.70 25.49
gaussian 24.13 24.14 24.19 24.21 24.18
average 23.99 24.03 24.07 24.27 24.10
disk 28.73 28.92 28.99 29.35 29.13
motion 28.88 29.08 29.15 29.67 29.36
Bow gaussian 27.96 27.82 28.32 28.66 28.46
average 28.73 28.84 28.94 29.25 29.21
disk 26.31 26.83 26.22 27.01 26.73
Cameraman motion 26.18 2714 26.35 26.93 26.72
gaussian 24.96 24.84 24.73 25.04 24.94
average 25.08 25.12 25.00 25.55 25.30
disk 32.05 32.17 32.25 32.53 32.06
Lona motion 30.86 30.49 31.21 31.43 30.45
gaussian 31.34 31.26 31.59 31.74 31.55
average 30.10 29.96 30.21 30.36 30.06




Results

(d) DT-CWT (e) Gabor induced frame (c) tigh frame with p=8




Results

(d) DT-CWT (e) Gabor induced frame (c) tight frame with =8




Reference

= H. Ji, Z. Shen, Y. Zhao, Directional frames for image recovery: multi-scale
discrete Gabor frames, J. Fourier Anal. Appl. 2016

= H. Ji, Z. Shen, Y. Zhao, Digital Gabor filters that generate MRA-based wavelet
tight frames, manuscript



Thank you.



