MRA-based wavelet frames and digital Gabor filters

Zhao Yufei Joint work with Ji Hui and Shen Zuowei Department of Mathematics National University of Singapore

May 2017

Mathematical representation of images

f: image $\{\mathbf{v}_n\}_{n \in I}$: system $\{c_n\}_{n \in I}$: coefficients

Mathematical representation of images

A good system for image representation:

- $\left\{ c_{n} \right\}$ has physical meanings.
- $\{C_n\}$ is sparse.
- $\{\mathbf{v}_n\}$ is an orthonormal basis or a tight frame.

$$\mathbf{f} = \sum_{n \in I} \langle \mathbf{f}, \mathbf{v}_n \rangle \mathbf{v}_n, \quad \forall \mathbf{f} \in \mathbb{C}^N$$

• Atoms \mathbf{v}_n 's are localized.

Two kinds of widely used systems

Gabor or Cosine system in $L_2(\mathbb{R})$:

 $\{g(t-ak)e^{2\pi ibt\ell}\}_{k,\ell\in\mathbb{Z}} \quad \text{or} \quad \{g(t-ak)\cos(\pi b\ell t)\}_{k,\ell\in\mathbb{Z}}$

Example:

Provide accurate local time-frequency analysis

periodic cosine transform

 Discretization of Gabor or Cosine systems: sampling the continuous atoms

Drawback: lack of multi-scale property

Cont'd

Wavelet system in $L_2(\mathbb{R}): \{2^{n/2}\psi_{\ell}(2^nt-k)\}_{n,k\in\mathbb{Z},1\leq\ell\leq r}$

Example: linear spline wavelet

Providing local discontinuity measurements in multi-scales

- Discrete wavelet systems are generated by the filter bank
- Drawback: weak local time-frequency analysis

2D filters (elementary atoms)

2D filters (elementary atoms)

What goes wrong?

2D filters (elementary atoms)

What goes wrong?

Geometrical structures in images

2D filters (elementary atoms)

 $\frac{1}{16} \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$

linear spline wavelet

What goes wrong?

Geometrical structures in images

Gabor function for optimal orientation selectivity

◆ 2D tensor product Gabor functions $g(t_1)g(t_2)e^{2\pi i(\omega_1 t_1 + \omega_2 t_2)}$

• 2D tensor product Gabor filters $g(m)g(n)e^{2\pi i b(m\ell_1+n\ell_2)}$

Outline of the work

Motivation: ideal discrete representation for images

- orientation selectivity
- local time-frequency analysis
- multi-scale structure

Outline of the work

Motivation: ideal discrete representation for images

- orientation selectivity
- local time-frequency analysis
- multi-scale structure

Main results

- Construction of discrete (tight) frames with Gabor structure
- Relationship between digital Gabor filters and MRA-based wavelet tight frames

Outline of the work

Motivation: ideal discrete representation for images

- orientation selectivity
- local time-frequency analysis
- multi-scale structure

Main results

- Construction of discrete (tight) frames with Gabor structure
- Relationship between digital Gabor filters and MRA-based wavelet tight frames

Applications in image restoration

Definitions and notations

H is a Hilbert space. $\{v_n\}_{n \in I} \subset H$ is

• a *Riesz sequence*: there exists $C_2 \ge C_1 > 0$ s.t.

$$C_1 \sum_{n \in I} |\mathbf{c}(n)|^2 \leq \left\| \sum_{n \in I} \mathbf{c}(n) \mathbf{v}_n \right\|_2^2 \leq C_2 \sum_{n \in I} |\mathbf{c}(n)|^2,$$

for any $\{\mathbf{c}(n)\}_{n\in I} \in \ell^2(I)$.

- an *orthonormal sequence*: a Riesz sequence with $C_1 = C_2 = 1$.
- a *frame* for H: there exist $B \ge A > 0$ s.t.

$$A \parallel f \parallel^2 \leq \sum_{n \in I} |\langle f, v_n \rangle|^2 \leq B \parallel f \parallel^2, \quad \forall f \in H.$$

- a *tight frame* for H: a frame with A = B = 1.
- $\{u_n\}_{n\in I}$ is the *dual frame* of $\{v_n\}_{n\in I}$:

$$f = \sum_{n \in I} \langle f, v_n \rangle u_n = \sum_{n \in I} \langle f, u_n \rangle v_n, \quad \forall f \in H.$$

Characterization of frame property of discrete Gabor systems

• Gabor system $X = (K,L)_g$ in \mathbb{C}^N : $\{\mathbf{g}_{k,\ell}(m) = \mathbf{g}((m-ak) \mod N) e^{-2\pi i \ell b m}, 0 \le m < N\}_{k \in K, \ell \in L},$ with $K := \{0, 1, \dots, N / a - 1\}, L := \{0, 1, \dots, b^{-1} - 1\}.$

Define the adjoint system of a Gabor system:

system	$X = (K, L)_{g}$	$X^* = (L^*, K^*)_{g}$	
shift parameter	(<i>a</i> , <i>b</i>)	(1/b, 1/a)	
lattices	$K = \{0, 1, \dots, N / a - 1\}$ $L = \{0, 1, \dots, b^{-1} - 1\}$	$L^* = \{0, 1, \dots, Nb - 1\}$ $K^* = \{0, 1, \dots, a - 1\}$	

Cont'd

Theorem 1 (Duality principle) I. X is a frame for \mathbb{C}^N if and only if $(ab)^{-\frac{1}{2}}X^*$ is a Riesz sequence; II. X is a tight frame for \mathbb{C}^N if and only if $(ab)^{-\frac{1}{2}}X^*$ is an orthonormal sequence

Cont'd

Theorem 1 (Duality principle) I. X is a frame for \mathbb{C}^N if and only if $(ab)^{-\frac{1}{2}}X^*$ is a Riesz sequence; II. X is a tight frame for \mathbb{C}^N if and only if $(ab)^{-\frac{1}{2}}X^*$ is an orthonormal sequence

Theorem 2 (Construction of Gabor tight frames)
Suppose
$$\mathbf{g} \in \mathbb{R}^N$$
 is non-negative with support $\{0,1,\ldots,p-1\}$.
 $X = (K,L)_{\mathbf{g}}$ is a tight frame for \mathbb{C}^N if and only if
(i) $b \le p^{-1}$; and (ii) $\sum_{k=0}^{N/a-1} (\mathbf{g}((\cdot - ak) \mod N))^2 \equiv b.$

Removing nonzero DC offset of Gabor tight frames

Phenomenon of nonzero DC offset Example: Cubic B-spline with nodes [0,1,2,3,4] and a=1, b=1/3.

$$\mathbf{g}_{0} = \frac{\sqrt{2}}{6} [1,2,1]; \ \mathbf{g}_{1} = \frac{\sqrt{2}}{12} [2,-2,-1] + i \frac{\sqrt{6}}{12} [0,-2,1]; \ \mathbf{g}_{2} = \frac{\sqrt{2}}{12} [2,-2,-1] + i \frac{\sqrt{6}}{12} [0,2,-1].$$

Removing nonzero DC offset of Gabor tight frames

Phenomenon of nonzero DC offset Example: Cubic B-spline with nodes [0,1,2,3,4] and a=1, b=1/3.

$$\mathbf{g}_{0} = \frac{\sqrt{2}}{6} [1,2,1]; \ \mathbf{g}_{1} = \frac{\sqrt{2}}{12} [2,-2,-1] + i \frac{\sqrt{6}}{12} [0,-2,1]; \ \mathbf{g}_{2} = \frac{\sqrt{2}}{12} [2,-2,-1] + i \frac{\sqrt{6}}{12} [0,2,-1].$$

 Gabor induced frame with zero DC offset and explicit dual frame

$$\overline{\mathbf{g}}_{\ell} = e^{i\theta_{\ell}}\mathbf{g}_{\ell} - \mu_{\ell}\mathbf{g}_{0}$$

$$\overline{\mathbf{g}}_{0} = \frac{\sqrt{2}}{6} [1,2,1]; \ \overline{\mathbf{g}}_{1} = \frac{\sqrt{2}}{8} [-1,2,-1] + i \frac{\sqrt{6}}{12} [1,0,-1]; \ \overline{\mathbf{g}}_{2} = \frac{\sqrt{2}}{8} [-1,2,-1] + i \frac{\sqrt{6}}{12} [-1,0,1].$$

Analysis of orientation selectivity

Definition 1 (Orientation selectivity)

 $\mathbf{h} \in \mathbb{C}^{p \times p}$ has strong selectivity w.r.t. orientation θ if

- 1) all maximum points of $|\hat{\mathbf{h}}|$ are on $\omega_x \cos\theta + \omega_y \sin\theta = 0$;
- 2) the values of $|\hat{\mathbf{h}}|$ away from $\omega_x \cos\theta + \omega_y \sin\theta = 0$ are negligible.

 $\operatorname{Real}(\mathbf{g}_{j_1,j_2}), \text{ size } 7 \times 7$

Absolute value of Fourier of Real(\mathbf{g}_{j_1, j_2})

Gabor induced frames

Analysis of orientation selectivity

Definition 1 (Orientation selectivity)

 $\mathbf{h} \in \mathbb{C}^{p \times p}$ has strong selectivity w.r.t. orientation θ if

- 1) all maximum points of $|\hat{\mathbf{h}}|$ are on $\omega_x \cos\theta + \omega_y \sin\theta = 0$;
- 2) the values of $|\hat{\mathbf{h}}|$ away from $\omega_x \cos\theta + \omega_y \sin\theta = 0$ are negligible.

 $\operatorname{Real}(\mathbf{g}_{j_1,j_2}), \text{ size } 7 \times 7$

Absolute value of Fourier of Real(\mathbf{g}_{j_1,j_2})

 7×7

feasible orientations

Gabor induced frames

What we have done:

- Derive duality principle for discrete Gabor systems
- Construct discrete Gabor tight frame and Gabor induced frame providing
 - Local time frequency analysis
 - Optimal orientation selectivity

What we have done:

- Derive duality principle for discrete Gabor systems
- Construct discrete Gabor tight frame and Gabor induced frame providing
 - Local time frequency analysis
 - Optimal orientation selectivity
- Question to ask:

Can we introduce the multi-scale property into Gabor systems?

What we have done:

- Derive duality principle for discrete Gabor systems
- Construct discrete Gabor tight frame and Gabor induced frame providing
 - Local time frequency analysis
 - Optimal orientation selectivity
- Question to ask:

Can we introduce the multi-scale property into Gabor systems?

Next goal:

Construct MRA-based wavelet tight frame with Gabor structure

Multi-resolution analysis (MRA)

• If
$$\phi(t) = p \sum_{k \in \mathbb{Z}} \mathbf{a}_0(k) \phi(pt - k), \quad t \in \mathbb{R},$$

- $p \in \mathbb{Z} (p > 1)$: *dilation factor*;
- $\mathbf{a}_0 \in \ell_2(\mathbb{Z})$: refinement mask;
- $\phi \in L_2(\mathbb{R})$: *p*-dilation refinable function.

◆ Assume ϕ is *p*-refinable and $\hat{\phi}(0) = 1$, define $\{V_n\}_{n \in \mathbb{Z}}$ by

 $V_n = \operatorname{span}\{\phi(p^n \cdot -k)\}_{k \in \mathbb{Z}}.$

• $\{V_n\}_{n\in\mathbb{Z}}$ forms a *multi-resolution analysis (MRA)* for $L_2(\mathbb{R})$ if

(i)
$$V_n \subset V_{n+1}$$
, (ii) $\cup_n V_n = L_2(\mathbb{R})$, (iii) $\cap_n V_n = \{0\}$.

MRA based wavelet system and discrete Gabor filters

• By
$$\psi_{\ell}(t) = p \sum_{m \in \mathbb{Z}} \mathbf{a}_{\ell}(m) \phi(pt - m) \ (t \in \mathbb{R}), \text{ define:}$$

- $\Psi = \{ \Psi_{\ell} \}_{\ell=1}^{r}$: a set of *wavelet functions*;
- $\mathbf{a}_{\ell} \subset \ell_2(\mathbb{Z}) (1 \leq \ell \leq r)$: wavelet masks.

Define *p*-dilation wavelet system X(Ψ)

$$X(\Psi) = \{ \psi_{\ell,n,k} \}_{\substack{1 \le \ell \le r \\ n,k \in \mathbb{Z}}} = \{ p^{n/2} \psi_{\ell}(p^n \cdot -k) \}_{\substack{1 \le \ell \le r \\ n,k \in \mathbb{Z}}}.$$

Discrete multi-scale wavelet tight frames for \(\ell_2\)(\(\mathbb{Z}\)) are generated by the filter bank

$$\{\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_r\}.$$

MRA based wavelet system and discrete Gabor filters

• By
$$\psi_{\ell}(t) = p \sum_{m \in \mathbb{Z}} \mathbf{a}_{\ell}(m) \phi(pt - m) \ (t \in \mathbb{R}), \text{ define:}$$

- $\Psi = \{\psi_{\ell}\}_{\ell=1}^{r}$: a set of *wavelet functions*;
- $\mathbf{a}_{\ell} \subset \ell_2(\mathbb{Z}) (1 \leq \ell \leq r)$: wavelet masks.

Define *p*-dilation wavelet system X(Ψ)

$$X(\Psi) = \{ \psi_{\ell,n,k} \}_{\substack{1 \le \ell \le r \\ n,k \in \mathbb{Z}}} = \{ p^{n/2} \psi_{\ell}(p^n \cdot -k) \}_{\substack{1 \le \ell \le r \\ n,k \in \mathbb{Z}}}$$

Discrete multi-scale wavelet tight frames for \(\ell_2\) (\(\mathbb{Z}\)) are generated by the filter bank

$$\{\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_r\}.$$

Question: can these filter be replaced by Gabor filters with orientation selectivity?

Window: $\mathbf{g}(m) = 0$ if $m \notin [0, q-1]$, masks: $\{\mathbf{g}_{\ell}(m) = \mathbf{g}(m) e^{-2\pi i b \ell m}\}_{\ell=0}^{1/b-1}$

Answer

Theorem 4 (UEP based characterization of Gabor filters induced wavelet tight frames)

 ϕ defined from **g** generates an MRA for $L_2(\mathbb{R})$ and $X(\Psi)$ form a tight frame for $L_2(\mathbb{R})$, if the followings hold true:

1.
$$\frac{1}{b} \ge q$$
;
2. $\sum_{n \in \mathbb{Z}} \mathbf{g}(n) = 1$;
3. $\sum_{n \in \Omega_j} |\mathbf{g}(n)|^2 = \frac{b}{p}$, where $j \in \mathbb{Z} / p\mathbb{Z}$, $\Omega_j = (p\mathbb{Z} + j) \cap supp(\mathbf{g})$

Answer

Theorem 4 (UEP based characterization of Gabor filters induced wavelet tight frames)

 ϕ defined from **g** generates an MRA for $L_2(\mathbb{R})$ and $X(\Psi)$ form a tight frame for $L_2(\mathbb{R})$, if the followings hold true:

1.
$$\frac{1}{b} \ge q$$
;
2. $\sum_{n \in \mathbb{Z}} \mathbf{g}(n) = 1$;
3. $\sum_{n \in \Omega_j} |\mathbf{g}(n)|^2 = \frac{b}{p}$, where $j \in \mathbb{Z} / p\mathbb{Z}$, $\Omega_j = (p\mathbb{Z} + j) \cap supp(\mathbf{g})$

• Unitary Extension Principle (UEP, [1]) Let $\phi \in L_2(\mathbb{R})$ be refinable with $\hat{\phi}(0) = 1$, and \mathbf{a}_0 is finitely supported Then $X(\Psi)$ forms a tight frame for $L_2(\mathbb{R})$, if for any $v \in p^{-1}\mathbb{Z} \setminus \mathbb{Z}$ $\sum_{\ell=0}^r \hat{\mathbf{a}}_{\ell}(\omega)\overline{\hat{\mathbf{a}}_{\ell}(\omega+2\pi v)} = \delta(v)$, a.e. $\omega \in [-\pi,\pi]$

).

^[1] A. Ron and Z. Shen, Affine system in L2(R): the analysis of the analysis operator, J. Funct. Anal. 1997

Cont'd

Theorem 5 (Solutions to UEP-based characterization) Finitely supported window **g** satisfies Condition 1, 2, 3 for some *b*, if and only if $\mathbf{g} = b(\dots,0,0,\underbrace{1,\dots,1}_{1/b},0,\dots)$ and $\frac{1}{bp} \in \mathbb{Z}$.

Theorem 6 (Refinable functions in continuum space) ϕ is refinable with $\hat{\phi}(0)=1$, and $\mathbf{g}=p^{-k}(1,...,1)\in \mathbb{R}^{p^k}$ ($k\geq 2$) Then ϕ is a (k-1) th order spline.

Example

Example 2

Example

Example 3

p=8, refinable mask: $\mathbf{g} = (\frac{1}{8}, \frac{1}{8}, \frac{1}{8$

Absolute value of Fourier of Real(\mathbf{g}_{j_1,j_2})

Application: sparsity based image restorationObservation:Truth:

Blurred

Noisy

Application: sparsity based image restorationObservation:Truth:

Blurred

Solve linear system

 $\mathbf{b} = \mathbf{A}\mathbf{f} + \mathbf{n}$,

where \mathbf{b} is the observation, \mathbf{f} is the truth and \mathbf{n} is the noise.

Application: sparsity based image restorationObservation:Truth:

Blurred

Solve linear system

 $\mathbf{b} = \mathbf{A}\mathbf{f} + \mathbf{n}$,

where \mathbf{b} is the observation, \mathbf{f} is the truth and \mathbf{n} is the noise.

• Suppose
$$\mathbf{f} = \sum_{n \in I} c_n \mathbf{v}_n = \mathbf{W}_X^* \mathbf{c}$$
, and $\mathbf{c} = \mathbf{W}_Y \mathbf{f}$ is sparse.

Image recovery using proposed (tight) frame Recovered image $\hat{\mathbf{u}} = \sum_{k=1}^{m} \mathbf{u}_{k}$ is solved from *sparsity based multi-layer composite model*,

$$\min_{\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}\subset\mathbb{R}^N}\sum_{k=1}^m\lambda_k \|\mathbf{W}_{Y_k}\mathbf{u}_k\|_1, \quad \text{s.t.} \quad \|\mathbf{A}(\sum_{k=1}^m\mathbf{u}_k)-\mathbf{b}\|_2 \leq \epsilon,$$

Image recovery using proposed (tight) frame Recovered image $\hat{\mathbf{u}} = \sum_{k=1}^{m} \mathbf{u}_{k}$ is solved from *sparsity based multi-layer composite model*,

$$\min_{\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}\subset\mathbb{R}^N}\sum_{k=1}^m\lambda_k \|\mathbf{W}_{Y_k}\mathbf{u}_k\|_1, \quad \text{s.t.} \quad \|\mathbf{A}(\sum_{k=1}^m\mathbf{u}_k)-\mathbf{b}\|_2 \leq \epsilon,$$

Proposed and comparison methods:

• Y_1 : Gabor induced frame by cubic B-spline a = 2, b = 1/7, L = 7;

 Y_2 : Gabor induced frame by cubic B-spline a = 4, b = 1/15, L = 15.

• Y_1 : MRA based wavelet tight frame with Gabor structure p=2, b=1/8, L=8.

Table 1: PSNR values of denoised images

image	TV [1]	Linear spline framelet [2]	DT-CWT [3]	Multi Gabor induced frame	tight frame w / p=8
Barbara	26.84	29.25	28.90	30.39	29.38
Bowl	29.24	30.15	29.43	30.58	30.40
Cameraman	28.83	29.00	28.94	29.26	29.29
Lena	30.71	31.10	31.49	31.74	31.39

^[1] Y. Wang, J. Yang, W. Yin, Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci. 2008

^[2] J. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration, SIAM J: Multiscale Model. Sim. 2009 [3] I. W. Selesnick, R. G. Baraniuk, N. C. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Proc. Mag. 2005

(a) noisy image, $\sigma = 20$

(b) TV

(c) framelet

(d) DT-CWT

(e) Gabor induced frame

(c) tight frame with p=8

(a) noisy image, $\sigma = 20$

(b) TV

(c) framelet

(d) DT-CWT

(e) Gabor induced frame

(c) tight frame with p=8

Table 2: PSNR values of deblurred images

image	kernel	TV	linear spline framelet	DT-CWT	multi Gabor induced frame	tight frame w / <i>p</i> =8
Barbara	disk	24.77	25.17	25.15	25.65	25.48
	motion	24.64	24.97	25.00	25.70	25.49
	gaussian	24.13	24.14	24.19	24.21	24.18
	average	23.99	24.03	24.07	24.27	24.10
Bowl	disk	28.73	28.92	28.99	29.35	29.13
	motion	28.88	29.08	29.15	29.67	29.36
	gaussian	27.96	27.82	28.32	28.66	28.46
	average	28.73	28.84	28.94	29.25	29.21
Cameraman	disk	26.31	26.83	26.22	27.01	26.73
	motion	26.18	27.14	26.35	26.93	26.72
	gaussian	24.96	24.84	24.73	25.04	24.94
	average	25.08	25.12	25.00	25.55	25.30
Lena	disk	32.05	32.17	32.25	32.53	32.06
	motion	30.86	30.49	31.21	31.43	30.45
	gaussian	31.34	31.26	31.59	31.74	31.55
	average	30.10	29.96	30.21	30.36	30.06

(a) motion blurred image, $\sigma = 3$

(b) TV

(c) framelet

(d) DT-CWT

(e) Gabor induced frame

(c) tight frame with p=8

(a) average blur kernel, $\sigma = 3$

(b) TV

(c) framelet

(d) DT-CWT

(e) Gabor induced frame

(c) tight frame with p=8

Reference

- H. Ji, Z. Shen, Y. Zhao, Directional frames for image recovery: multi-scale discrete Gabor frames, J. Fourier Anal. Appl. 2016
- H. Ji, Z. Shen, Y. Zhao, Digital Gabor filters that generate MRA-based wavelet tight frames, manuscript

Thank you.