Topological approach to modeling spatial cognition

Yuri Dabaghian

Rice University

How does brain represent space?

Cognitive map concept

E. Tolman, 1947

Cognitive map – an <u>internalized</u> representation of the environment, that enables spatial navigation and spatial planning

Cognitive map concept

E. Tolman, 1947

Cognitive map – an <u>internalized</u> representation of the environment, that enables spatial navigation and spatial planning

Where is it located?

Hippocampus and space coding

(D) Rat with hippocampus lesioned

Hippocampus and space coding

(D) Rat with hippocampus lesioned

How a cognitive map is produced by the hippocampal network?

Cognitive representation of space emerges from spiking activity

What is the mechanism?

Properties of the cognitive map

1. What information is represented in the cognitive map?

Distances? Other metrics? Directions? Locations? Spatial order?

2. How this information is read out and processed by the downstream networks?

In vivo recordings of neuronal activity

How to proceed?

Alexandrov-Čech theorem

Alexandrov-Čech theorem

Alexandrov-Čech theorem

Alexandrov-Čech theorem: $H_*(X) = H_*(\mathcal{N})$

Alexandrov-Čech theorem suggests how spiking information could be integrated

 $H_*(X) = H_*(\mathcal{N})$

Does it also suggest how hippocampus works?

Topological map

Geometric map

Topological map

Geometric invariance

Topological map

Geometric invariance

Dabaghian et al, eLife 2014

2D versus 1D spatial frame

1.0100 and the second second second second 1 A A - **1**1 - 1 10.1 . 11 I. I. I. 1.10.10.1 1.10.1.1 The second s 100 THE REPORT OF A DESCRIPTION OF A DESCRIP 1.1.1 100 1 100 100 The state with the state of the state 1 11 10 10 10 10 The second se The second se 1 88 1 8 8 1 1 1 1 1 1 and the second 1 C 100 C 10 The second se . . 1.1.1 The second se

1.0100 11.1 1.1.1 10 B B 1.1 The second s THE REPORT OF A DESCRIPTION OF A DESCRIP THE REPORT OF A DESCRIPTION OF A DESCRIP . 1.1.1 100 1 100 100 The second se The second se The second s 1 88 1 8 8 1 1 1 1 1 1 1 .

| = 3

1.010 1.1.1 1.1 1.0100 1.0100 1.010 1.0110 11.00 . . . 11.10 11.000 . . . 1.1.1.11 1 10 1 11 1.00.000 1 11 1 1 11 1 1 11 1 1 11 1.011 1 1 1 1 1 11 111 . . 111 1.00 . . 1.00 11 I I 110 11 **11** - 1 **11** - 1 1.1.1.1.1.1 1 11 1.1.1.1.1.1.1 11.0 1.1.1.1 . 1.1.1.1 . 1 II II II II 1 M. 1.11.1 ... 1 D. . . 11 - L 10 E 10 I. 10 I. 10 C **II I** 11 . . 1.0.0 1.0.0 E 1 1 1 1 100 100 1000 1.1 1.11 1.11 . . 1.1.1 1.1 . . 1.1.1 . . 1.11 1 II I 1 II II 1 II I 10 C C and a second second second The second second second second second 11 A A - C. - 1 C - C. AND A REAL POINT OF A DECK and the second second 100 B. 10 B. 10 B. ALC: 1 ALC: 1 ALC: 1 1.11 1.11 10.0 1.1 1.11 10.11 10.1 -. 1.11 10.0 10.0 10.111 -

Čech's simplicial complex from spikes

Spikes \rightarrow Space reconstruction

Temporal nerve simplicial complex

Topological information unfolds over time

Accumulation of spikes

Temporal nerve complex

Topology of \mathcal{T} represents topology of \mathcal{E}

Rat's environment

Timelines of the topological loops

Persistent loops, persistent Betti numbers: $b_0 = 1$, $b_1 = 1$, $b_{n>1} = 0$

Individual cell's firing rates: $f_1, f_2, ..., f_N$ Individual place field sizes: $S_1, S_2, ..., S_N$

 $P_f(f,\sigma_F)$ $P_s(s,\sigma_s)$

2N parameters

mean firing rate, *f* mean place field size, *s* number of cells, *N*

3 parameters per ensemble

Testing numerically simulated place cell ensembles

Which place cell ensembles produce reliable maps?

0

Different neural ensembles acquire information with different efficiencies, depending on firing rate, place field sizes, and size of cell population: the most competent ensembles form the Learning Region

0

10

Parameters recorded in healthy animals fall into the learning region

Spike trains

	- 11	11		111.1					1				1	11.1		111	1.1		
1										1			1						
1	1																1		
								11			н				11		1.1		
	1					10	۱. I	10									11		
			1		1.000	1								1			1 =		
					1 1			111					1		1			1	
1.								1							1				
																	1.1		
					. •				1			1.1			11				
					Г I						1	1			1		(* * *		
111																-			
				1.1															
118				18				 1											

Brain waves

Spike trains

Spike modulation by the brain waves is essential for successful space coding

Temporal pattern of neuronal co-firing

$$\sigma_3 = [c_1, c_2, c_4, c_5]$$

How can this structure be implemented in the brain?

Readout neuron

Temporal pattern of neuronal co-firing

Temporal nerve complex

$$\boldsymbol{\sigma}_2 = \left[c_2, c_4, c_5, c_7\right]$$

c _	110100
\mathbf{U}_1	
$C_2 -$	
$C_{4} -$	
$C_{5} -$	

Readout neuron

Temporal nerve complex

Temporal pattern of neuronal co-firing

 $\sigma_1 = [c_1, c_3, c_5, c_7]$

C	110100
U ₁	
C .	
- 3	
C ₅ ·	
C .	
\mathbf{v}_7	

The pool of coactive place cell combinations is huge, but the number of readout neuron is limited.

$$\begin{array}{l} \# \ coactive \\ combinations \end{array} \sim \begin{pmatrix} \# \ cells \\ \# \ coactive \ cells \end{pmatrix}$$

Readout neuron

- 1. High dimensionality $\overline{D} \sim 20$
- 2. Low ignition rate f_{σ}
- 3. Irregularity
- 4. etc.

coactive combinations

- 1. Cell assemblies correspond to maximal simplexes $\sigma \in T_{CA}$, high ignition rate f_{σ} , low dim(σ)
- 2. $N_{\text{cell assemblies}} = N_{\text{readout neurons}} \approx N_{\text{place cells}}$, hence $N_{\text{max simplexes}} \approx N_{\text{vertexes}}$ 3. Maximize "contiguity of simplexes," $\xi_i = \frac{\dim(\sigma_i \cap \sigma_{i+1})}{\sqrt{\dim(\sigma_i)\dim(\sigma_{i+1})}}$
- 4. \mathcal{T}_{CA} should correctly represent the topology of the environment, $H_*(\mathcal{T}_{CA}) = H_*(\mathcal{T}) = H_*(\mathcal{E})$
- 5. Learning times, T_{min} , should be reasonable

Cover

Place cell coactivity

 $\begin{array}{c} \text{Temporal nerve complex } \mathcal{T} \\ \hline \end{array}$

Cover

Place cell coactivity

Coactivity graph G

Clique coactivity complex T(G)

Temporal nerve complex ${\mathcal T}$

Cover

Place cell coactivity

 f_{ij}

Pairwise coactivity

Coactivity graph G

Clique coactivity complex T(G)

Temporal nerve complex ${\mathcal T}$

 $f_{ij} > \theta$

Coactivity graph G

Clique coactivity complex ${\cal T}$

Select the most active *combinations* of place cells

Navigation in cell assembly complex

Rewiring cell assembly network

Cell assemblies are unstable
Cognitive maps are stable

How can that work?

Transient (finite time) cell assemblies

Transient (flickering) cell assembly complex $\mathcal{F}(t)$

Rewiring cell assembly network encodes a stable map

Rewiring cell assembly network encodes a stable map

Rewiring cell assembly network encodes a stable map

Andrey Babichev (Rice University/BCM)

Acknowledgements

- NSF grant 1422438
- W. M. Keck Foundation grant for pioneering research, collaborative NRI/BCM award
- Houston Bioinformatics Endowment Fund

