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Data on Manifolds

Data on manifolds1 may arise in (at least) two ways:

(1) Manifold is actual physical space where data reside

,! Usually sphere; from geophysics to marine biology

1contrast to manifolds in data analysis, or manifold-valued data
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Data on Manifolds

Data on manifolds may arise in (at least) two ways:

(2) Multivariate data under non-linear constraints, thus being
forced onto manifold

,! e.g. cones for positive-def matrices or Stiefel manifolds for
ordered bases

4.2. DT-MR images

Two types of DT-MR images were used in our ex-

periments: spinal cord data to observe the effects of the

PDD map restoration, and brain data to assess the ef-

fects of the eigenvalue regularization. We present results

using those data.

4.2.1. Spinal cord data

Acquisition at the level of the spinal cord is techni-

cally more difficult and more sensitive to motion arte-

facts, for instance induced by breathing, therefore these

data are quite noisy. In particular, the PDD field is more

noisy than with brain data. The images contain a cy-

lindrical region (the cord) inside which anisotropy is

high, due to the presence of fibers, and outside which

anisotropy is low, in the CSF surrounding the cord (see

Fig. 12). Discontinuities are of two types: at the inter-

face between cord and CSF, and inside the cord, at the

entrance of peripheral nerves.

Results of the PDD restoration are shown in Fig. 12

for a subsection of the cord. Fig. 12(a) shows that di-

rections have been clearly realigned along the cord, and

the smoothness has increased. At the borders of the
cord, data have not been disturbed by the CSF.

Fig. 12(b) shows a close-up at a discontinuity of the

direction field within the cord, and we can see that the

discontinuity has been preserved while the data have

been smoothed. As there is no ground truth to compare

results with, an essential issue of the PDD restoration is

its effect on post-processing methods, in particular,

white matter fiber tracking (tractography) for which the

Fig. 10. Eigenvalue regularization. Left column: noisy synthetic torus image. Right column: the corresponding regularized image. Top row: noise

level r2 ¼ 25. Bottom row: noise level r2 ¼ 400. Same colour mapping as in Fig. 2. (This figure is available in colour, see the on-line version.)

O. Coulon et al. / Medical Image Analysis 8 (2004) 47–67 61
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Data on Manifolds

D =

0
B@
D11 D12 D13

D21 D22 D23

D31 D32 D33

1
CA : vTDv > 0; v 2 R3

I let P3 be a space of all symmetric positive definite 3 by 3
matrices

I P3 � R6

I P3 is convex but not linear in R6 : 32D1�
1
2D2 might not in P3

I Its actual space is a cone in R4
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Data on Manifolds

A k -ad (k landmarks)

z = f(xj ; yj ); 1 � j � kg

Kendall’s shape space �k
2

z� hzi 2 R2k�2 = f(xj ; yj )1�j�k : �xj = 0;�yj = 0g

preshape : w =
z� hzi

jz� hzij
2 S2k�3 � R2k�2(unit sphere2)

shape : e i�w 2 S2k�3=S1

2
S
n =

�
x 2 Rn+1 : jx j = 1
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Data on Manifolds: Some Challenges

Unexpected challenges: statistics more rooted in linearity than may
originally meet the eye.

Even the simplest statistical notion (an average) is a highly
non-trivial object.

I May admit several “canonical” definitions, some of which do
not guarantee existence, others may not guarantee uniqueness

e.g. Fréchet mean � for random variable X onM

Ed2(�;X ) � Ed2(x ;X ) 8x 2M:
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Two Toy Data Structures

“S-shape” and “C-shape”:
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exp and log map

Exponential map: tangent space 7�! manifold

ie exp�x (
!

�xy) = y

Log map: manifold 7�! tangent space

ie log�x (y) =
!

�xy
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Principal Nested Spheres

1. Principal nested spheres (spherical case) paralleling nested
subspaces (Jung/Dryden/Marron, 2012)

U1 � U2 � � � �Ud�1 � Ud = Sd

Uk = arg minSk�Uk+1

nX
i=1

d2m(xi ; Sk )
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A view on Tangent PCA3

1. Idea: local tangent space PCA at every point yields direction
of local maximal variation at that point

I For any x 2M, take tangent space Tx , ‘lift’ data, take

�h(�x ) =
1P

i �h (xi ; �x )

X
i

�
log�x (xi )
 log�x (xi )

�
�h (xi ; �x ) :

I Consider (orientation) field f�1(�x )e1(�x )g�x2M of 1st
eigenvectors times 1st eigenvalues of �h(�x ).

I Aim to capture non-geodesic variation
I Can make this well-defined and smooth (“same direction”)

2. Question: starting at a point (e.g. Fréchet mean) is there an
integral curve of ‘maximal variation’ along this field?

3(will not discuss regularity conditions)
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Vector Field

I Given a staring point �x , transform the orientation field

V (�x ) = f��1(�x )e1(�x ); �1(�x )e1(�x )g

from �h(x ) into a vector field W such that 8x 2 N (�x )

�h(x )W (x ) = �1(x )W (x ) (i.e.,W (x ) 2 V (x ))

I At least locally, within an open neighborhood N , we can pick
the eigenvectors fe1(x ) : x 2 Ng to be pointing in the same
direction
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A Principal Flow?

What does “curve of maximal variation” mean?

Would like a reasonably smooth curve (x ) whose derivative
_(x ) 2 TxM at any point x 2M is � tangent to �1(x )e1(x )

...AND maximizes the work done by the field on a particle traveling
along its path
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Illustration
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Illustration
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Illustration
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A Principal Flow (Panaretos/Pham/Yao JASA, 2014)

(mod technicalities)4 Curve with midpoint �x , maximizing

Z ���D _(t);W ((t))
E��� dt

SubM(A; v ;M) =
n
 : [0; r ]!M;  2 C

2(M); (s) 6= (s 0) for s 6= s
0

;

(0) = A; _(0) = v ; `([0; t ]) = t for all 0 � t � r � 1
o
:

I Answer: yes, reformulate to Euler-Lagrange equations

I 9 unique solution under mild conditions on manifold+field

I Requires geodesics and second fundamental tensor

I Numerically Feasible for many “standard” manifolds

I Canonical: reduces to ordinary PCA in Euclidean spaces
4(several technical issues will not be discussed)
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Principal Curve (Hastie/Stuetzle (1989)) and Examples 5

5Thanks to Trevor Hastie for sharing the exaples)
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Quick Illustration (varying scale parameter h)

Zhigang Yao Principal Flows on Manifolds



Simulation-Sphere (S-shape, C-shape, Diffusion)
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Some notations

I For any point x in M and N ,

�x ;M =
1

n

nX
i=1

logx ;M(xi )
 logx ;M(xi ) and

�x ;N =
1

n

nX
i=1

logx ;N (xi )
 logx ;N (xi ):

I Let
�
e1(x ;M); : : : ; ek (x ;M)

	
be the first k eigenvectors of

�x ;M. k eigenvectors
�
e1(x ;N ); : : : ; ek (x ;N )

	
for �x ;N .

I Let Hk (x ;M) be the hyperplane on M spanned by�
e1(x ;M); : : : ; ek (x ;M)

	
; Hk (x ;N ) be the hyperplane on

N spanned by
�
e1(x ;N ); : : : ; ek (x ;N )

	
.

Zhigang Yao Principal Flows on Manifolds



Some notations-cont’d

I

B
�
x ;N ; �

�
=
n
y 2 N : dN (x ; y) � �

o
:

where dN (x ; y) is the distance of x and y on N .

I For any positive integer number k < m , and any point
x 2M, let SubM(x ; �; k ;M) be the set of all k -dimensional
sub-manifolds of B(x ;M; �).

I For a given k , the main idea of the principal sub-manifold is:
at each point B of the sub-manifold N , the sub-manifold
should be able to explain the manifold variation as much as
possible.
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An ideal principal sub-manifold (Yao/Pham, 2016)

(Ideal principal sub-manifold)6 k -th dimensional principal
sub-manifold

arg sup
N2SubM

�
A;�;k ;M

�
Z
B2N

�
cos(�B )�

kX
j=1

�j (B ;M)

�
d�N ;

where �N is the measure on N

I To measure the degree of variation, we use the angle �B
between the two hyperplanes, Hk (B ;M) and Hk (B ;N ).

I Theoretically, if �B = 0 for every B , then
Hk (B ;M) = Hk (B ;N ). For general cases, one would hope
�B is as small as possible.

6(subject to modification)
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How to get a concrete sub-manifold

I The idea is to apply the mapping to map N into a ball of
radius � in its tangent space, and then we can use the polar
coordinates of that ball in the tangent space.

I Denote L(N ; �) = logp(N ) to be the image of the
sub-manifold N at p under the logarithm map.
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Principal sub-manifold (Yao/Pham, 2016)

(principal sub-manifoly, slightly changed) k -th dimensional
principal sub-manifold

arg sup
N2SubM

�
A;�;k ;M

�
Z
logA(B)2logA(N )

�
cos(�0B )�

kX
j=1

�j (B ;M)

�
d�k ;

where �k is the measure on the ball of the k -dimensional space of
radius �.

I Let vB be the tangent vector field of a geodesic curve on the
sub-manifold N from A to B , denote �0B to be the angle
between vB and hyperplane Hk (B ;M)

I �0B is chosen to replace �B : this modification not only
measures how N differs from M at B , but also provides a
convenient construction of a surface of maximal “cumulative
variation.”
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Principal flow and principal submanifold

B

A

TBN
TBM

M

N

αB B

A

TBN

TBM

M

N

αB

B

A

VB

TBN

TBM

M

N

α′
B
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Principal sub-manifold in Euclidean Space

Theorem

Assume that M = Rd then

arg sup
N2SubM

�
A;�;k ;M

�
Z
logA(B)2logA(N )

�
cos(�B )�

kX
j=1

�j (B ;M)

�
d�k

= Hyperplane spanned by
�
e1(A;M); e2(A;M); : : : ; ek (A;M)

	
:
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Algorithm 1: two-dimensional principal sub-manifold

1. At a point A (mean), use the log map: logA(xi ) = yi .

2. Find the covariance matrix from y1; : : : ; yn

�A = (yi �A)T � (yi �A):

3. Let e1(A) and e2(A) be the first and second eigenvectors of
�A. Define

Zl = ��
h
cos

�
2l�=180

�
e1(A) + sin

�
2l�=180

�
e2(A)

i
;

with l = 1; : : : ; 180.

4. Use exponential map to map Zl on the manifold so we get a
set of new points expA(Zl) = Al .

5. Assume that we stay at point Al ;i , we are going to find Al ;i+1

(Al ;0 = A and Al ;1 = Al)

5.1 Find �Al;i
.

5.2 Find e1
�
Al;i

�
and e2

�
Al;i

�
.

5.3 Find logAl;i

�
Al;i�1

�
= vl;i .

5.4 Find

ul;i =
D
vl;i ; e1

�
Al;i

�E
� e1

�
Al;i

�
+
D
vl;i ; e2

�
Al;i

�E
� e2

�
Al;i

�

where ha ; bi =
Pn

i=1 aibi with a = (a1; : : : ; an) and
b = (b1; : : : ; bn).

5.5 Find
rl;i = ��

ul;iul;i

 :
5.6 Then

Al;i+1 = expAl;i

�
� rl;i

�
:

5.7 Stop at Al;i+1 when

D
logAl;i+1

(Al;i ); logAl;i+1
(xj )

E
� 0:

for all j = 1; : : : ;n .

6. For every l = 1; : : : ; 180, connect Al ;i with Al ;i+1 for all i we
get a net of principal sub-manifold.

7. Output: Al for 1 � l � 180.
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A view of the projected two-dimensional sub-manifold
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Visualization of the projected sub-manifold for data on S
3
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Principal sub-manifolds for four sea wave sets of data with
noise on S

3
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Principal variation of leaf growth-data
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Principal variation of leaf growth-result
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Take-Home Message

1. A manifold extension of principal components (retain canonical
interpretation+ allow for more flexible reduction of non-geodesic
variation)

2. Study of notions of local covariance on manifolds?

I Behaviour of theoretical version of �h(x ) as process over x or
h or both?

3. Asymptotics for empirical flows/sub-manifolds?

4. More generally? Notions of covariance for manifolds?
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