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Data on Manifolds

Data on manifolds’ may arise in (at least) two ways:

(1) Manifold is actual physical space where data reside
< Usually sphere; from geophysics to marine biology

!contrast to manifolds in data analysis, or manifold-valued data
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Data on Manifolds

Data on manifolds may arise in (at least) two ways:

(2) Multivariate data under non-linear constraints, thus being
forced onto manifold

— e.g. cones for positive-def matrices or Stiefel manifolds for
ordered bases




Data on Manifolds

D11 Di2 D3
D= D21 D22 .D23 . ’UTD’U > O,’U € Rs
D3y D32 Dag
> let P3 be a space of all symmetric positive definite 3 by 3
matrices
> Ps C RS
» Ps is convex but not linear in R® : %Dl — %DQ might not in P3
» Its actual space is a cone in R*
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Data on Manifolds
A k-ad (k landmarks)
z={(2,y;),1 <5 <k}
Kendall's shape space &%
z — (z) € R** 72 = {(zj, y)1<;<x : Bgj = 0,8y, = 0}

z — (z) € §2k=3 — R2k-2
|z — (z)|

shape : e®w € §2F3/51

preshape : w = (unit sphere?)

28 = {:c ER™? :|z| = 1}
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Data on Manifolds: Some Challenges

Unexpected challenges: statistics more rooted in linearity than may
originally meet the eye.

Even the simplest statistical notion (an average) is a highly
non-trivial object.

» May admit several “canonical” definitions, some of which do
not guarantee existence, others may not guarantee uniqueness

e.g. Fréchet mean p for random variable X on M

Ed?(u, X) < Ed*(z,X) VI e M.
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exp and log map

Exponential map: tangent space — manifold

—

ie expz(Zy) = y

Log map: manifold — tangent space

ie logz(y) =2y
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Principal Nested Spheres

1. Principal nested spheres (spherical case) paralleling nested
subspaces (Jung/Dryden/Marron, 2012)

U1CU2C~~-Ud_1CUd:Sd
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Ux = arg mingi, ., Z d2 (z;,SF)
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A view on Tangent PCA3

1. Idea: local tangent space PCA at every point yields direction
of local maximal variation at that point
» For any z € M, take tangent space T}, 'lift’ data, take

_ 1 _
Yn(Z) = m Z: (logi(mi) ® logi(mi))/{h (z;,Z).

» Consider (orientation) field {A\1(Z)e1(Z)}zem of 1st
eigenvectors times 1st eigenvalues of X4 (Z).

» Aim to capture non-geodesic variation

» Can make this well-defined and smooth (“same direction™)

2. Question: starting at a point (e.g. Fréchet mean) is there an
integral curve of ‘maximal variation' along this field?

3(will not discuss regularity conditions)
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Vector Field

» Given a staring point Z, transform the orientation field
V(z) = {-21(2)e(Z), M(Z)es(2)}
from x(z) into a vector field W such that Vz € N(Z)
Lr(z)W(z) = M(z) W(z) (i.e., W(z) € V(z))

> At least locally, within an open neighborhood N, we can pick
the eigenvectors {e1(z) : ¢ € N} to be pointing in the same
direction
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A Principal Flow?

What does “curve of maximal variation' mean?

Would like a reasonably smooth curve y(z) whose derivative
¥(z) € T, M at any point £ € M is & tangent to A;(z)ei(z)
along its path

...AND maximizes the work done by the field on a particle traveling

Zhigang Yao
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A Principal Flow (Panaretos/Pham/Yao JASA, 2014)

(mod technicalities)* Curve with midpoint Z, maximizing

[ (30 woren)| e

SubM(4, v, M) = {7:[0,7] = M,y € C*(M),%(s) £ 2(s') for s # 5,

7(0) = A,%(0) = v,£(y[0,t]) =t forall 0 <t < r < 1}.

» Answer: yes, reformulate to Euler-Lagrange equations

» 3 unique solution under mild conditions on manifold+field
» Requires geodesics and second fundamental tensor

» Numerically Feasible for many “standard” manifolds

» Canonical: reduces to ordinary PCA in Euclidean spaces

*(several technical issues will not be discussed)
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points that project there.

Figure (3.2) Each point on a principal curve is the average of the

*Thanks to Trevor Hastie for sharing the exaples) o= = - = .=, = oac




Quick lllustration (varying scale parameter h)

=] = = E E 9DaAe



Simulation-Sphere (S-shape, C-shape, Diffusion)

E 9Dac
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Some notations

» For any point z in M and N,

1>
E(E,M = E Zlogm,M(mi) ® lOgm,M(xi) and
1=1

Lo N = %Zlogzw(zl’) ® log, \(z:).
i=1
> Let {ei1(z, M),..., ex(z, M)} be the first k eigenvectors of
2z m. k eigenvectors {ei(z,N),..., ex(z,N)} for Ty n.
> Let Hy(z, M) be the hyperplane on M spanned by
{e1(z, M), ..., ex(z, M)}; Hip(z,N) be the hyperplane on
N spanned by{ei(z,N),..., ex(z,N)}.
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Some notations-cont’d

>

B(z,N,¢) = {y EN :dy(z,y) < e}.

where dp/(z, y) is the distance of z and y on N.

For any positive integer number k < m, and any point
z € M, let SubM(z, €, k, M) be the set of all k-dimensional
sub-manifolds of B(z, M, ¢).

For a given k, the main idea of the principal sub-manifold is:
at each point B of the sub-manifold N, the sub-manifold
should be able to explain the manifold variation as much as
possible.
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An ideal principal sub-manifold (Yao/Pham, 2016)

(Ideal principal sub-manifold)® k-th dimensional principal
sub-manifold

k
arg sup -/BeN (cos ap) x > A )d,u,N,

NeSubM (4,6,k,M) j=1

where s is the measure on N

» To measure the degree of variation, we use the angle ap
between the two hyperplanes, Hy(B, M) and Hy(B,N).

» Theoretically, if ag = 0 for every B, then
Hy(B, M) = Hi(B,N). For general cases, one would hope
ap is as small as possible.

8 (subject to modification)
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How to get a concrete sub-manifold

» The idea is to apply the mapping to map N into a ball of
radius € in its tangent space, and then we can use the polar
coordinates of that ball in the tangent space.

» Denote L(N,€) = log,(N) to be the image of the
sub-manifold N at p under the logarithm map.
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Principal sub-manifold (Yao/Pham, 2016)

(principal sub-manifoly, slightly changed) k-th dimensional
principal sub-manifold

k

(cos(a’B)xZ A (B, M)> du,

=1

arg sup

N€ESubM (A,e,k,M) /logA(B)GlogA(N)

where i is the measure on the ball of the k-dimensional space of
radius e.

» Let vp be the tangent vector field of a geodesic curve on the
sub-manifold N from A to B, denote o'z to be the angle
between vg and hyperplane Hy(B, M)

» o'y is chosen to replace ag: this modification not only
measures how N differs from M at B, but also provides a
convenient construction of a surface of maximal “cumulative

variation.”
Zhigang Yao Principal Flows on Manifolds



Principal flow and principal submanifold




Principal sub-manifold in Euclidean Space

Theorem
Assume that M = R¢ then

arg sup
NeSubM (4,6,k,M)

= Hyperplane spanned by {e1(A4, M), e2(A, M), ..., ex(A, M)}.

cos(ag) x Y_ Aj(B, M)) dur

j=1

/logA(B)ElogA(N) (
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Algorithm 1: two-dimensional principal sub-manifold
1. At a point A (mean), use the log map: log,(z;) = v;.

2. Find the covariance matrix from y1,...,¥n
Za=(u-A)7T x (v - A).

3. Let e1(A) and ex(A) be the first and second eigenvectors of
T 4. Define

Zy=¢€x [cos (21m/180) e1(A) + sin (2[#/180)&2(1{)},

with I=1,...,180.
. Use exponential map to map Z; on the manifold so we get a
set of new points exp 4(Z;) = A;.
Assume that we stay at point A;;, we are going to find Az ;41
(Ao =Aand Ay = Ap)
5.1 Find D,
5.2 Find ey (Az) and ez (Ays)-
5.3 Find log,,, (Ari-1) = v
5.4 Find '

;= <u;ll, e (A,.L)> x e (A1) + (.,,,,, e,(A,,,)> X e3(Aus)

IS

b

where (a,b) = Y, a;b; with a = (ay,...,a,) and

b= (by,..., bn).
55 Find .
= e x
[N
5.6 Then

Ay = expy, (= 1)
5.7 Stop at Ariq1 when

(1084, (A1), 0g,... (2)) > 0.

forall j =1,...,n.

o

. Forevery I =1,...,180, connect A;; with A;;;; for all 7 we
get a net of principal sub-manifold.
7. Output: A; for 1 < I < 180.

= 7



A view of the projected two-dimensional sub-manifold
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Visualization of the projected sub-manifold for data on S*

(a) (d) () ) (m)
(b) (e) (h) (k) (n)
(c) (f) ) @ (o)
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Principal sub-manifolds for four sea wave sets of data with
noise on S3

(c) (d)

Figure 6: Principal sub-manifolds (with superimposed principal directions) for four sea
wave sets of data with noise on S%. (a) Principal sub-manifolds with no noise added. (b),
(c) and (d) provide the same information for three different noise levels.
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Principal variation of leaf growth-data

0 20 40 60 80 100
0 20 40 60 80 100

-60 -20 0 20 40 60 —60 -20 0 20 40 60

(2) (b)

0 20 40 60 80 100
0 20 40 60 80 100

-60 20 0 20 40 60 -60 20 0 20 40 60

(c) (d)

Figure 9: Leaf growth over a growing period of Clone 1 (a), Clone 2 (b), Clone 3 (c), and
a reference tree (d). (a) Four landmarks on the leaf of clone 1 have been connected and
represented by a polygon at each growing period (27 polygons totally); (b)-(d) provide the
same information for Clone 2 (22 polygons), Clone 3 (24 polygons) and the reference tree
(31 polygons).
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Principal variation of leaf growth-result
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Figure 12: Principal sub-manifolds of the leaf growth data. (a) First principal direction
obtained from the combined leaves at breast height and the crown of the reference tree;
(b) Second principal direction obtained from the combined leaves at breast height and the
crown of the reference tree. (c)-(h) provide the same information for clone 1, 2 and 3.
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Take-Home Message

1. A manifold extension of principal components (retain canonical
interpretation+ allow for more flexible reduction of non-geodesic
variation)

2. Study of notions of local covariance on manifolds?

» Behaviour of theoretical version of ¥;(z) as process over z or
h or both?

3. Asymptotics for empirical flows/sub-manifolds?

4. More generally? Notions of covariance for manifolds?
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