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Introduction

Interacting particle systems (IPS) on finite networks
I David Aldous. "Interacting particle systems as stochastic social dynamics."

Bernoulli 19.4 (2013): 1122-1149.

Complex network limits: graphons, graphexes, etc.
I Christian Borgs et al. "Sparse exchangeable graphs and their limits via

graphon processes." arXiv preprint arXiv:1601.07134 (2016).
I Harry Crane. "Time-varying network models." Bernoulli 21.3 (2015):

1670-1696.
I Harry Crane. "Dynamic random networks and their graph limits." Ann.

Appl. Probab. 26.2 (2016): 691-721.

Particles on (co)evolving networks. Some (rare) rigorous works:
I Luca Avena et al. "Mixing times of random walks on dynamic configuration

models." Ann. Appl. Probab. arXiv arXiv:1606.07639 (2016).
I Emmanuel Jacob, and Peter Mörters. "The contact process on scale-free

networks evolving by vertex updating." Royal Society Open Science 4.5
(2017): 170081.

I Anirban Basak, Rick Durrett, and Yuan Zhang. "The evolving voter model
on thick graphs." arXiv:1512.07871 (2015).

Open problems.
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Introduction

Appetizer: A class of finite IPS

After: David Aldous. "Interacting particle systems as stochastic social
dynamics." Bernoulli 19.4 (2013): 1122-1149.

Aldous’ "Finite Markov Information-Exchange" processes.

Agents: V := [n].

Meeting process: If νi,j > 0, each undordered pair {i, j} ⊂ V of agents
meets at rate νi,j independently for different {i, j}.
Meeting geometry: G = (V,E), E := {{i, j} : νi,j > 0} connected graph.

States: xi(t) ∈ S, i ∈ V , |S|< ∞.

Update rule: Upon meeting at time t, update:

(xi(t),xj(t)) := (F(xi(t−),xj(t−)),F(xj(t−),xi(t−))), {i, j} ∈ E,

where F : S2→ S a (possibly random) mapping.
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Introduction

Example: Voter model

A version

Assume there are n possible opinions: S := [n].

At time t = 0, xi(0) = i, (i.e., the worst possible configuration).
Upon meeting at time t, flip a fair coin to decide whether:
I xj(t) := xi(t−), i.e., i→ j.
I xi(t) := xj(t−), i.e., j→ i.

Q: What is the consensus time?

Tvoter := min{t : all agents have the same opinion}= ?
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Introduction

Flavour:
This is in the spirit of studies of mixing/hitting/cover/etc. times of finite
Markov chains.

Goals:
Study quantitative dependence of IPS on the “geometry” of the
network G.
Study
I n→ ∞,
I n, t→ ∞,
I (rather than just t→ ∞ behaviour).
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Introduction

Question
Q:

Can one describe n→ ∞ limit of G?

Is there a limiting object?

A class of interesting geometries G = (V,E) is sparse, i.e.,

|E|/|V|2 →
n→∞

0.

Some models:

Configuration model.

Preferential attachment.

...
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Introduction

Evolving geometries

Many real-world networks are evolving in time:

G = G(t).

This naturally leads to time-inhomogeneous (and possibly random)
meeting (Cox-)Poisson rates

νi,j = νi,j(t).
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Introduction

An inherently multi-scale setup

Scenarios for speed of the network evolution vs. speed of the agent
dynamics.

Network is faster than agents.

Agents are faster than the network.

Agents and network evolve at the same speed.

I Adaptive/coevolving agents and network.

A key question:

Q:

Does the evolution OF the network slow down/accelerate the agent
dynamics ON the network?
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Mixing times of random walks on dynamic configuration
models

After: Luca Avena et al. "Mixing times of random walks on dynamic
configuration models." Ann. Appl. Probab. arXiv arXiv:1606.07639
(2016).

Mixing time

Mixing time of a Markov chain is the time it needs to approach its stationary
distribution

Popular concept for random walks on static random graphs.

Provides subtle information about the graph “geometry”.

For evolving graphs, rigorous studies were pioneered by

Yuval Peres, Alexandre Stauffer, and Jeffrey E. Steif. "Random walks on
dynamical percolation: mixing times, mean squared displacement and
hitting times." Proba. Theory and Related Fields 162.3-4 (2015): 487-530
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Configuration model

Configuration model

The configuration model (CM) is a random graph with a given degee
sequence.

For SRW, on the static CM, the mixing time is of order logn:

Eyal Lubetzky, and Allan Sly. "Cutoff phenomena for random walks on
random regular graphs." Duke Mathematical Journal 153.3 (2010):
475-510.

Nathanaël Berestycki, Eyal Lubetzky, Yuval Peres, and Allan Sly (2015).
Random walks on the random graph. arXiv:1504.01999.
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Static configuration model

Denote by CM(dn) the set of all graphs on n vertices with given
degree sequence:

dn := (d(i))n
i=1.

The total degree

|dn| :=
n

∑
i=1

d(i)

is assumed to be even.

To each degree sequence, we associate a random graph uniformly
drawn from CM(dn).
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Static configuration model: How to generate?

Pair the stubs (a.k.a. halfedges) at random:

dƵĞƐĚĂǇ͕��ƵŐƵƐƚ�ϭ͕�ϮϬϭϳ

ϭϮ͗ϱϮ�WD

dn := {1,2,1,3,1,2,1,4,1,8},
n := 10.
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SRW on dynamic configuration model

For fixed n, draw a starting vertex u ∈ V and a starting graph configuration
η ∈ CM(dn) and proceed as follows:

1 At each time t ∈ Z+, mark a fraction αn ∈ (0,1) of the edges uniformly
at random.

2 Refresh/rewire these edges by using the configuration model
constrained to these edges, e.g.,

dƵĞƐĚĂǇ͕��ƵŐƵƐƚ�ϭ͕�ϮϬϭϳ

3 Upon rewiring, let the RW make a step to a random neighbouring
vertex.
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Equilibrium in a non-Markovian world?

Discrete time evolving configuration model: at each unit of time a fraction
αn ∈ (0,1) of the edges is refreshed (rewired).

The rewiring preserves the prescribed degree.

Therefore, the stationary distribution of the SRW does not change in
time.

Therefore, the notion of mixing time is well defined.
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Regularity assumptions

Regularity assumptions

Let Dn be the degree of a randomly chosen vertex. There exists a random
variable D such that

limn→∞ Dn
distr
= D.

limn→∞ E[D2
n] = E[D2]< ∞.

P{Dn ≥ 3}= 1 for all n ∈ N.

NB! These conditions ensure that

the probability for a random graph to be simple is positive,

the probability for a random graph to be connected tends to one.
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Mixing time

Denote by Pu,η the joint law of the RW and the dynamic CM.

Denote by Xt the location of the RW at time t ∈ Z+.

Definition
The ε-mixing time is defined as

tn
mix(ε;u,η) := inf{t ∈ Z+ : ‖Pu,η{Xt = ·}−πn(·)‖TV < ε},

where πn(i) := d(i)/|dn| is the stationary distribution.

NB! It is not the usual worst (w.r.t. the initial configuration) case mixing time.
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Mixing time

Theorem 1 [Rough asymptotics of mixing time]

If limn→∞ αn(logn)2 = ∞, then, for every ε > 0, with high probability
w.r.t. the uniform distribution on u and η , as n→ ∞,

(1+o(1))

√
2

√
αn

√
log(1/ε)

≤ tn
mix(ε;u,η)

≤ (1+o(1))
2
√

3
√

αn

√
log(1/ε).

In words: the statement is for typical u and η (as opposed to the worst case
ones).
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Mixing time

Theorem 2 [Sharp asymptotics for slow graph dynamics]

If limn→∞ αn(logn)2 = ∞ and limn→∞ αn = 0, then, for every ε > 0, with high
probability w.r.t. the uniform distribution on u and η , as n→ ∞,

tn
mix(ε;u,η) = (1+o(1))

√
2/a
√

αn

√
log(1/ε),

where a ∈ (0,1) is the escape probability from the root for SRW on the
GW-tree with offspring distribution f given by

f (k) :=
(k+1)P{D = k+1}

E[D]
, k ∈ Z+,

i.e., the size-biased version of D.
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Discussion

1 The mixing time is of order

1/√αn,

which shows that the graph dynamics can speed up mixing (if “severe”
enough, i.e., αn� 1/(logn)2, cf. Theorem 1).

2 Sharp asymptotics for the slow graph dynamics (Theorem 2). The
constant involves a a ∈ (0,1), which shows that the mixing time is an
outcome of the interplay between the particle and random graph
dynamics.

3 Proofs are based on a stopping time argument: the first time the RW
moves along an edge that has been relocated is a strong uniform time.
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Contact process
(a.k.a. susceptible-infectious-susceptible (SIS) model)

After: Emmanuel Jacob, and Peter Mörters. "The contact process on
scale-free networks evolving by vertex updating." Royal Society Open
Science 4.5 (2017): 170081.

Contact process on a finite graph of n agents:

Each agent can be either infected or healthy.

Start in a configuration with all (=worst case) infected agents.

Upon meeting, an infected agent infects its vis-à-vis at rate λ > 0.

An infected vertex recovers at rate one.

(No immunity: Once recovered, a vertex is again susceptible.)

Fact

After a random extinction time Text < ∞, all vertices become healthy (i.e.,
absorbing state).
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The contact process

Q: How big is Text as n→ ∞?

Two scenarios:

Quick extinction: E[Text] is at most polynomial in n.

Slow extinction: W.h.p. Text is at least exponential in n.

Sketch of the “infection landscape”:
quick vs. slow extinction due to metastability.
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Static scale-free network
Scale-free (a.k.a. power law) degrees:

proportion of nodes with degree k ≈ k−τ ,

where τ > 0 is some power law exponent.
A class of models:

V := [n].
Idea: Smaller index implies bigger influence.

Each pair {i, j} of vertices connects independently with probability

pi,j := n−1k(i/n, j/n)∧1.

Consider:
I Factor kernel (Chung-Lu model): k(x,y) := βx−γ y−γ

⇒ pi,j := βn2γ−1

iγ jγ ∧1.
where β > 0 and γ ∈ (0,1) are the parameters of the model.

I ⇒ E[deg(i)]≈ C(n/i)γ ⇒ τ = 1+ 1/γ.
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Results for static scale-free networks

Mean-field prediction of Pastor-Sattoras and Vespignani (2001):

τ < 3, the infection survives for an exponential time for all λ > 0 (slow
extinction).

τ > 3, the expected extinction time is polynomial for small λ > 0
(existence of quick extinction).

Proved to be WRONG by Chatterjee and Durrett (2009), Berger et al. (2005):
always slow extinction. Refinement by Mountford, Valesin and Yao (2013).

Question
Assumption: Network evolution is on the same time scale as the spread of
the disease.
Q: What happens if we allow for evolving interaction networks?
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An evolving scale-free network

Consider a continuous-time evolving network (G(t))t∈R+ :

Vt := [n], t ≥ 0.

E0 consists of independently chosen edges {i, j} each with probability

pi,j :=
1
n

k(i/n, j/n).

Vertex driven updating:
I Every vertex initiates independent updates at rate κ > 0.
I Upon update initiated by i ∈ V , all adjacent edges are removed and new

edges {i, j} are formed with probability pi,j, j ∈ [n]\{i}.

NB!⇒ Gt ∼ G0, t > 0.
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Contact process on evolving scale-free network

Theorem
Consider the contact process, where at t = 0 everybody is infected. Then

[Slow extinction] If τ < 4 (⇔ γ > 1/3), then, for all parameters,

P{Text ≤ ecn} ≤ e−cn.

[Quick extinction] If τ > 4 (⇔ γ < 1/3), then there exists a parameter
λc > 0 such that, for all λ < λc, there exists C > 0 such that uniformly in
n > 0:

E[Text]≤ Cnγ logn.

NB! Here, quick extinction is possible but with a bigger power law exponent
(=4) than the (wrongly) predicted one (=3) in the static case.
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Heuristics
Scale freeness ∃ agents of high degree (= “stars”).
Static network:

Stars can keep infection alive for a long time:
I If a star gets infected it infects a fraction of its neighbours.
I But once it recovers, it will quickly be reinfected by its infected

neighbours.

Therefore, metastable states arise, when a fraction of stars become
infected.

Evolving network:
An infected star can get rewired and subsequently recover before
infecting its neighours quick reinfection is unlikely.
Therefore, stars can hold infection for a shorter time, and if they are not
sufficiently connected (τ big enough), this can destroy metastability.
NB! 
I Rewiring can help the SIS to get out of metastable states.
I Rewiring speeds up extinction.
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Heuristics

However, it can go the other way around:

Probability that a star rewires and then recovers before infecting its
neighbours is Θ(1/deg) (= “successful recovery”).

Therefore, the # of updates of an infected star before a successful
recovery is Θ(deg).

At each update a star gets Θ(deg) neighbours.

Therefore, an infected star infects Θ(deg2) agents before successful
recovery.

Mean-field calculation phase transition at τ = 4 (instead of the
(wrong) mean-field prediction τ = 3 in the static case).
NB! 
I Rewiring can help the SIS to infect more vertices.
I Rewiring slows down extinction.

The main idea of the proof: coupling with a mean-field process.
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Open (meta-)problems

Study your fav. finite IPS on your fav. evolving network

I E.g., finite voter model on evolving network: consensus time? Duality with
coalescing RW on evolving network?

Scaling limits/universality.

Are exchangeable graph/particle models provable scaling limits of any
finite IPS on evolving networks?

Characterization of the Markovian complex network dynamics for sparse
edge exchangeable random networks?

Adaptive (coevolving) models: allowing for interactions between agent
states and graph evolution.

Infer the network geometry from the behaviour of an interacting particle
system on it.

. . .

Jiří Černý, Anton Klimovsky Genealogies of particles ondynamic random networks 02.08.2017



Open problems

Summary

Finite IPS on networks.

Network limits.

Evolving networks.

Finite IPS on evolving networks: Examples.

Open problems.
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