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1. Inclusion process



Set up

Let S finite set, ry, > 0 jump rates of an irreducible CTRW on S with
reversible measure m = (My)xes, i-€.

mxrx7y:myry’x V(X,y)GSXS

The reversible inclusion process with parameter k > 0 is the Markov
process {n(t) : t > 0} with state space N° and generator

Litn) = > reynx(2k +ny) [F(™Y) — £(n)]
X,yeSx S

n—1 ifz=x,
Y =< ny+1 ifz=y,

Nz it z# {x,y}

where

Introduced in [G., Kurchan, Redig, JMP ’07] for k = 1/4.



Reversible measure

» In the gran-canonical ensemble, a family of inhomogeneous
product of Negative Binomials with parameters 2k and my, i.e.

¢mx )™ T(nx + 2K)
) =z H r(2k)

XeS

with Z = [[,.s(1 — ¢#my) =2k and 0 < ¢ < (supycg Mx) ™"

» In the canonical ensemble with N particles, the state space is
En={neNS: ZnX:N}
XES

and the unique reversible measure puy is obtained by
conditioning, i.e.

() = 1 H m* T'(nx + 2K)

77X F(2k) HEN(n)




Symmetric case: SIP(k)

If rx7y — ry’x then

» the random walk reversible measure m is the uniform measure

» the SIP(k) reversible measure 1 is a one-parameter family of i.i.d.
Neg Bin (2k,p) with0 < p < 1

- 1 P [ (nx + 2K)
non =11 = 01~ ran)

xeS



2. Two models related to

symmetric inclusion process



Non-equilibrium statistical mechanics

a(2k+n,) : : Bn,
v, : H $ s
- - n S
: § I
[ °
Lo e e LA
1 i-1 i i+1 L

» Adding reservoirs:
» Bulk: one dimensional chain, nearest neighbor SIP(k)
» Left: birth/death process with stationary meas. Neg Bin (2k, %)

» Right: birth/death process with stationary meas. Neg Bin (2k, %)

> If % = 9 then equilibrium product measure
If % # % then non-equilibrium measure (long-range correlations)

» For k = 1/2itis related to Kipnis-Marchioro-Presutti model [see
Carinci, G., Giberti, Redig, JSP "13]



Moran process

Moran model with population size N, individuals of n types and with
symmetric parent-independent mutation at rate 6:

» a pair of individuals of types x and y are sampled uniformly at
random, one dies with probability 1/2 and the other reproduces

» each individual accumulates mutations at a constant rate ¢ and
his type mutates to any of the others with the same probability.

This is the N particle symmetric inclusion process on the complete

graph K, with parameter k = -~
1 20
Ltt) = 3 > m <n_1 +"7y> [F(n*) — £(n)]
1<x<y<n
26 o
Ty \ =g T [f(n"7) = f(n)]

see [Carinci, G., Giberti, Redig, SPA ’15]



3. Some comments
on duality



Self-duality

Let n(t) and £(t) be two independent copies of the SIP(k) process.
Consider

B Nx! r(2k)
P09 =116 "ererren

then
E,[D(n(t),€)] = E¢[D(n, £(1))]

Remark on the use of duality: one can compute n-point correlation
functions by using only n-dual walkers.
E.g.: In non-equilibrium, if v = 2k + o and 5 = 2k + 6 then

xX(L+1-y)

L+1)2(2k(L+1)+1)(a_5)2

Cov(nx,ny) = (



Algebraic approach to

duality



Algebraic approach

1. Write the Markov generator in abstract form, i.e. using the
generators of a Lie algebra (typically creation and annihilation
operators).

2. Duality is related to a change of representation, i.e. new
operators that satisfy the same algebra. Duality functions
are the intertwiners.

3. Self-duality is associated to symmetries, i.e. conserved
quantities.




Duality

Abstract generator

/\

L1

Original generator Dual generator



Self-duality

S: symmetry of the generator, i.e. [L, S] = 0,
d: trivial self-duality function,

— D = S&d self-duality function.

Indeed
LD=LSd = SLd = SdL” = DL"

Self-duality is related to the action of a symmetry



Construction of Markov generators
with algebraic structure and symmetries
i) (Lie Algebra): Start from a (representation of a) Lie algebra g.
ii) (Casimir): Pick an element in the center of g, e.g. the Casimir C.

iii) (Co-product): Consider a co-product A : g — g ® g making the
algebra a bialgebra and conserving the commutation relations.

iv) (Quantum Hamiltonian): Compute the co-product H = A(C).

v) (Markov generator): Apply a ground state transform (often a
similarity transformation) to turn H into a Markov generator L.

vi) (Symmetries): S = A(X) with X € gis a symmetry of H:
[H, 8] = [A(C), A(X)] = A(IC, X]) = A(0) = 0.

[Carinci, G., Redig, Sasamoto, PTRF '16, JSP’16]



The method at work:

su(1,1) Lie algebra



Algebraic structure of inclusion process

z=3 (/c;/c; +Kx Ky — 22K + 2k2)
(x,y)eE

with {ICy, Ky, K9} xes satisfying su(1, 1) Lie algebra

(K3, K] = 65,y K Ky K1 =26xyK3

“su(1, 1) ferromagnetic quantum
spin chain on a graph G = (S, E)



step i): representation in terms of matrices
A discrete representation of su(1,1) algebra is
K*f(n) = (n+2k)f(n+1)
K=f(n) =nf(n—1)

K°f(n) = (n+ k) f(n)

In a canonical base

2% o2 k1

241 o k+2



step ii): Casimir element

For the su(1, 1) algebra the Casimir is

c— %(K—K+ L KYKT) — (K2
C is in the center of the algebra:

[C,K*]=[C,K"]=[C.K°] =0

Cf(n) = k(1 — k)f(n)



step iii): Co-product
The co-product is a morphism that turns the algebra into a bialgebra:

Ac:su(1,1) = su(1,1) ®@su(1,1)

and conserves the commutations relations
[A(K®), A(K*)] = £A(K™)
[A(K™), A(KT)] = 2A(K?)

For classical Lie-algebras the co-product is just the symmetric tensor
product with the identity

AX)=X@1+10X =X + Xs



step iv): Quantum Hamiltonian

A(C) = %(A(K*)A(KJF) + A(KﬂA(K*)) - <A(K°))2

=Ky K + KKy — 2KPKS + Cy + Co

= su(1,1) Heisenberg ferromagnet + diagonal



step v): Markov generator

There is no need of a “ground state transformation”. In this discrete
representation

A(C) = (LT5Y)* + 2k(1 — 2k)

where

LSIP(k)f(m,Uz) =1 (n2 +2K) [f(m1 — 1,m2+ 1) — f(n1,1m2)]
+ 2 (m +2K) [f(n1 +1,m2 — 1) — f(n1,m2)]

is the generator of the Symmetric Inclusion Process SIP (k).



step vi): symmetries

As a consequence of the construction,
A(K*) with o € {+, —, 0} are symmetries of the process:
(L75")" KP + KS) =0
SIP(k)\x
[(L1,2( )) :K1+ + K2+] =0

SIP(K)\x pr— _
(LS5 ") Ky + Ky1=0



Proof self-duality SIP(k)

» Reversible measure is product of Negative Binomial (2k, p)

P)_Zk k! T(2k)

un) =11 t _1 p™ T'(2k + nx)
xeS

» Trivial (i.e. diagonal) self-duality function from reversible measure

1
7)57775

d(n,§) = 0

» Symmetry

exp{AIPIT(KT)} = exp{> K}

XeS



Duality & orthogonal polynomials

[Franceschini, G., arXiv:1701.09115]
[Redig, Sau, arXiv:1702.07237]
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Dualities with orthogonal polynomials

Inclusion Process — Meixner polynomials

Exclusion Process — Krawtchouk polynomials
Independent walkers — Charlier polynomials
Brownian momentum process — Hermite polynomials

) a \?
Li(v)= (VXav‘Vyav> fv)
(x,y)eE Y X

Brownian energy process — Laguerre polynomials
Lf(z) =



4. Scaling limit I

metastability



Infinite population limit, fixed k

Proposition: Let {n(N)(t) : t > 0} be the SIP(k) process on a graph
G = (S, E) initialized with N particles

LSPOf) = 37 [ (2k+y) [F() = ()]
(x,y)eE

1y (2K + ) (™) = F(n)]
The process {z(M)(t) : t > 0} defined by z(N)(f) = ( ) converges

in the limit N — oo to the BEP(k) process {z(t) : t > 0} initialized
from energy 1

) a \? ) )
LoEFE = > [My <8z_8zy> +2K(zc 7)) (62_8Zy>]

(x,y)eE

Proof: Taylor expansion + Trotter-Kurtz theorem



Condensation

Proposition: Consider a parameter ky = k(N) and define dy = 2ky.
Suppose dylogN — 0 as N — ~o. Then

1
li X) = N
NinooMN(n ) ‘S*| Vx € S
where
x_ | N ifz=x,
"z=1 0 ifz£x
and
S, = argmax{m(x) : x € S}
Moreover
lim ﬂZ = |S,]
N—oo dN N 1o

Proof: Consequence of Stirling’s approximation, essentially proved in
[Grosskinsky, Redig, Vafayi, '11].



Movement of the condensate

Theorem (Bianchi, Dommers, G., 2016). Suppose dylog N — 0 as
N — oo and that n(0) = n* for some x € S,. For A C Ey, let
Ta = inf{t >0 : n(t) € A}. Then

1. Average time

1 1
Ep (TUyesnyum ) == - (1 +0(1))

B ZyES*,y;éx rxvy dN
2. Scaling limit
Xn() = ) ZLgyn=)

zeS*
Xn(t/dy) — X(t) weakly as N—

where X(t) is the Markov process on S, with X(0) = x and
generator

Li(y) = Y r.2[f(2) — ()]

zeS,



Comments

» In the symmetric case S, = S, item 2. recovers the result by
[Grosskinsky, Redig, Vafayi 13]

» Comparison to zero-range process [Beltran, Landim ’12]:
» Condensation if rates for a particle to move from x to y is

«
Tix
Iy (ﬁ> fora >2

» Condensate consists of at least N — ¢ particles, ¢y = o(N);
metastable states are equally probable.

» Attime scale t - N*t! the condensate moves from x € S, to
y € S, at rate proportional to cap(x, y), the capacity of the
random walker between x and y.



Proof: key ingredients

For F : Ey — R let Dy be Dirichlet form

Z S n(m)mx (A +my) Fey [F(Y) = F()P

X }/ES neEy

For two disjoint subsets A, B C Ep the capacity between A and B can
be computed using Dirichlet variational principle

Cappn(A, B) = inf{Dn(F) : F € Fn(A, B)}
where

Fn(A,B) ={F: F(n) =1foralln € Aand F(n) = 0 for all n € B}.



Proof: key ingredients (cont'd)

The unique minimizer of the Dirichlet principle is the equilibrium
potential, i.e., the harmonic function h, g that solves the Dirichlet

problem
Lh(n) =0, ifn¢ AUB,
h(n) =1, ifneA,
h(n)=0, ifneB.

It can be easily checked that
hag(n) =Py(ta < 78).

Capacities are related to the mean hitting time between sets
[Bovier, Eckhoff, Gayrard, Klein, 01 — 04]

~ un(haB)
Fae78) = Cap (A.B)



Proof: key ingredients (cont'd)

Potential theory ideas and martingale methods can be combined in
order to prove the scaling limit of suitably speeded-up processes
[Beltran, Landim, 10 — 15].

Find a sequence (6, N > 1) of positive numbers, such that, for any
X,y € Sy, x # y, the following limit exists
p(x,y) = lim Onpn (0", 7”)
N—o0

where py (7%, nY) are the jump rates of the original process

» (0n) provides the time-scale to be used in the scaling limit
> (p(X,¥))x,yes, identifies the limiting dynamics.



Proof: key ingredients (cont'd)
Lemma

un(m)en(nn’) = ;{Cap/v (nx, U nz>

z€8,,z#X

+ Capy (ny U nz)

ze8,,z#y

— Capy ({057}, U 7
zeS,,zA{x,y}



Proof: key ingredients (cont'd)

Proposition: Let S] € S, and S2 = S, \ S!. Then, for dylogN — 0 as
N — ¢,

,JinmCaPN(UU,U ) S

x€S8] yes?

DD ey

x€S] yeSs?
Combining Lemma and Proposition it follows

I|mi ( Y=r,
N%ood pNn 1 Y



Proof: key ingredients (cont'd)

Lower bound by restricting the Dirichlet form to suitable subset of Ey,.
Let Fsit. F(n*)=1¥xec S!and F(Y) =0Vy € S?

Dv(F) = 5 Z > un(m) nx (An + 1) rey [F(7Y) = F(n)]?
xyesneEN
> > > oy Y () nx(dv+my) [F(Y) — F(n)P?
xeS! ye8&? nx+ny:N

- ZZMZ#N"V*’ (d + N =) [G(i = 1) = G(i)]?

xeS! yes? i=1
with  G(i) = F(nx = i,ny = N — i)

WSS (14 o1

| S| xeS! yes?



Proof: key ingredients (cont'd)
Upper bound by constructing suitable test function F.

Good guess inside tubes 7y + 1, = N'is F(n) = nx/N

» by construction particle moving from x € S! to y € S? give
correct contribution

» unlikely to be in a configuration with particles on three sites/ sites
not in S,

» unlikely for a particle to escape from a tube



Multiple timescales
On the time scale 1/dy condensate jumps between site of S,.

If induced random walk on S, is not irreducible, condensate jumps
between connected components on longer time scales.

Conjecture:

» if graph distance = 2 then second timescale dﬂz
N

» if graph distance > 3 then third timescale ’;’—32
N

We prove this when the graph is a line with

S={1,....L}  S.={1.L} 1y, #0 iff |x—y|=1



Second time-scale

Theorem (Bianchi, Dommers, G., 2016). Suppose that dylogN — 0
as N — oo and nx(0) = N for some x € S,. Then for one-dimensional
system with L =3

Xn(IN/d3) — X(t) weakly as N — oo

where X(t) is the Markov process on S, = {1, 3} with X(0) = x and
transition rates

p(1,3) = p(3,1) = (1+1)_1

N2 In32

1
1—m2




Third time scale

Theorem (Bianchi, Dommers, G., 2016). Suppose that dylogN — 0
as N — oo, dy decays subexponentially and 7,(0) = N for some

x € S,. Then for one-dimensional system with L > 4 there exists
constants 0 < Cy < Gy < oo such that

ds as
Ci < liminf S8R, +[r,:] < im sup N2 B ] < Co
o0 —00

Conjectured transition rates of time-rescaled process:

L-2

—1
p(1,L) =p(L,1)=3 (Z (1-m)Q —m,-+1)>

m;t;
i—o itii+1




5. Scaling limit Il

two particles on Z



One particle

Let x(t) denotes the position at time t of a SIP(k) particle on Z:

Lf(x) =2k [f(x + 1) + f(x — 1) — 2f(x)}

Given a scaling paramater ¢ > 0 and fixed o > 0 and 2k. = £. Let
X.(1) == ex(e3t)

Then X.(t) — X(t) as e — 0, with X(t) a Brownian motion on R

LF(X) = j;f”(X)



Two particles
Let x1(t) and xo(t) denotes the position at time ¢ of two SIP(k)
particles (arbitrary but fixed labeling) on Z.

Introduce distance and sum coordinates by

(1) == |x2(t) — x1 ()]
u(t) == xi(t) + x(t)

N

By definition, the distance and sum coordinates are not
depending on the chosen labeling of particles.



Distance and sum coordinates

The distance process w(t) is autonomous and it evolves as a CTRW
on N reflected at 0 and with inhomogeneity in 1

[Cafl(w) = 1{W:0}8k[f(w 1) - f(w)]
Ve (4KIFW + 1) = F(w)] + (4k + 2)[f(w = 1) = F(w)])
+ 1{W22}4k[f(w+1)+f(w_1)_2f(w)]

The sum coordinate u(t), conditionally on {w(t), t > 0}, evolves as a
CTRW on Z with a defect in w = 1

[L6f1(U) = w4k | f(u+ 1) + F(u = 1) = 2(u)]

+ Aoy (4k + 1)[f(u+ 1)+ f(u—1) - 2f(u)}



Fourier-Laplace transform

Theorem (Carinci, G., Redig 2017+). Given a scaling paramater ¢ > 0
and fixed o > 0, consider two SIP(k.) particles on Z with 2k. = <. Let

eu(e 3t ew(e 3t
UL(t) == (\/g) W,(t) = E@) .
and initial values
eU €
U=lm 75 Wi=lm—5

Then

im / OO]EU,W [e—i(n(Ue(t)—U)—&-mWe(t))} e M at = W) (s, m, \)

=0 Jo
where

> WDk, m, ) = W (rm )+ [1- 6] wh (e, m, )

> C(O’) _ \/ K242
KA \//{2+2)\+%(n2+)\)




Fourier-Laplace transform: ¢ — 0

GIiLTlO\UE/UV)(H, mA) = W (1, m N

WAk, m,)) = / Ex [e—’(“Bf+mBF) e Mdt
0

» {Bfi : t > 0} Brownian motion on R* reflected at 0
and started from x > 0

» {B:; : t > 0} independent standard Brownian motion



Fourier-Laplace transform: ¢ — o~

lim Wk, m,\) = Wiy (k,m, \)

g—00

WAk, m, ) = / o [e—"(“ZﬁmBrA)} e~ Mdt
0
» {Bf* : t > 0} Brownian motion on R* absorbed in 0
and started from x > 0

» Let 7 be the absorption time of B{\. Conditionally on 7,

AT

— g (2)
Ze:= By + By Nezny

where Bp) and B§2) are two standard independent Brownian
motions.



Fourier-Laplace transform: 0 < o < oo, distance coordinate
wiD0,m ) = v (m,\)

wS(m, \) = /0 Ey [e—"’"Bﬂ et

» {B? : t > 0} sticky Brownian motion on R* with stickiness

parameter % and started from x > 0

Namely BY = x + |B(s(t))| where

-1 - i
S0 = t+ 5L

L(t) local time of a standard Brownian motion at the origin



Perspectives

» Inclusion process is a novel interacting particle system with
» mathematical structure of exactly solvable model (e.g. duality)
» integrability?

» Condensation regime (infinite population limit)

» new features (i.e. multiple timescales) compared to other
condensing systems, such as zero-range process

» conjecture: three timescales as found in the 1D setting?

» thermodynamic limit, coarsening, non-reversible dynamics?

» Condensation regime (diffusive limit, finite number of particles)
» two-particles problem: the distance coordinate is sticky BM

» n-particle dynamics?



