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Outline

This learning session has three parts.

Part I: Definitions and representations of the CRT

a random distance matrix

; stick-breaking

tree below a random excursion

Part II: CRT as limit of finite tree models

(sub-)critical, finite variance GW trees
giant component of the Erdös-Reny random graph

; the multiplicative coalescent

Part III: CRT is invariant under certain tree operation

cutting down trees
the cut tree = the genealogy of cutting

; the additive coalescent
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Part I
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Outline: Part I
Definitions and representations of the CRT [3]

1 Aldous’s Continuum Random Tree (CRT) is a random variable in
the space of continuum metric measure trees.

2 The distribution of such random variables is determined by the
evaluation of all polynomials. Originally, the CRT is defined
through the densities of all polynomials.

3 Such a random variable was constructed via stick-breaking. This
construction yields a representation of the tree-lengths vector.

4 Aldous’ celebrated result shows that GW trees with critical
offspring distribution of finite variance converge to the CRT.

5 A source of examples for continuum metric measure trees come
from encoding them by excursions.

6 In Part 2 Emmanuel will show that the CRT is the tree associated
with twice the standard Brownian excursion.
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What are continuum trees? R-trees

; THE continuum random tree = random metric measure tree

Definition ([Tits ’77], [Dress: T-theory ], [Chiswell ’01])

A metric space (T , d) is an R-tree iff

(T , d) is connected.

(T , d) satisfies the 4-point condition, i.e., ∀ x1, x2, x3, x4 ∈ T ,

d(x1, x2)+d(x3, x4) ≤ max
{
d(x1, x3)+d(x2, x4), d(x1, x4)+d(x2, x3)

}
.

; R-trees are understood as continuum trees and have the following
intrinsic property

For x1, x2, x3 ∈ T there exists a unique branch point c(x1, x2, x3) ∈ T
with [

x1, x2

]
∩
[
x2, x3

]
∩
[
x1, x3

]
=
{
c(x1, x2, x3)

}
,

where
[x , y ] :=

{
z ∈ T : r(x , z) + r(z , y) = r(x , y)

}
.
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Trees don’t have to be connected! metric trees

; drop connectedness

•

• •

•
•

• •

•x •
•c1 c2•

z

w
•
y

•

I am not a tree :-( I am a tree :-)

Definition ([Athreya, Löhr, W. (2016)])

A metric space (T , d) is a metric tree if it is (isometric to) a subset of
an R-tree with c(x , y , z) ∈ T for all x , y , z ∈ T .

Examples.

Continuum trees/R-trees are metric trees.

Graph-theoretical trees are (discrete) metric trees.
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The lengths measure

; In this lecture we consider compact metric spaces only.

Compact metric spaces are separable.

Let (T , r) be a metric tree, ρ ∈ T a distinguished point, and T ′ ⊆ T
countably dense.

Denote by T o :=
⋃

x∈T ′
(ρ, x) the skeleton of T , and by iso(T ) the

set of isolated leaves of T .

There is a unique σ-finite measure `(T ,r ,ρ) on iso(T ) ] T o with
`(T ,r ,ρ)

(
T \ (iso(T ) ] T o)

)
= 0 and

`(T ,r ,ρ)
(
(ρ, x ]

)
:= r(ρ, x), x ∈ T ′.

; On continuum trees the length measure does not depend on the
choice of the root, and be considered as a generalization of the
Lebesgue measure.
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Metric measure spaces and Gromov-weak topology

In this lecture we consider compact metric spaces only.

(X , r , µ) is a metric measure space if (X , r) is a compact metric
space and µ a probability measure on B(X ) with supp(µ) = X .

We call (T , r , µ) a measure R-tree or a metric measure tree iff
(T , r) is a R-tree resp. a metric tree.

We call (X , r , µ) and (X ′, r ′, µ′) equivalent iff there exists a
measure preserving isometry φ : X → X ′.

Denote by

X, T̄ and T

the spaces of equivalence classes of metric measure spaces, measure
R-trees resp. metric measure trees.
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Convergence in the space of metric measure spaces

Gromov-weak convergence

Emmanuel Schertzer & Anita Winter Convergence of real trees and algebraic trees 8



Convergence in the space of metric measure spaces

Gromov-weak convergence

Let (X , r , µ) ∈ X (µ to sample a random finite subspace) and
X1,X2, ... ∈ X independent, µ-distributed random variables.

We require for all m ∈ N convergence in distribution of the random
(pseudo-)metric r(i , j) := d(Xi ,Xj) on {1, ...,m}.
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∫
Tm

φ
(
r(xi , xj)1≤i,j≤m

)
µ⊗m(du), (φ ∈ Cb(Rm×m

+ ))

(Vershik’s reconstruction theorem) If X1,X2 ∈ X such that

Φ(X1) = Φ(X2) for all polynomials ⇔ X1 = X2.
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Φ(X) :=

∫
Tm

φ
(
r(xi , xj)1≤i,j≤m

)
µ⊗m(du), (φ ∈ Cb(Rm×m

+ ))

(Depperschmidt, Greven & Pfaffelhuber 2012, [2], Löhr ’13[4]) If
(Xn)n∈N and X are random elements in X, then

E
[
Φ(Xn)

]
→ E

[
Φ(X)

]
for all polynomials ⇔ Xn ⇒ X .
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THE Continuum Random Tree (CRT)

For m ≥ 2, we consider binary trees with m leaves labelled
{1, 2, ...,m} and positive edge lengths {le ; e edges}.
Each such tree has 2m − 3 edges. When edge lengths are ignored,
there are

∏m−2
i=1 (2i − 3) many possible shapes t̂ for the tree.

Definition (CRT, [3])

The CRT is the random (equivalence class of the) continuum measure
tree (T , r , µ) such that for each m ∈ N the distribution of the vector of
the shape together with the tree lengths of the subtree spanned by a
µ-sample of size m has density:

f
(
t, l1, ..., l2m−3

)
= s · exp

(
− s2/2

)
dl1...dl2m−3,

where s :=
∑2m−3

i=1 li .
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CRT: A few remarks

P
(
shape(R(k)) = t̂, L1 ∈ dl1, ..., L2k−3 ∈ dl2k−3

)
= s · exp

(
− s2/2

)
dl1...dl2k−3, s :=

2k−3∑
i=1

li .

Not hard to show that this is a probability density function.

Remarks.

1 The shape is uniform on the set of possible shapes, the edge
lengths are independent of the shape and edge lengths are
exchangeable.

2 The above defines a distance matrix distribution. If m = 2, the
subtree has 2 leaves, 1 possible shape, 1 edge, no internal node.
The single edge’s length is Rayleigh distributed, i.e.,

P
(
L ∈ dl

)
= l · exp

(
− l2/2

)
dl .

Note that if X is mean 1 exponential, then P(
√

2X ≥ t) = e−t2/2, i.e.,
√

2X

is Rayleigh distributed.
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CRT: The stick-breaking construction

1 Let (C1,C2,C3, ...) be the times of a non-homogeneous Poisson
point process with rate r(t) = t, i.e., for example,

P
{
C1 > t

}
= P

{
no point in [0, t]

}
= e−

∫ t
0 dsr(s) = e−

t2

2 .

2 Let R(1) be a line of length C1 from a root to leaf 1.

3 Inductively, obtain R(m + 1) from R(m) by attaching an edge
of length Cm+1 − Cm to a uniform random point of R(m) (i.e.,
sampled with respect to the normalized Lebesgue measure on the
edges), labeling a new leaf m + 1.
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of length Cm+1 − Cm to a uniform random point of R(m) (i.e.,
sampled with respect to the normalized Lebesgue measure on the
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Proposition

For each m ∈ N, R(m) has the “CRT-density”.
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Stick-breaking: an illustration

1 Let (C1,C2,C3, ...) be the times of a non-homogeneous Poisson
point process with rate r(t) = t.

2 Let R(1) be a line of length C1 from a root to leaf 1.

3 Inductively, obtain R(m + 1) from R(m) by attaching an edge of
length Cm+1 − Cm to a uniform random point of R(m) labeling a
new leaf m + 1.

s
C1

s
C2

s
C3

s
C3

s
C4
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CRT: analysing the stick-breaking density

We have seen that the density of C1 is the right Rayleigh
distribution.

We proceed by induction. Let (t∗, x∗1 , ..., x
∗
2k+1) be a binary tree

with k + 1 leaves, shape t and 2k + 1 edge lengths x∗1 , ..., x∗2k+1,
and Let (t, x1, ..., x2k−1) be the associated binary tree spanned by
the leaves {1, 2, ..., k}.
By construction, t∗ is obtained from t by splitting an edge xj for
some j = 1, ..., 2k − 1 into two edges of lengths x∗j1 and x∗j2 with
xj = x∗j1 + x∗j2 , and joining leaf k + 1 to that new internal vertex
by an edge x∗j3 = s∗ − s, say.

That is,

f
(
t∗, x∗1 , ..., x

∗
2k+1

)
= f
(
t, x1, ..., x2k−1

)
s∗ · e− 1

2 ((s∗)2−s2) · s−1

= e−
s2

2 s∗ · e− 1
2 ((s∗)2−s2) · s−1 = s∗ · e− 1

2 (s∗)2

,

where s−1 is the probability density that the (k + 1)st edge is
attached at a particular place in the existing tree.
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By construction, t∗ is obtained from t by splitting an edge xj for
some j = 1, ..., 2k − 1 into two edges of lengths x∗j1 and x∗j2 with
xj = x∗j1 + x∗j2 , and joining leaf k + 1 to that new internal vertex
by an edge x∗j3 = s∗ − s, say.

That is,

f
(
t∗, x∗1 , ..., x

∗
2k+1

)
= f
(
t, x1, ..., x2k−1

)
s∗ · e− 1

2 ((s∗)2−s2) · s−1

= e−
s2

2 s∗ · e− 1
2 ((s∗)2−s2) · s−1 = s∗ · e− 1

2 (s∗)2

,

where s−1 is the probability density that the (k + 1)st edge is
attached at a particular place in the existing tree.
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Simulations are often based on stick-breaking construction

; Several simulations can be found on the home page of Grégory
Miermont, e.g.,
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The random tree-lengths vector

Let (T , r , µ) be the CRT, and X1, X2, ... independent and identically
µ-distributed. Denote by Θn the random length of the subtree spanned
by the first n-leaves.

It follows from the stick-breaking construction that

P
{

Θk > x
}

= P
{
N
(x2

2

)
< k

}
,

where N(λ) denotes a Poisson variable with intensity λ.

It follows that Θk has a Chi distribution with parameter 2k, i.e.,
with density

fΘk
(x) = 2−(k−1)x2k−1

(k−1)! exp
(
− x2/2

)
, x > 0.

Moreover, one can easily show that for all n ∈ N,(
Θ1,Θ2, ...,Θn

) d
=
(√

2X1,
√

2(X1 + X2), ...,
√

2(X1 + ...+ Xn)
)
,

where X1, X2, ... are independent rate 1 exponentially distributed.
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A problem concerning tree-lengths

Let (T , r , µ) be a metric measure tree, and X1, X2, ... independent and

identically µ-distributed. Denote by Θn the random length of the subtree

spanned by the first n-leaves. We refer to the random vector (Θ1,Θ2, ...) as the

tree-length vector.

; It is shown in Greven, Pfaffelhuber & Winter (2013) that in the
space of ultra-metric measure trees, the distribution of the
tree-length vector determines (T , r , µ) uniquely.

Open problem

Under which assumption is the distribution of the tree-length vector
convergence determining?
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The CRT as uniform R-tree

The main result of [3] is the following invariance principle.

Theorem

Let XN be the Galton-Watson tree conditioned on total population size N
and with critical offspring distribution of finite variance σ2 > 0. If x̂N is
XN with edge lengths rescaled by σ√

N
and equipped with the uniform

measure on the leaves, then

X̂N
w−−−→

N→∞
CRT.

; Such a invariance principle will be the link to an equivalent
definition of the CRT.
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Correspondence to excursions

A (continuous) excursion is a function ϕ ∈ C ([0, 1]) with
ϕ
∣∣
{0,1} = 0 and ϕ

∣∣
(0,1)

> 0.

With every excursion ϕ we associate a pseudo-metric on [0, 1]:

rϕ(s, t) := ϕ(s) + ϕ(t)− 2 · inf
u∈[s,t]

ϕ(u).

Let µ be the image measure of the Lebesgue measure on [0, 1]
under the map which sends a point of [0, 1] to a point in the tree.
Fact. T

∣∣
ϕ

= [0, 1]/∼ϕ
, µ is a rooted, measure R-tree with root 0.

10

ϕ

�
� �
� �
�A
A�
�� AA A

A A
AA

; Convergence of excursions w.r.t. uniform convergence of continuous
functions implies Gromov-weak convergence of the associated trees.
Emmanuel will use this to argue in the second part that the CRT is
the tree associated with 2· Brownian excursion.
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Proof of the invariance principle in a nutshell

Let T be an unconditioned (ordered) Galton-Watson tree, and t be
a discrete tree with k leaves labelled 1, ..., k and k − 1 unlabeled
branch points. Then

E
[
# subtrees of T with k leaves isomorphic to t

]
1{T = n}

=
(
σ2

2

)k−1P
{
SL(t)+k = n −#t− L(t)

}
,

where

L(t) =

#t−(2k−1)∑
i=1

ξ̂i +

k−1∑
i=1

ξ̃i , Sn :=
m∑
i=1

Xi ,

and (ξ̂i , ξ̃i ,Xi ) are i.i.d. with ξ̂ having the “size”-biased offspring
distribution (P(ξ̂ = i) = (i + 1)P(ξ = i); note that E[ξ̂ = σ2]), ξ̃ having the
“size-size”-biased (P(ξ̃ = i) = σ−2(i + 2)(i + 1)P(ξ = i + 2)) offspring
distribution and X being distributed as #T .
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Proof of the invariance principle in a nutshell

Consequently, if T is the (ordered) Galton-Watson tree conditioned
on size n, and R(k, n) denotes the random subtree spanned by a
sample of size k , then

P
{
R(k, n) is isomorphic to t

}
=

n!

(n − k)!

(
σ2

2

)k−1 P
{
SL(t)+k = n −#t− L(t)

}
P
{

#T = n
} .
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Proof of the invariance principle in a nutshell

Consequently, if T is the (ordered) Galton-Watson tree conditioned
on size n, and R(k, n) denotes the random subtree spanned by a
sample of size k , then

P
{
R(k, n) is isomorphic to t

}
=

n!

(n − k)!

(
σ2

2

)k−1 P
{
SL(t)+k = n −#t− L(t)

}
P
{

#T = n
} .

Applying the local central limit theorem gives us

P
{
R(k, n) is isomorphic to t

}
=

n!

(n − k)!

(
σ2

2

)k−1 P
{
SL(t)+k = n −#t− L(t)

}
P
{

#T = n
}

∼ 2k−1
(
σ√
n

)2k
#t exp

(
− #t2σ2

2n

)
, #t = O

(√
n
)
.
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Part II

Emmanuel Schertzer & Anita Winter Convergence of real trees and algebraic trees 21



Outline: Part II
CRT as scaling limit
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Outline

1 Convergence of large critical Galton Watson (GW) trees to
the CRT.

2 Along the way, we will introduce some tools (Depth-first
search tree, Lukasiewicz path) that will be not only useful to
study large GW trees. Indeed we will explore two applications
of the approach presented in this section:

(2.1) A (short) detour: Lévy trees.
(2.2) Erdös Rényi Graph near criticality.
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Ordered Galton Watson trees

Consider a GW tree with offspring distribution µ with the
condition

〈µ, x〉 = 1︸ ︷︷ ︸
critical

,
〈
µ, x2

〉
− 1 = σ2 <∞︸ ︷︷ ︸

finite variance

Instead of considering a plain GW trees, we endow the tree
with an ordering of the nodes.
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Ordered trees

Step 0: Label the root of the tree by 0. 0 belongs to the stack.

Step k : Remove node k from the stack. Node k + 1 is chosen
according to the following rule.

If k has nk > 0 children. Add all the nodes to the stack. Pick
one of the children uniformly at random, label it k + 1.
If nk = 0, pick the highest node available in the stack and
label it k + 1. If there is no more individual in the stack, then
the exploration is over.
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Depth-First Search Algorithm

Related to the depth-first-search algorithm.

Start the exploration at the root (Step 0).

At a step k , among all the vertices which have been discovered
so far, explore the offspring of the heighest individual

Labels in the tree correspond to the order of exploration.

The labelling of the nodes induce a natural encoding of the
tree by the height process H

H(k) = graph distance of node k from the root
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Height process of an ordered tree

H(k) = graph distance of node k from the root
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Theorem (Aldous (93) Marckert, Mokkadem (03) for a stronger
version)

Let T be a critical ordered GW tree with µ(1) ∈ (0, 1) conditioned
on the event size(T ) = n. Then(

1√
n
H([nt]); t ∈ [0, 1]

)
=⇒ 2

σ
e

where e is the Brownian excursion of length 1 and the convergence
is meant in the weak toplogy.

Applications in Combinatorics. After conditioning on the
event {size(T ) = n}:

µ(k) = 1
2k+1 u.m. on rooted, ordered trees of size n.

µ = 1
2 (δ0 + δ2) u.m. on rooted, ordered, binary trees of size n.

µ(k) = exp(−1)/k!: related to rooted Cayley trees (uniformed
labelled (not ordered) trees).

Universality principle: diameter of those combinatorial objects
of size n is of the order

√
n.
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Strategy of the proof

We start with an “unconditioned version” of Aldous result.

Ordered infinite GW forest : Start with a single labelled GW
tree. Let N1 its size so that its nodes are labelled from 0 to
N1 − 1.

Label the root of the second tree with N1 and so on.

Define the height of the nth node as the distance to the floor
of the forest.

Proposition (Variation from Aldous result)

1√
n
H([n·]) =⇒

(
2

σ

(
w(t)− inf

[0,t]
w

)
; t ≥ 0

)
where w is a std BM.

Excursions of the RHS away from 0 encode the large trees of
the underlying random forest.
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The Lukasiewicz path S

Definition

The Lukasiewicz path is the integer valued process
S(k) = ρk − nk where

ρk is the number of elements in the stack at time k ,

nk is the label of the tree visited at k (labelled from 1 to ∞).

Lemma

∆S(k) := S(k + 1)− S(k) = Xk − 1

where Xk is the number of children of k . In particular, S is a
critical and spectrally positive random walk starting at 0.

if Xk > 0 ∆ρk = Xk − 1, ∆nk = 0

if Xk = 0, ρk = 1 ∆ρk = −1 + 1, ∆nk = 1

if Xk = 0, ρk > 1 ∆ρk = −1, ∆nk = 0
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Question: Relation between H, S and the underlying tree ?
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Lukasiewicz path: S(k) = ρk − nk
The Lukasiewicz path provides a direct information about the
size of the trees. If

τ = inf{n : S(n) = −1}

Then τ = size(T1) where T1 is the first tree in the forest.

Proposition

If µ(1) > 0 (aperiodicity condition on S) then

P (size(T1) = n) ∼ c

n3/2
as n→∞

More generally, the lengths of the successive excursions of the
reflected process (

S(t)− inf
[0,t]

S ; t ≥ 0

)
away from 0 coincide with the size of successive trees.
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Relation between S and H

Lemma

H(p) = #{1 ≤ i < p : inf
u∈{i ,··· ,p}

S(u) = S(i)}

Spine decomposition: sufficient to show that the ancestors of
p are provided by the set above.

Show that the father of p is the greatest element of the
previous set. Then proceed by induction.
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Duality Principle

Define the dual walk at p (Geometrically: flip the picture by
180◦):

∀k ≤ p : Ŝp(k) = S(p)− S(p − k)

Ŝp is distributed as the original walk.
Straightforward manipulations yield

H(p) = #{1 ≤ i ≤ p : Ŝp(i) = max
u∈{0,··· ,i}

Ŝp}
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Ladder height process

Let S be the Lukasiewicz path.
Set τ0 = 0 and for any k ≥ 0

τk+1 = inf{j > τk : S(j) ≥ S(τk ), Ok+1 = S(τk+1) − S(τk )}

the sequence of (weak) record times of S and the
corresponding overshoots upon reaching those maxima.

Lemma

(τk+1 − τk ,Ok+1)k≥0 is a sequence of i.i.d r.v.’s.

E (O1) = σ2/2 (relies on the fact that the walk is spectrally
positive).
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A nice asymptotic relation

Recall that H(p) = #{1 ≤ i ≤ p : Ŝp(i) = maxu∈{1,··· ,i} Ŝ
p(u)}. When

p is large, we claim that

σ2

2
#{1 ≤ i ≤ p : Ŝp(i) = max

u∈{1,··· ,p}
Ŝp(u)} ≈ max

u∈{1,··· ,p}
Ŝp(u)

RHS is the sum of the overshoots of the dual walk in [p]
(maxu∈{0,··· ,p} S(u) =

∑
τk≤p Ok)

Since the overshoots are i.i.d., the latter approximation is a
direct consequence of the L.L.N.

Finally, straightforward manipulations yield that

H(p) ≈ 2

σ2

(
S(p)− inf

{0,··· ,p}
S

)
, so that

1
√
n
H([n·]) =⇒

(
2

σ

(
w(t)− inf

[0,t]
w

)
; t ≥ 0

)
()
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Conditioning

With some extra work (Marckert Mokkadem (03)): there
exists α > 0

P

(
sup
[0,1]

1
√
n
|H([nt])−

2

σ2

(
S([nt]) − inf

[0,nt]
S

)
| >

1

n1/8

)
≤ exp(−nα)

Since P

size(T1) = n︸ ︷︷ ︸
=An

 ≈ c
n3/2 , there exists 0 < α′ < α s.t.

P

(
sup
[0,1]

1
√
n
|H([nt])−

2

σ2

(
S([nt]) − inf

[0,nt]
S

)
| >

1

n1/8
| An

)
≤ exp(−nα

′
)

On An, S([n·]) makes an excursion away from −1, and thus

P

(
sup
[0,1]

1
√
n
|H([nt])−

2

σ2
S([nt]) | >

1

n1/8
| An

)
≤ exp(−nα

′
)

Since 1√
n
S([n·]) | An =⇒ σe ...
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Joint convergence of the Lukasiewicz and height processes.

Theorem (Marckert, Mokkadem (03))

1√
n

(S([nt]),H([nt]); t ∈ [0, 1]) =⇒
(

e,
2

σ
e

)
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Lévy tree (Le Gall, Le Jan (98), Dusquesne, Legall (02))

What about the scaling limit of large trees with 〈µ, x〉 = 1 but〈
µ, x2

〉
=∞ ?

Recall the formula :

H(p) = #{1 ≤ i ≤ p : max
{0,··· ,i}

Ŝp − Sp(i) = 0}

(Under mild assumptions), there exists εp → 0 such that

(εpS([pt]); t ≥ 0) =⇒ X

where X is a spectrally positive Lévy process with inifinite
variation, and which does not drift to +∞.

Define Lt the local time at 0 of the process sup[0,t] X − Xt

and define
H∞(t) = L̂

(t)
t

where L̂(t) is the local time at 0 for the dual process
(X (t)− X (t − s); s ∈ [0, t])

There exists a continuous extension of H∞ on R+.
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Lévy tree

Figure from Igor Kortchemski (α = 1.1, 1.5, 1.9, 2)
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(3) Near critical Erdös-Rényi graph

Phase transition. If the probability of connectivity between
two vertices is c/n then{

|Ln| = O(n) if c > 1
|Ln| = O(log(n)) if c < 1

where Ln is the largest connected component.

G (n, 1
n + λ

n4/3 ): ER graph of size n and parameter 1
n + λ

n4/3 .

Near critical random walk. Consider a sequence of random
walks with

E (∆S (p)[pt]) =
c(t)
√
p

+ o(1/
√
p) and Var(∆S) = σ2 + o(1)

Then (with some extra conditions for tightness)(
1
√
p
S (p)([pt]); t ≥ 0

)
=⇒

(
σw(t) +

∫ t

0
c(s)ds; t ≥ 0

)
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Depth-first spanning forest

Figure: from Broutin’s random gallery

Explore the ER graph sequentially using the depth-first
algorithm.

This generates a random (ordered) spanning forest of the
graph (each tree corresponding to the search tree of a cluster).

Let S (n) be the Lukasiewicz path of the forest.
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Convergence of the Lukasiewicz path. Consequences

Theorem (Aldous (97))

(
1

n1/3
S (n)([n2/3t]; t ≥ 0

)
=⇒

(
Bλ(t) := w(t) + tλ− t2

2
; t ≥ 0

)

Largest excursions of Bλ above its past infimum is finite.

Lengths of the successive excursions of the reflected S (n)

coincide with the size of the clusters in the ER graph.

At fixed n, let cni be the size of the i th cluster (ranked in
decreasing order).

Corollary

1
n2/3 (cni ; i ≥ 0) =⇒ (c∞i ; i ≥ 0) (in l2↓ ), where c∞ is the sequence

of (ranked) excursion lengths of Bλ − inf [0,·] B
λ.
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Proof of the theorem

∆S (n)(p) is distributed as

Binomial

(
n − p − S̄ (n)(p),

1

n
+

λ

n4/3

)
− 1

where S̄ (n) is the reflection of S (n) above its past infimum. (p
terms have been fully explored; terms in the stack are not
eligible to avoid cycles when constructing the depth-search
spanning forest).
Consider the walk S ′(n) with ∆S ′(n) distributed as
Binomial

(
n − p, 1

n + λ
n4/3

)
− 1
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Proof of the theorem

∆S ′(n) ∼ Binomial
(
n − p, 1

n + λ
n4/3 )

)
− 1, and thus

E(∆S ′(n)([n2/3t])) = (
1

n
+

λ

n4/3
)
(
n − [n2/3t]

)
− 1 ≈

λ− t

n1/3
,

Var(∆S ′(n)([n2/3t])) ≈ 1.

i.e., S ′n is a near-critical random walk, and thus(
1

n1/3
S ′(n)([n2/3t]); t ≥ 0

)
=⇒

(
w(t) + λt − t2

2
; t ≥ 0

)
.

Recall that
∆S (n)(p) ∼ Binomial

(
n − p − S̄ (n)(p), 1

n + λ
n4/3

)
− 1.

Question : how good is the approximation of S by S ′ ?
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Proof of the Theorem

S ′(n) stochastically dominates S (n). Consider the natural
coupling such that S ′(n) ≥ S (n), i.e., couple the increments

X
(n)
p and X

′(n)
p such that

Y
(n)
p = X

′(n)
p − X

(n)
p

is identical in law to Binomial
(
S̄(p), 1

n + λ
n4/3

)
.

Under this coupling

0 ≤ S ′(n)(p)− S (n)(p) =

p∑
i=1

Y
(n)
i .

The invariance principle on S ′(n) shows that
S̄ (n)([n2/3t]) = O(n1/3) and thus

[n2/3t]∑
i=1

Y
(n)
p = n2/3O

(
1

n
n1/3

)
= O(1)
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Cycles

With a little bit of extra work,[n2/3t]∑
i=1

Y
(n)
p ,

1

n1/3
S (n)([n2/3t]); t ≥ 0

 =⇒
(
µ∞,Bλ

)
where conditional on Bλ, µ∞ is a PPP with intensity measure(

Bλ(t)− inf
[0,t]

Bλ
)
dt

Interpretation of µ∞: time at which a cycle occurs as we
explore the ER graph. (In generating S ′, we pick an ineligible
edge in the stack).
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Aldous result (97)

Take a near-critical random graph G (n, 1
n + λ

n4/3 )

At fixed n, let ( 1
n2/3 c

n
i , s

n
i )i be the sequences of cluster sizes

and # of surplus edges (where sizes are ranked in decreasing
order ).

Continuum object: Bλ(t) = w(t) + λt − t2

2 and B̄λ reflection
above the past infimum. Let µ∞ be the random point
measure such that given B̄λ, µ∞ is a PPP on R+ with
intensity measure

B̄λ(t)dt.

Define (c∞i )i the sequence of excursion lengths and s∞i the #
of marks under the corresponding excursion.

Theorem(
1

n2/3 c
n
i , s

n
i ; i ≥ 0

)
=⇒ (c∞i , s

∞
i ; i ≥ 0) (in l2↓ ).
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What about the geometry of the ER graph at the limit ?
(Addario-Berry, Broutin, Goldsmidt (10))

For random GW with second finite moment, the Lukasiewicz
path is asymptotically equal (up to rescaling) to the height
process.

Intuition behind Addario-Berry, Broutin, Goldsmith (10): in
random graphs, the Lukasiewicz path almost coincides with
the height process of the (depth-first search) spanning forest.

Excursion of B̄λ encodes the trees of the spanning forests and
the PPP indicates the occurence of cycles.

Extra edges are added on top the continuum trees in order to
take into account the existence of cycles.
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The limit of the critical ER (seen as metric spaces)

Poisson times : leaves at the end point of an edge creating a
cycle

Other end point: chosen uniformly at random along the
ancestral line.

Emmanuel Schertzer & Anita Winter Convergence of real trees and algebraic trees 50



Two natural dynamics on the ER graph (I)

See λ as a “time” parameter.

Natural coupling: i.i.d Ue Uniform([0,1]) r.v. on every edge.
Declare an edge to be open at λ iff

Ue ≤
1

n
+

λ

n4/3

As λ increases, connected components coalesce.

Two components with macroscopic size x1 and x2 will
coalesce in a time window ∆λ with probability

∆λ

n4/3︸︷︷︸
proba of becoming open

c1n
2/3c2n

2/3︸ ︷︷ ︸
number of closed edges

= ∆λx1x2.

The process recording cluster sizes evolve according to a
multiplicative coalescent (original motivation of Aldous (97))
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Two natural dynamics on the ER graph (I)

Theorem (Aldous - CV of 1-d marginals)

Start the multiplicative coalescent with initial condition
(1, · · · , 1︸ ︷︷ ︸

n times

, 0, 0, · · · ). Let (c̃n(λ)) be the sequences of cluster sizes

at time λ+ n1/3. Then for every λ > 0:

1

n2/3
(c̃n(λ)) =⇒ (c∞(λ)) in l2↓

where (c∞(λ)) is the sequence of excursion lengths of B̄λ.
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Two natural dynamics on the ER graph (I)

Further improvement by Broutin, Marckert (2015)), using the
Prim’s ordering to generate the spanning forest (minimal
spanning forest).

For every n, (c̃n(λ), λ ∈ R) is valued in D(R, l2↓ ).

Let w be a standard BM and for every λ, use w to define

Bλ(t) = w(t) + λt − t2

2

For every time λ, let c∞(λ) be the sequence of excursion
lengths. (c∞(λ);λ ∈ R) defines a coalescent process.

Theorem (Broutin, Marckert (15) )

1

n2/3
(c̃n(λ);λ ∈ R) =⇒ (c∞(λ);λ ∈ R) in D(R, l2↓ ).

See also Bhamadi, Budhiraja, Wang (2013).

Emmanuel Schertzer & Anita Winter Convergence of real trees and algebraic trees 53



Two natural dynamics on the ER graph (II)

Poisson clock on every edge: at every clock ring, set the edge
open with probability 1/n.

Rate of the Poisson clock
1 Rate 1: Roberts and Sengul (17) studied the set of exceptional

times at which an anomalous component appears. More
precisely, there exists β > 0 such that

P
(
|Ln|/n2/3ln(n)1/3 > β

)
→ 1, Ln = largest component

2 Rate 1/n1/3 : limiting fragmentation-coagulation process
(Rossignol, in progress).
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Open questions

In both dynamics, Addario-Berry et al (10) describe the
one-dimensional marginal of the two previous dynamics in
terms of the marked excursions of the process

B̄λ = Bλ(t)− inf
[0,t]

Bλ, Bλ(t) = w(t) + λt − t2

2

For the multiplicative coalescent, Broutin Marckert (15)
describe the evolution of cluster sizes. What about the
geometry of the clusters ? Does there exist a
multi-dimensional version of the construction of Addario-Berry
et al (10) ?

Same question for the second dynamics.
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Open questions

Main issue with Broutin Marckert (15): coding is done using
the Prim’s order.

To construct dynamics (I): assign i.i.d Ue Uniform([01]) r.v.
at every edge e ∈ [n]× [n]. Declare an edge to be open at
time λ iff Ue ≤ 1

n + λ
n4/3 .

Starting from v1, perform invasion percolation on the
complete graph using the weights (Ue) and order vertices
according to their order of visit.

Perform the exploration by always exploring the “smallest”
vertex available in the stack (in contrast with the deepest
vertex available).

The length of excursions of the Lukasiewicz path still
correspond to the size of the clusters. But no obvious way to
recover the geometry !
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Open questions

Same question for dynamics (II). At every time t, the
geometry can be described in terms of the excursions of

B̄0 = B0(t)− inf
[0,t]

B0, B0(t) = w(t)− t2

2

At the limit, there should exists a field (w(σ, t)) such that for
every σ, t → w(σ, t) is a standard Brownian motion. Can we
describe the structure of this field ? Is it Gaussian ?

The lenghs of the excursions above the past infimum of
t → w(σ, t)− t2

2 would provide a description of cluster sizes
at “dynamical” time σ.

Which ordering should we pick to encode the lengths of the
excursion ? Depth ? Prim’s ordering ?

What about the geometry at different times ?
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Universality class of the Erd̈os Rényi graph and beyond

A large class of random graph exhibiting a phase transition are
believed to behave as the ER in the critical window.

Poissonian random graph (Norros-Reittul model). Every

vertex i is assigned an attractiveness w
(n)
i . Assume that

1

n

n∑
i=1

δ
w

(n)
i

=⇒W

Given (w
(n)
i ) set (i , j) open with probability

1− exp
(
−w (n)

i w
(n)
j /

∑
w

(n)
k

)
.

Define ν = E(W 2)
E(W ) .

The model exhibits a phase transition at ν = 1 (Bollobàs,
Janson,Riordan (07)).
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Universality class of the Erös Rényi graph and beyond

Bhamidi, Sen, Wang (14): assuming E (W 6+ε) <∞, the
geometric structure is similar to ER at criticallity, i.e., there is
convergence to random metric space described by
Addario-Berry et al. See also Bhamidi, Broutin, Sen, Wang
(13).

Bhamidi, van der Hofstad, van Leeuwaarden (10): when
E (W 3) <∞, then the maximal component is of the order
n2/3.

Bhamidi, van der Hofstad, Sen (17): when E (W 3) =∞, the
size and geometry of the clusters are dramatically different.
The limitimg structure can be described in terms Lévy trees.

As before: is there a natural dynamics at the continuum for
those quantities.
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Jürgen Bennies & Götz Kersting (2000). A random walk approach to Galton-Watson trees, Journal of

theoretical probability.

Jean-François Marckert & Abdelkader Mokkadem (2003). The depth first process of Galton-Watson trees

converge to the same Brownian excursion, Annals of Probabiity.

Nicolas Broutin, Jean-François Marckert (2015). A new encoding of coalescent processes. Applications to

the additive and multiplicative casesProb. Theory Rel. Fields.

Mattew Roberts, Bait Sengul (2017). Exceptional times of the critical dynamical Erdös-Rényi graph.
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Part III
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Classical problem: Cutting down (graph-theoretical) trees

1 Given a finite tree T = (T ,E ), distinguish k vertices {x1, ..., xk}.
2 Remove an edge uniformly at random, and independent of the k

distinguished vertices.

; This disconnects into two subtrees.

3 If one of the subtrees does not contain any of the distinguished
points, destroy this subtree. Else we keep two subtrees.

4 We iterate until each distinguished point has been isolated.
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Classical problem: Cutting down (graph-theoretical) trees
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Classical problem: Cutting down (graph-theoretical) trees

1 Given a finite tree T = (T ,E ), distinguish k vertices {x1, ..., xk}.
2 Remove an edge uniformly at random, and independent of the k

distinguished vertices.

; This disconnects into two subtrees.

3 If one of the subtrees does not contain any of the distinguished
points, destroy this subtree. Else we keep two subtrees.

4 We iterate until each distinguished point has been isolated.

1 Denote by Y (T , {x1, ..., xk}) the (random) number of cuts needed
to isolate k random points.

Question:

What can we say about the distribution of Y (T , {x1, ..., xk})?
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The number of cuts needed to isolate k-points

Theorem (Bertoin and Miermont (2013), [6] (see also [8, 1]))

Let Gn be the GW-tree with critical offspring distribution of finite
variance σ2 > 0 conditioned to have n vertices. Then for a random
sample {X1, ...,Xk} of size k

1
σ
√
n
Y
(
Gn, {X1, ...,Xk}

) w−−−→
n→∞

χ(2k),

where χ(2k) is Chi distributed with parameter 2k .

The length of the subtree of the CRT spanned by k randomly sampled points is

Chi distributed with parameter 2k!

Question. Is this by accident?

; genealogy of edge-deletion procedure
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Genealogy of the edge-deletion procedure

Let (T ,E ) be a graph-theoretical tree with #T = n (and thus
#E = n − 1). Moreover, let Π : E → {1, 2, ..., n − 1} a random
labeling of E indicating in which order the edges are chosen.

The fragmentation tree is a rooted, binary tree with n leaves (other
than the root) and such that the distance from a leaf to the root
equals the number of cuts needed to isolate the original vertex
corresponding to that leaf in the fragmentation tree.
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How do we cut down a continuum tree?

; To define the cutting procedure on arbitrary trees, we erase points
(on the skeleton) rather than whole edges.

Given a a measure R-tree X = (T , r , µ) with supp(µ) = T , we let
cut points rain down on the tree at unit rate per unit length.

Each time a cut point hits the tree, it is taken away and thereby
splitting one of the connected components into two.

For each t ≥ 0, put

Ct := the set of all connected components at time t,

and
T x(t) := the unique C ∈ Ct with x ∈ C

.
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The fragmentation tree

Given a measure R-tree X = (T , r , µ) with supp(µ) = T , cut points rain down

on the tree at unit rate per unit length.

; Once more we keep track of the genealogy of this fragmentation.

Let T be a random measure R-tree and Π a Poisson point process
on T ×R+ with intensity measure `(T ,r) ⊗ dt.
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The fragmentation tree

Given a measure R-tree X = (T , r , µ) with supp(µ) = T , cut points rain down

on the tree at unit rate per unit length.

; Once more we keep track of the genealogy of this fragmentation.

Let T be a random measure R-tree and Π a Poisson point process
on T ×R+ with intensity measure `(T ,r) ⊗ dt.

The fragmentation tree frag((T , r , µ),Π) = (T̂ , r̂frag, µ̂, ρ) is the
random rooted metric measure tree defined as follows:

Put T̂ := ∪t≥0Ct , and ρ := T .

For A,B ∈ T̂ , let τA := inf{t ≥ 0 : ∃ x ∈ A s.t. (x , t) ∈ Π}
and A ∧ B := sup{t ≥ 0 : ∃C ∈ Â s.t. A ∪ B ⊆ C}. Put

r̂frag(A,B) := (τA − τA∧B) + (τB − τA∧B).

Denote by SA := {A′ ∈ T̂ : A′ ⊆ A} the subtree above A ∈ T̂ .
There is a unique probability measure µ̂ with

µ̂(SA) := µ(A).
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The fragmentation tree

Given a measure R-tree X = (T , r , µ) with supp(µ) = T , cut points rain down

on the tree at unit rate per unit length.

; Once more we keep track of the genealogy of this fragmentation.

Let T be a random measure R-tree and Π a Poisson point process
on T ×R+ with intensity measure `(T ,r) ⊗ dt.

The fragmentation tree frag((T , r , µ),Π) = (T̂ , r̂frag, µ̂, ρ) is a
random rooted metric measure tree of infinite height.

; encodes a fragmentation process
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The fragmentation tree

Given a measure R-tree X = (T , r , µ) with supp(µ) = T , cut points rain down

on the tree at unit rate per unit length.

; Once more we keep track of the genealogy of this fragmentation.

Let T be a random measure R-tree and Π a Poisson point process
on T ×R+ with intensity measure `(T ,r) ⊗ dt.

The fragmentation tree frag((T , r , µ),Π) = (T̂ , r̂frag, µ̂, ρ) is a
random rooted metric measure tree of infinite height.

; encodes a fragmentation process

As it takes infinitely many cuts to isolate leaves, we are rather interested
in the rescaled time needed to isolate points.

; Compress distances
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How do we compress distances? A martingale argument

Let (TN , rN , µN) be a finite graph-theoretical tree with #TN = N,
rN the graph distance and µN := 1

N

∑
x∈TN

δx .

Assume that there exists a measure R-tree (T , r , µ) and f : N→ N
such that

(
TN ,

1
f (N) rN , µN

) Gw−−→
(
T , r , µ

)
.

Further, let the edge-deletion process run at rate f (N)
N and denote

by Y x
N the number of edges that have been removed by time t from

the connected component containing x .

Obviously, for all x ∈ TN , Y x
N(t)→ Y ((TN , rN), {x}) a.s.

Since edges are removed at rate f (N)
N independently, the process

M(t) := Y x
N(t)− f (N)

∫ t

0

1
N `

(TN ,rN )
(
T x(s)

)
ds, t ≥ 0,

is a purely discontinuous martingale and

E
[(

1
f (N)

Y ((TN , rN), {x})−
∫ ∞

0
µN
(
T x (s)

)
ds
)2]

= 1
f (N)

E
[ ∫ ∞

0
µN
(
T x (s)

)
ds
]
.
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Further, let the edge-deletion process run at rate f (N)
N and denote

by Y x
N the number of edges that have been removed by time t from

the connected component containing x .

Obviously, for all x ∈ TN , Y x
N(t)→ Y ((TN , rN), {x}) a.s.

Since edges are removed at rate f (N)
N independently, the process

M(t) := Y x
N(t)− f (N)

∫ t

0

1
N `

(TN ,rN )
(
T x(s)

)
ds, t ≥ 0,

is a purely discontinuous martingale and

E
[(

1
f (N)

Y ((TN , rN), {x})−
∫ ∞

0
µN
(
T x (s)

)
ds
)2]

= 1
f (N)

E
[ ∫ ∞

0
µN
(
T x (s)

)
ds
]
.
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The cut tree

Let T be a random measure R-tree and Π a Poisson point process
on T ×R+ with intensity measure `(T ,r) ⊗ dt.
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The cut tree

Let T be a random measure R-tree and Π a Poisson point process
on T ×R+ with intensity measure `(T ,r) ⊗ dt.

The fragmentation tree

(T̂ , r̂frag, µ̂, ρ) = frag((T , r , µ),Π)

is a random rooted metric R-tree which encodes the genealogies of
the cutting procedure.
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The cut tree

Let T be a random measure R-tree and Π a Poisson point process
on T ×R+ with intensity measure `(T ,r) ⊗ dt.

The fragmentation tree

(T̂ , r̂frag, µ̂, ρ) = frag((T , r , µ),Π)

is a random rooted metric R-tree which encodes the genealogies of
the cutting procedure.

The cut tree
(T̂ , r̂cut, µ̂, ρ) = cut((T , r , µ),Π)

has the same tree topology as the fragmentation tree but with
compressed distances

r̂cut(A,B) =

∫ τA

τA∧B

µ
(
A|s
)

ds +

∫ τB

τA∧B

µ
(
B|s
)

ds,

where A|s ∈ T̂ denotes the unique A′ ⊃ A with r̂frag(A,A′) = s.

; encodes additive coalescent
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The rescaled number of cuts needed

E
[(

1
f (N)

Y ((TN , rN), {x})−
∫ ∞

0

µN

(
T x(s)

)
ds
)2]

= 1
f (N)

E
[ ∫ ∞

0

µN

(
T x(s)

)
ds
]
.

Theorem

Let (TN , rN , µN) be a finite graph-theoretical tree with #TN = N, rN the
graph distance and µN := 1

N

∑
x∈TN

δx . Assume that there exists a
measure R-tree (T , r , µ) and f : N→ N such that(
TN ,

1
f (N) rN , µN

) Gw−−→
(
T , r , µ

)
. Then if

sup
n∈N

1
f (N)E

[ ∫ ∞
0

µN

(
T x(s)

)
ds
]
<∞,

then
Y ((TN ,rN ),{x})

f (N)

w−−−→
N→∞

∫ ∞
0

µ
(
T x(s)

)
ds, a.s.
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Convergence to the cut tree

Theorem

Let (TN , rN , µN) be a finite graph-theoretical tree with #TN = N, rN the graph
distance and µN := 1

N

∑
x∈TN

δx . Assume that there exists a measure R-tree

(T , r , µ) and f : N→ N such that
(
TN ,

1
f (N)

rN , µN

) Gw−−→
(
T , r , µ

)
. Then if

sup
n∈N

1
f (N)

E
[ ∫ ∞

0

µN

(
T x(s)

)
ds
]
<∞,

then
Y ((TN ,rN ),{x})

f (N)

w−−−→
N→∞

∫ ∞
0

µ
(
T x(s)

)
ds, a.s.

; It is probably not hard to show that the cut tree map which sends
a metric measure tree together with a PPP of unit intensity per unit
length to the cut tree is continuous.

If so, even the following stronger result holds:(
(TN ,

rN
f (N) , µN), cut

(
(TN ,

rN
f (N) , µN),ΠN

)) w−−−→
N→∞

(
(T , r , µ), cut

(
(T , r , µ),Π

))
.
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The cut tree of the CRT is the CRT

; To prove Bertoin and Miermont’s statement, it remains to prove
that the cut tree of the CRT is the CRT.
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; To prove Bertoin and Miermont’s statement, it remains to prove
that the cut tree of the CRT is the CRT.

Bertoin and Miermont’s proof relies on the characterization of the
Brownian fragmentation (see, Bertoin 2002 [5]).
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The cut tree of the CRT is the CRT

; To prove Bertoin and Miermont’s statement, it remains to prove
that the cut tree of the CRT is the CRT.

Bertoin and Miermont’s proof relies on the characterization of the
Brownian fragmentation (see, Bertoin 2002 [5]).

Proposition (Total rate affecting a random leaf component is Rayleigh)

If X = (T , r , µ) is the CRT and X ∈ T is a random leaf, then

hX (X ) :=

∫ ∞
0

µ
(
T X
X (s)

)
ds

is Rayleigh distributed.
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The cut tree of the CRT is the CRT

; To prove Bertoin and Miermont’s statement, it remains to prove
that the cut tree of the CRT is the CRT.

Bertoin and Miermont’s proof relies on the characterization of the
Brownian fragmentation (see, Bertoin 2002 [5]).

Proposition (Total rate affecting a random leaf component is Rayleigh)

If X = (T , r , µ) is the CRT and X ∈ T is a random leaf, then

hX (X ) :=

∫ ∞
0

µ
(
T X
X (s)

)
ds

is Rayleigh distributed.

; The proof of f.d.d.-convergence goes by analogous arguments.
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Convergence to the Rayleigh distribution

Lemma (Total rate affecting a random leaf component is Rayleigh)

If X is the CRT and X ∈ T is a random leaf, then

hX (X ) :=

∫ ∞
0

µ
(
T X
X (s)

)
ds

is Rayleigh distributed.

Proof. The proof relies on the following identity in law:

(
µ
(
T X
X (s)

)
; s ≥ 0

) d
=
(

1
1+τ0(s)

; s ≥ 0
)
,

where (τ0(s); s ≥ 0) is the inverse local time process of reflected BM at level 0.
Once this is proven, we obtain∫ ∞

0
µ
(
T X
X (s)

)
ds

d
=

∫ ∞
0

1
1+τ0(s)

ds =: C(τ0),

which is the Cauchy transform of (τ0(s), s ≥ 0).

Bertoin showed in [4] that P
{
C(τ0) ≤ t

}
= 1− e−

t2

2 , which gives the Rayleigh

distribution.
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Sketch of proof of the duality to stable subordinators

Consider the Galton-Watson tree with Poisson offspring conditioned
to have n vertices. It is known that this is the uniform unordered
labeled tree (with labels ignored).

The number of all unrooted unordered labeled trees of size n equals nn−2.

Assume we are taking away an edge sampled uniformly. We are
interested in the size distribution of the component Y X containing a
randomly sampled leaf.

Then applying Stirling formula

P
{

#Y X = k
}

=

(n−1
k−1

)
kk−2(n − k)n−k−2k(n − k)

(n − 1)nn−2

∼ n−
3
2 (2π)−

1
2 y−

1
2 (1− y)−

3
2 , k

n
→ y .

One can check that the latter equals the density of 1
1+τ 0(1) .

The general result can be derived by scaling, and checking that
S(t) := 1

Y X (t)
− 1 has the same jump rate densities as τ 0(t).
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Open problems for possible discussion

It is probably not hard to show that the map which sends a metric measure tree

together with a PPP of unit intensity per unit length to the cut tree is

continuous.

; Alternative we cut show that the cut tree of the CRT is the CRT by
arguing along the discrete trees.

Open question

Are you aware of a tree models on trees with n vertices on the one hand
and binary, rooted trees on the other which satisfies:

1 Both tree models can be rescaled to the CRT.

2 The image of the first tree model together with a random
permutation of {1, ..., n} under this fragmentation map is the
second model.
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