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Chromosome painting: Experimental populations of
Caenorhabditis elegans (Teotonio et al (’12))

I Start with 16 individuals.

I Build a population of size ∼ 104

by random intercross

I Let it evolve during during 140
generations at controlled
population size.

I Genotype 180 sequences.



Chromosome 3

I Segment = maximal connected set of of points sharing the
same color.

I Cluster = maximal set of points sharing the same color.



Segment size

Figure: Segment size in increasing order

I Question : How to explain the outlier ?
I Intrinsic randomness of the population or result of natural

selection ?
I Need of reliable statistical tests.



Chromosome painting

I Segment = maximal connected set of of points sharing the
same color.

I Cluster = maximal set of points sharing the same color.

I What is the size of a typical segment ?

I What is the length, diameter of a typical cluster ?

I How many segments, clusters on a given interval ?

I etc.



An Haplöıd Wright Fisher Model with Recombination

I Population of constant size N.

I Haplöıd population: Each individual carries one chromosome
of size R. (R < N)

I Discrete time dynamics:
time 0 Each chromosome is uniformly colored with a distinct color.
time 1 Each individual chooses 2 parents from the previous

generation:
proba 1− R

N
copies one parent chromosome.

proba R
N

(Recombination event): a cross-over occurs.



An Haplöıd Wright Fisher Model with Recombination

I At time 1, the population consist of N individuals, whose
unique chromosome is either uniformly colored, or is partioned
into two segments of distinct colors.

I After k steps, each chromosome is a mosäıc of colors, each
colors corresponding to the genetic material of an ancestral
individual.



I No mutation

I By genetic drift, the system a.s. reaches fixation after a finite
(random) time, i.e., every individual in the system carries the
same genetic material, and the system stops evolving.

Figure: 6 segments. 4 clusters

I (N,R)-Partitioning process ΠR
N : partition of colors of the

system at equilibrium (for a population of size N with
chromosomes of size R.)



k-point partition

I Pk := { partitions of {1, · · · , k} }.
I Let x1 < · · · < xk ∈ [0,R]. Define

τ x1,··· ,xk ◦ ΠR
N ∈ Pk

the partition of {1, · · · , k} induced by (x1, · · · , xk) on
{1, · · · , k}, e.g.

I If x1 ∼ · · · ∼ xk under ΠN
R then

τ x1,··· ,xk ◦ ΠR
N = {1, · · · , k}.

I If xi ∼ xj for i 6= j then

τ x1,··· ,xk ◦ ΠR
N = {1} · · · {k}.

I Question 1 : What can we say about the law
L
(
τ x1,··· ,xk ◦ ΠR

N

)
of the k-point partition ?

I Question 2 : Asymptotics when N →∞



2-point partition. The Ancestral Recombination Graph
I Consider two loci

x1 < x2 ∈ [0,R] on the same
chromosome in the extant
population.

I Follow their ascendances as
time goes backward.

I At each generation, the common
line of ascent {1, 2} splits into
{1}{2} with probability

1

N
|x2 − x1|

I At each generation, the
singleton lines {1} and {2}
coalesce with probability 1/N.

I x1, x2 carry the same color iff
their lines coincide at −∞



2 point partition – 2 point motion

I (X x1,x2
N (t); t ≥ 0) valued in P2.

I Coalescence ({1}{2} → {1, 2}) with probability 1/N.

I Fragmentation ({1, 2} → {1}{2}) with probability 1
N |x2 − x1|.

I Let µx1,x2N be the invariant measure of the 2-point motion.

Proposition

I Answer 1 : L(τ x1,x2 ◦ ΠR
N) = µx1,x2N

I Answer 2 :(
X x1,x2
N (tN); t ≥ 0

)
=⇒ (X x1,x2

∞ (t); t ≥ 0)

where the limiting process is the continuous time
coagulation-fragmentation process with

I Coalescence at rate 1
I Fragmentation at rate |x2 − x1|



3-point motion. ARG with three sites

I Consider three loci {x1, x2, x2}
with x1 < x2 < x2.

I At each generation, the three
lines of ascent split

I {1, 2, 3 } → {1, 2}{3} with
proba 1

N |x2 − x3|.
I {1, 2, 3 } → {1}{2, 3} with

proba 1
N |x1 − x2|.

I Not exchangeable: rate of
fragmentation depends on
relative position of the sites.

I At each generation, each pair of
lines coalesce with probability
1/N.

I x1, x2, x3 carry different colors iff
their lines of ascent don’t
coincide at −∞

L(τ x1,x2,x3 ◦ ΠR
N) = µx1,x2,x3N .



k point partition – k point motion
I Let x1 < · · · < xk in [0,R].
I There is a natural k-point motion (X x1,x2,··· ,xk

N (t); t ∈ N)
valued in Pk describing the ancestry of loci t units of time in
the past.

I Answer 1 : L(τ x1,x2,··· ,xk ◦ ΠR
N) = µx1,x2,··· ,xkN

I Answer 2 : Convergence to a continuous time process on Pk
with rates:

coalescence groups of lineages coalesce at rate 1.
fragmentation group of lineages

{σ(0) < · · · < σ(j) < σ(j + 1) < · · · < σ(K )} splits into two
parts :

{σ(0) < · · · < σ(j)} and {σ(j + 1) < · · · < σ(K )}
at rate zσ(j+1) − zσ(j).

Figure: Fragmentation between z4 and z6 at rate |z4 − z6|



The partitoning process

Theorem
There exists a unique random variable Π∞ valued in the set of
locally finite partition of R such that for every x1 < · · · < xk ,

L (τ x1,··· ,xk ◦ Π∞) = µx1,··· ,xk∞

(i.e., k-point partition described in terms of the invariant measure
of the limiting k-point motion)

I
(
µS∞
)
S :S⊂R,|S|<∞ is consistent (i.e., µx1,··· ,xn∞ is identical in law

to the random partition induced by µ
x1,··· ,xn,xn+1
∞ on the first n

coordinates).
I Let D be a dense set of R. Define the skeleton Π∞(D) such

that

∀x1, · · · xn ∈ D, τ x1,··· ,xn ◦ Π∞(D) = µx1,··· ,xn∞

I Show that Π∞(D) is locally finite.
I Take right limits to define Π∞.



Large Population, Long Chromosome

Proposition

For every R > 0, as N →∞

ΠR
N =⇒ ΠR

∞ (convergence of N-point partitions)

where ΠR
∞ is the restriction of Π∞ to [0,R].

Question: What can we say about ΠR
∞ on an interval of large size

? (For humans R ≈ 5× 104 )



Cluster covering the origin

Define

LR =
1

log(R)

∫ R

0
10∼xdx

the length of the cluster covering the origin.

Theorem (Lambert, Miro Pina, S.)

lim
R→∞

LR = E(1) in law.



Number of segments and clusters

Theorem (Lambert, Miro Pina, S.)

Let SR be the number of segments in the interval [0,R]. Then

lim
R→∞

1

R
SR = 1 a.s.

Typical size of a cluster on [0,R] is of the order log(R). Thus, the
number of clusters MR should be of the order R/ log(R).

Theorem (Lambert, Miro Pina, S.)

Let ε > 0 and let MR,ε be the number of clusters in the interval
[0,R] whose length is greater than ε log(R). Then

lim
ε→0

lim
R→∞

ln(R)

R
MR,ε = 1 in law.



Number of Clusters Continued

Conjecture (Wiuf and Hein 97)

There exists a constant c such that ln(R)
R MR → c (in law, a.s. ?),

with c ≈ 1.38 > 1

For humans chromosome 1: R ≈ 5× 104, and thus, the number of
ancestors for chromosome 1 is approximatively MR ≈ 6400.



Idea of the proofs.



Proof for the Cluster Size at the Origin

I We aim at proving that

lim
R→∞

LR = E(1) in law.

where LR is the length of the cluster at 0 on [0,R].

I Main Idea: Method of moments.

I Using Carleman’s condition, it is enough to show that

lim
R→∞

E (LnR) = n!



Proof for the Cluster Size at the Origin

E (LnR) =
1

log(R)n
E

(
(

∫ R

0
10∼zdz)n

)
=

1

log(R)n
E

( ∫
[0,R]n

10 ∼ z1 ··· ∼zndV

)

=
1

log(R)n

∫
[0,R]n

P(0 ∼ z1 · · · ∼ zn)dV (z)

=
Rn

log(R)n
×

1

Rn

∫
[0,R]n

µz∞({1, · · · , n + 1})dV (z) → n!

where µz∞ is the invariant distribution for the N + 1 motion
corresponding to z = (z0 = 0, z1, · · · , zn).



Estimating unlikely configuration in the n-point motion

Need to estimate

1

Rn

∫
[0,R]n

µz∞({1, · · · , n + 1})dV (z) = E
(
µ0,z1,··· ,zn∞ ({1, · · · , n + 1})

)
where the zi ’s are chosen uniformly at random on [0,R].

I Typical configuration : mini 6=j |zi − zj | = O(R).

I Coagulation at rate 1. Fragmentation at rate O(R) is much
more frequent. And thus

µz∞ ({1} · · · {n}) = 1− o(1)

(branching approximation)

I Need to estimate higher order terms.



Order of a partition

Definition
Let π ∈ Pn. π is of order k iff it can be obtained from {1} · · · {n}
by k successive coalescence events.

I {i , j}+ singletons is of order 1

I {i , j , k}+ singletons is of order 2. Three scenarios:

{i}{j}{k} · · · → {i , j}{k} · · · → {i , j , k} · · ·
{i}{j}{k} · · · → {i , k}{j} · · · → {i , j , k} · · ·
{i}{j}{k} · · · → {k , j}{i} · · · → {i , j , k} · · ·

I {i , j}, {k , l}+ singletons is of order 2.

I · · ·
I {1, 2, · · · , n} is of order n − 1.



I Order of partition is a measure of the order of magnitude of
its likelihood under µz∞.

I Lemma There exists c such that for every z = (z1, · · · , zn),
and every π such that Order(π) = k

µz∞ (π) ≤ c

mini 6=j |zi − zj |k
= O(

1

Rk
).

I Idea of the proof : Define Y z = Order (X z). The process is
a non-markovian birth death process valued in {0, · · · , n}
(coagulation (resp., fragmentation) induces positive (resp.,
negative) jumps).

I For every k , one can construct a true birth-death process Z
such that

lim
T→∞

1

T

∫ T

0
P (Z(t) = k) dt ≥ lim

T→∞

1

T

∫ T

0
P (Y z(t) = k) dt = µz∞(Order(π) = k)

I Idea of the coupling: accelerate the excursions away from k .



I Need to compute µz(π) for mini 6=j |zi − zj | = O(R).

I Let Mz the transition matrix of the n point motion associated
to {z1, · · · , zn}:

µzMz = 0, µz(Pn) = 1.

I For every π of order k ∈ {1, · · · , n − 1}

Mz(π, π)µz(π) =
∑

π̃ : Order(π)=k−1

µz(π̃)Mz(π̃, π)

︸ ︷︷ ︸
coalescence

+
∑

π̃ : Order(π)=k+1

µz(π̃)Mz(π̃, π)

︸ ︷︷ ︸
fragmentation

I Neglecting the fragmentation part of the equation

Mz(π, π)µz(π) ≈
∑

π̃ : Order(π)=k−1

µz(π̃)Mz(π̃, π)

︸ ︷︷ ︸
coalescence

which provides a recurrence relation on the order.



Energy of a coalescence scenario
I {1, 2, 3} is of order 2. Three scenarios:

s1 : {1}{2}{3} · · · → {1, 2}{3} · · · → {1, 2, 3}
s2 : {1}{2}{3} · · · → {1, 3}{2} · · · → {1, 2, 3}
s3 : {1}{2}{3} · · · → {2, 3}{1} · · · → {1, 2, 3}

We define the energy of a coalescence scenario as the inverse
of the product of the successive cover lengths at each step of
the scenario.

E(s1, z) =
1

z2 − z1
× 1

z3 − z1

E(s2, z) =
1

z2 − z1
× 1

z2 − z1



I Theorem : For every z1 < · · · < zn:

lim
R→∞

RkµRz
∞ ({1, · · · , n}) =

∑
s

ERz(s)

where the sum is taken over every possible coalescence
scenario from {1}, · · · {n} to {1, · · · , n}.


