# Infinite Rémy bridges

Steven N. Evans

U.C. Berkeley

August, 2017



・ロト ・回ト ・ヨト

# Collaborators

#### Rudolf Grübel Hannover



Anton Wakolbinger Frankfurt



Steven N. Evans (U.C. Berkeley)

Infinite Rémy bridges

August , 2017 2 / 40

### Binary trees

- Write  $\{0,1\}^* := \bigsqcup_{k=0}^{\infty} \{0,1\}^k$  for the set of finite words drawn from the alphabet  $\{0,1\}$  (with the empty word  $\emptyset$  allowed).
- A binary tree is a finite subset  $\mathbf{t} \subset \{0,1\}^{\star}$  with the properties:
  - $v_1 \ldots v_k \in \mathbf{t} \Longrightarrow v_1 \ldots v_{k-1} \in \mathbf{t}$ ,
  - $v_1 \dots v_k \mathbf{0} \in \mathbf{t} \iff v_1 \dots v_k \mathbf{1} \in \mathbf{t}$ .



Figure: A binary tree is just a finite rooted tree in which every individual has zero or two children and we can distinguish left from right.

メロト メロト メヨト メ

- Call the empty word  $\emptyset$  the root of the tree.
- A binary tree has 2n+1 vertices for some  $n \in \mathbb{N}$ : n+1 leaves and n interior vertices.
- The number of binary trees with 2n + 1 vertices is the Catalan number  $C_n := \frac{1}{n+1} {2n \choose n}$ .

 Rémy's (1985) algorithm generates a sequence of random binary trees T<sub>1</sub>, T<sub>2</sub>,... such that T<sub>1</sub> is the unique binary tree ℵ := {Ø, 0, 1} with 3 vertices and T<sub>n</sub> is uniformly distributed on the set of binary trees with 2n + 1 vertices.

・ロト ・回ト ・ヨト ・

## Example of one iteration of Rémy's algorithm



Figure: First step in an iteration of Rémy's algorithm: pick a vertex v uniformly at random.

Steven N. Evans (U.C. Berkeley)

・ロト ・回ト ・ヨト



Figure: Second step in an iteration of Rémy's algorithm: cut off the subtree rooted at v and attach a copy of  $\aleph$  to the end of the edge that previously led to v.

\*ロト \*四ト \*臣



Figure: Third step in an iteration of Rémy's algorithm: re-attach the subtree rooted at v to one of the two leaves of the copy of  $\aleph$ , and re-label the vertices appropriately. The solid circle is the new location of v and the open circles are the clones of v.

Steven N. Evans (U.C. Berkeley)

Infinite Rémy bridges

- A segment in a metric space (X, d) is the image of an isometry α : [a, b] → X. The endpoints of the segment are α(a) and α(b).
- An  $\mathbb{R}$ -tree is a metric space (X, d) with the following properties.
  - For all  $x, y \in X$  there is a segment in X with endpoints  $\{x, y\}$ .
  - If two segments of (X, d) intersect in a single point, which is an endpoint of both, then their union is a segment.
- Fact: If (X, d) is an  $\mathbb{R}$ -tree, then for all  $x, y \in X$  there is a unique segment in X with endpoints  $\{x, y\}$ .

- Marchal (2003) showed that Rémy's sequence of trees thought of as  $\mathbb{R}$ -trees with unit edge lengths converge almost surely in a suitable sense to a random  $\mathbb{R}$ -tree  $\mathcal{T}$  called Aldous' Brownian continuum random tree (CRT) after rescaling the edge lengths by  $n^{-\frac{1}{2}}$  at step n.
- Conversely, Le Gall (1999) showed that if one successively samples points in a conditionally independent manner from the Brownian CRT  $\mathcal{T}$  using the associated mass measure on the leaves and thinks of the trees induced by the sampled leaves as (combinatorial) binary trees, then the resulting process is Rémy's chain.
- It follows from Hewitt-Savage that the limit Brownian CRT T generates the tail  $\sigma$ -field of the Rémy chain up to null sets.

- Conditioning the Rémy chain on the event  $\{\lim_{n\to\infty} n^{-\frac{1}{2}}T_n = t\}$  produces a Markov chain that has the same backward transition probabilities as  $(T_n)_{n\in\mathbb{N}}$  itself and a trivial tail  $\sigma$ -field.
- We call Markov chain that starts at ℵ and has the same backward transition probabilities as (T<sub>n</sub>)<sub>n∈ℕ</sub> an infinite Rémy bridge.
- We say that an infinite Rémy bridge with a trivial tail  $\sigma$ -field is extremal.
- By general theory, any infinite Rémy bridge is a mixture of extremal ones.
- What are all the extremal infinite Rémy bridges?

- An infinite Rémy bridge evolves backwards in time as follows:
  - Pick a leaf uniformly at random.
  - Delete the chosen leaf and its sibling.
  - Close up the gap if there is one.

(日) (日) (日) (日)



Figure: First step in a backward transition of an infinite Rémy bridge: pick a leaf w uniformly at random.

Image: A math and A



Figure: Second step in a backward transition of an infinite Rémy bridge: delete the chosen leaf w and its sibling.

Image: A mathematical states and a mathem



Figure: Third step in a backward transition of an infinite Rémy bridge: close up the gap.

Image: A math a math

### Radix sort trees

- The radix sort tree for a collection of distinct inputs  $z_1, z_2, \ldots, z_n \in \{0, 1\}^{\infty}$  is the tree  $R(z_1, z_2, \ldots, z_n)$  with leaves  $\zeta_1, \zeta_2, \ldots, \zeta_n \in \{0, 1\}^*$ , where  $\zeta_i$  is the shortest prefix of  $z_i$  that is not a prefix of  $\zeta_j$  for  $j \neq i$ .
- Note that  $R(z_1, \ldots, z_n) = R(z_{\sigma(1)}, \ldots, z_{\sigma(n)})$  for any permutation  $\sigma$  of [n].
- The possible radix sort trees are the trees such that if  $v_1 \dots v_{\ell-1} v_\ell$  is a leaf, then  $v_1 \dots v_{\ell-1} \bar{v}_\ell$  is a vertex, where  $\bar{0} := 1$  and  $\bar{1} := 0$ .



Figure: The radix sort tree for the inputs  $z_1 = 100 * **, z_2 = 0 * **, z_3 = 101 * **.$ 

### PATRICIA trees

- Write  $\Phi$  for the map that takes a tree, removes the vertices with outdegree 1, and "closes up the gaps" to produce a binary tree.
- The PATRICIA ("Practical Algorithm To Retrieve Information Coded In Alphanumeric") tree for a collection of inputs  $z_1, z_2, \ldots, z_n$  is the binary tree  $\overline{R}(z_1, z_2, \ldots, z_n) := \Phi \circ R(z_1, z_2, \ldots, z_n).$



Figure: The PATRICIA tree for the inputs  $z_1 = 100 * **, z_2 = 0 * **, z_3 = 101 * **.$ 

(日) (同) (三) (

 Given i.i.d. {0,1}<sup>∞</sup>-valued random variables Z<sub>1</sub>, Z<sub>2</sub>,... with common distribution some diffuse probability measure ν, set

$${}^{\nu}\bar{R}_n := \bar{\mathbf{R}}(Z_1,\ldots,Z_{n+1}).$$

• The Markov chain  $({}^{\nu}\bar{R}_n)_{n\in\mathbb{N}}$  is an extremal infinite Rémy bridge.

・ロト ・回ト ・ヨト ・

## Yet another example: the zig-zag chain

- Let  $((U_n,\eta_n))_{n\in\mathbb{N}}$  be an infinite sequence of independent identically distributed  $[0,1]\times\{0,1\}$ -valued random variables such that
  - $U_n$  has the uniform distribution on [0, 1],
  - $\mathbb{P}\{\eta_n = 0\} = 1 p \text{ and } \mathbb{P}\{\eta_n = 1\} = p,$
  - $U_n$  and  $\eta_n$  are independent.
- Let  $\sigma_n$  be the random permutation of [n] such that  $U_{\sigma_n(1)} < U_{\sigma_n(2)} < \ldots < U_{\sigma_n(n)}$ .

• For 
$$k \in [n]$$
, put  $\epsilon_{n,k} = \eta_{\sigma_n(k)}$ .

- Set  $S_n := \bigcup_{k \in [n]} \{ \epsilon_{n,1} \dots \epsilon_{n,k}, \epsilon_{n,1} \dots \epsilon_{n,(k-1)} \overline{\epsilon}_{n,k} \}$  for  $n \in \mathbb{N}$
- The tree  $S_n$  consists of a single path of length n with obligatory leaves attached.
- The process evolves by inserting an additional independent random step into the path at a uniformly chosen position. The step is to the left with probability 1-p and to the right with probability p.
- The Markov chain  $(S_n)_{n \in \mathbb{N}}$  is an extremal infinite Rémy bridge.



Figure: A possible realization at time n = 9 of the zig-zag chain.

・ロト ・四ト ・ヨト ・ヨト

- Fix an infinite Rémy bridge  $(T_n^{\infty})_{n \in \mathbb{N}}$ .
- By Kolmogorov's extension theorem, there is a Markov process  $(\tilde{T}_n^{\infty})_{n \in \mathbb{N}}$  such that for each  $n \in \mathbb{N}$  the random element  $\tilde{T}_n^{\infty}$  is a leaf-labeled binary tree with n + 1 leaves labeled by [n + 1] and the following hold.
  - The binary tree obtained by removing the labels of  $\tilde{T}_n^\infty$  is  $T_n^\infty$ .
  - For every  $n \in \mathbb{N}$ , the conditional distribution of  $\tilde{T}_n^{\infty}$  given  $T_n^{\infty}$  is uniform over the (n+1)! possible labelings of  $T_n^{\infty}$ .
  - In going backward from time n+1 to time  $n,\,\tilde{T}_{n+1}^\infty$  is transformed into  $\tilde{T}_n^\infty$  as follows:
    - The leaf labeled n+2 is deleted, along with its sibling.
    - If the sibling of the leaf labeled n + 2 is also a leaf, then the common parent (which is now a leaf) is assigned the sibling's label.

- We will use the labeling and a projective limit construction to build an infinite binary-tree-like structure for which N plays the role of the leaves.
- The "subtree spanned by the leaves labeled by [n+1]" in the projective limit will be essentially  $\tilde{T}_n^{\infty}$ , and hence the projective limit will encode the whole of  $(\tilde{T}_n^{\infty})_{n \in \mathbb{N}}$  (and hence the whole of  $(T_n^{\infty})_{n \in \mathbb{N}}$ ).

#### Most recent common ancestors

- If  $i, j \in \mathbb{N}$  are the labels of two leaves  $T_n^{\infty}$  that are represented as the words  $u_1 \dots u_k$  and  $v_1 \dots v_\ell$  in  $\{0, 1\}^*$ , then set  $[i, j]_n := u_1 \dots u_m = v_1 \dots v_m$ , where  $m := \max\{h : u_1 \dots u_h = v_1 \dots v_h\}$ .
- That is,  $[i, j]_n$  is the most recent common ancestor in  $T_n^{\infty}$  of the leaves labeled i and j.



- Define an equivalence relation  $\equiv$  on the Cartesian product  $\mathbb{N} \times \mathbb{N}$  by declaring that  $(i',j') \equiv (i'',j'')$  if and only if  $[i',j']_n = [i'',j'']_n$  for some (and hence all) n such that  $i',j',i'',j'' \in [n+1]$ .
- Write  $\langle i,j\rangle$  for the equivalence class of the pair (i,j).
- Think of  $\langle i, j \rangle$  as the being the most recent common ancestor of the leaves *i* and *j* and of such points being interior vertices of a tree-like object.

## Ordering equivalence classes - below and to the left

- Define a partial order  $<_L$  on the set of equivalence classes by declaring for  $(i',j'), (i'',j'') \in \mathbb{N} \times \mathbb{N}$  that  $\langle i',j' \rangle <_L \langle i'',j'' \rangle$  if and only if for some (and hence all) n such that  $i',j',i'',j'' \in [n+1]$  we have  $[i',j']_n = u_1 \dots u_k$  and  $[i'',j'']_n = u_1 \dots u_k 0v_1 \dots v_\ell$  for some  $u_1, \dots, u_k, v_1, \dots, v_\ell \in \{0,1\}$ .
- Interpret the ordering  $\langle i', j' \rangle <_L \langle i'', j'' \rangle$  as the "vertex"  $\langle i'', j'' \rangle$  being below and to the left of the "vertex"  $\langle i', j' \rangle$ .



Figure: Configuration leading to  $\langle i,j
angle <_L \langle k,\ell
angle$  in the projective limit.

## Ordering equivalence classes - below and to the right

- Similarly, define another partial order  $\langle_R$  by declaring that  $\langle i', j' \rangle \langle_R \langle i'', j'' \rangle$  if and only if for some (and hence all) n such that  $i', j', i'', j'' \in [n+1]$  we have  $[i', j']_n = u_1 \dots u_k$  and  $[i'', j'']_n = u_1 \dots u_k \mathbf{1} v_1 \dots v_\ell$  for some  $u_1, \dots, u_k, v_1, \dots, v_\ell \in \{0, 1\}$ .
- Interpret the ordering  $\langle i',j'\rangle <_R \langle i'',j''\rangle$  as the "vertex"  $\langle i'',j''\rangle$  being below and to the right of the "vertex"  $\langle i',j'\rangle$ .



Figure: Configuration leading to  $\langle i,j
angle <_R \langle k,\ell
angle$  in the projective limit.

Steven N. Evans (U.C. Berkeley)

メロト メロト メヨト メ

- Define a third partial order < on the set of equivalence classes of  $\mathbb{N} \times \mathbb{N}$  by declaring that  $\langle i', j' \rangle < \langle i'', j'' \rangle$  if either  $\langle i', j' \rangle <_L \langle i'', j'' \rangle$  or  $\langle i', j' \rangle <_R \langle i'', j'' \rangle$ .
- Interpret the ordering  $\langle i',j'\rangle < \langle i'',j''\rangle$  as the "vertex"  $\langle i'',j''\rangle$  being below the "vertex"  $\langle i',j'\rangle$ .

Image: A math a math

The equivalence relation  $\equiv$  and the partial orders  $<_L$ ,  $<_R$ , and < have the following properties.

(A) For  $i, j \in \mathbb{N}$ ,  $(i, j) \equiv (j, i)$ . (B) For  $i, j, k \in \mathbb{N}$   $(i, j) \not\equiv (k, k)$  unless i = j = k. (C) Fix  $f, g, h, i, j, k \in \mathbb{N}$ . If  $\langle f, g \rangle <_L \langle h, i \rangle$  and  $\langle h, i \rangle <_R \langle j, k \rangle$ , then  $\langle f, g \rangle <_L \langle j, k \rangle$ . Similarly, if  $\langle f, q \rangle <_R \langle h, i \rangle$  and  $\langle h, i \rangle <_L \langle j, k \rangle$ , then  $\langle f, q \rangle <_R \langle j, k \rangle$ . (D) For  $h, i, j, k \in \mathbb{N}$ , •  $\langle h,i \rangle <_L \langle j,k \rangle$  if and only if  $\langle h,i \rangle <_L j$  and  $\langle h,i \rangle <_L k$ ; •  $\langle h,i \rangle <_B \langle j,k \rangle$  if and only if  $\langle h,i \rangle <_B j$  and  $\langle h,i \rangle <_B k$ ; •  $\langle h,i\rangle = \langle j,k\rangle$  if and only if either  $\langle h,i\rangle \leq_L j$  and  $\langle h,i\rangle \leq_R k$  or  $\langle h,i\rangle \leq_L k$  and  $\langle h,i\rangle \leq_B j$ (E) For  $h, i, j, k \in \mathbb{N}$ ,  $\langle h, i \rangle < \langle j, k \rangle$  if and only if  $\langle h, i \rangle <_L \langle j, k \rangle$  or  $\langle h, i \rangle <_R \langle j, k \rangle$ . (F) For distinct  $i, j, k \in \mathbb{N}$  there exist  $\ell, m \in \{i, j, k\}$  such that  $\langle \ell, m \rangle < p$  for all  $p \in \{i, j, k\}.$ 

- A didendritic system is a set  $\mathcal{N} \times \mathcal{N}$  for some non-empty (possibly infinite) set  $\mathcal{N}$  that is equipped with an equivalence relation  $\equiv$ , equivalence classes  $\langle \cdot, \cdot \rangle$ , and partial order  $<_L$ ,  $<_R$ , and < on the equivalence classes such that (A) (F) hold (with  $\mathbb{N}$  replaced by  $\mathcal{N}$ ).
- We have coined the word "didendritic" from the Greek roots " $\delta \iota \varsigma$ " = "two, twice or double" and " $\delta \epsilon \nu \delta \rho \iota \tau \eta \varsigma$ " = "of or pertaining to a tree, tree-like" as an adjective meaning "binary tree-like".
- A finite didendritic system is the same things as a leaf-labeled binary tree.
- A didendritic system on  $\mathbb{N}$  is the same things as a sequence of leaf-labeled trees  $(\tilde{\mathbf{t}}_n)_{n\in\mathbb{N}}$  with the property that the leaves of  $\tilde{\mathbf{t}}_n$ ,  $n\in\mathbb{N}$ , are labeled by [n+1] and the sequence is is consistent in the sense that  $\tilde{\mathbf{t}}_n$  is produced from  $\tilde{\mathbf{t}}_{n+1}$  by:
  - deleting leaf labeled n+2 along with its sibling;
  - if the sibling was also a leaf, assigning its label to the common parent (which is now a leaf).

< ロト < 同ト < ヨト < ヨ

- Given a didendritic system  $\mathbf{D} = (\mathcal{N}, \equiv, \langle \cdot, \cdot \rangle, <_L, <_R, <)$  and a permutation  $\sigma$  of  $\mathcal{N}$  the didendritic system  $\mathbf{D}^{\sigma} = (\mathcal{N}, \equiv^{\sigma}, \langle \cdot, \cdot \rangle^{\sigma}, <_L^{\sigma}, <_R^{\sigma}, <^{\sigma})$  is defined by
  - $(i',j') \equiv^{\sigma} (i'',j'')$  if and only if  $(\sigma(i'),\sigma(j')) \equiv (\sigma(i''),\sigma(j''))$ ,
  - $\langle i,j \rangle^{\sigma}$  is the equivalence class of the pair (i,j) for the equivalence relation  $\equiv^{\sigma}$ ,
  - $\langle h,i\rangle^{\sigma} <_{L}^{\sigma} \langle j,k\rangle^{\sigma}$  if and only if  $\langle \sigma(h),\sigma(i)\rangle <_{L} \langle \sigma(j),\sigma(k)\rangle$ ,
  - $\langle h,i\rangle^{\sigma} <_{R}^{\tilde{\sigma}} \langle j,k\rangle^{\sigma}$  if and only if  $\langle \sigma(h),\sigma(i)\rangle <_{R} \langle \sigma(j),\sigma(k)\rangle$ ,
  - $\langle h,i \rangle^{\sigma} < \stackrel{n}{\sigma} \langle j,k \rangle^{\sigma}$  if and only if  $\langle \sigma(h), \sigma(i) \rangle < \langle \sigma(j), \sigma(k) \rangle$ .

• A random didendritic system  $\mathbf{D} = (\mathbb{N}, \equiv, \langle \cdot, \cdot \rangle, <_L, <_R, <)$  is exchangeable if for each permutation  $\sigma$  of  $\mathbb{N}$  such that  $\sigma(i) = i$  for all but finitely many  $i \in \mathbb{N}$  the random didendritic system  $\mathbf{D}^{\sigma}$  has the same distribution as  $\mathbf{D}$ .

Image: A math a math

- The random didendritic system on N corresponding to the labeled version of an infinite Rémy bridge is exchangeable.
- Conversely, the sequence of random labeled binary trees produced from an exchangeable random didendritic system by successively restricting to [n+1],  $n \in \mathbb{N}$ , is the labeled version of an infinite Rémy bridge.

 $\bullet$  An exchangeable random didendritic system  ${\bf D}$  is ergodic if

$$\mathbb{P}(\{\mathbf{D}\in A\} \triangle \{\mathbf{D}^{\sigma}\in A\}) = 0$$

for some measurable set A for all permutations  $\sigma$  of  $\mathbb{N}$  with  $\sigma(i) = i$  for all but finitely many  $i \in \mathbb{N}$  implies that

$$\mathbb{P}\{\mathbf{D}\in A\}\in\{0,1\}.$$

- Any exchangeable random didendritic system is a mixture of ergodic exchangeable random didendritic systems.
- An infinite Rémy bridge is extremal if and only if the corresponding exchangeable random didendritic system is ergodic.

- Consider a complete separable  $\mathbb{R}$ -tree S and a distinguished point  $\rho \in S$ .
- Define a partial order  $\prec$  on S by declaring that  $x \prec y$  if  $[\rho, x] \subsetneq [\rho, y]$ .
- Given  $x, y \in \mathbf{S}$  define  $x \land y \in \mathbf{S}$  by  $[\rho, x \land y] = [\rho, x] \cap [\rho, y]$ .
- Observe that  $x \land y \preceq x, x \land y \preceq y$ , and for any  $z \in \mathbf{S}$  with  $z \preceq x$  and  $z \preceq y$  we have  $z \preceq x \land y$ .

Image: A math a math

### Building a didendritic system on $\mathbb N$ from a $\mathbb R\text{-tree}\colon \mathsf{Step}\ 2$

- Let  $\{x_n : n \in \mathbb{N}\}$  be a subset of **S**.
- Suppose that for distinct  $i, j, k \in \mathbb{N}$ , one of

$$x_i \land x_j = x_i \land x_k \prec x_j \land x_k,$$
$$x_j \land x_k = x_j \land x_i \prec x_k \land x_i,$$

or

$$x_k \downarrow x_i = x_k \downarrow x_j \prec x_i \downarrow x_j$$

holds.



Figure: Although this  $\mathbb{R}$ -tree is not "binary", the required condition holds for the given choice of  $x_i, x_j, x_k$ .

Steven N. Evans (U.C. Berkeley)

Image: A math a math

- Define an equivalence relation  $\equiv$  on  $\mathbb{N} \times \mathbb{N}$  by declaring that
  - $(i,i) \equiv (j,k)$  if and only if  $x_i = x_j = x_k$  (equivalently, i = j = k),
  - for  $h \neq i$  and  $j \neq k$ ,  $(h, i) \equiv (j, k)$  if and only if  $x_h \land x_i = x_j \land x_k$ .
- Write  $\langle i, j \rangle$  for the  $\equiv$ -equivalence class of (i, j).
- For simplicity, write i for  $\langle i, i \rangle$ .

- Define a partial order < on  $\{\langle i,j
  angle: i,j\in\mathbb{N}\}$  by declaring that
  - for  $\langle i,j \rangle \neq k$ ,  $\langle i,j \rangle < k$  if and only if  $i \neq j$  and  $x_i \land x_j \preceq x_k$  (in particular,  $\langle i,j \rangle < i$  and  $\langle i,j \rangle < j$  for  $i \neq j$ ),
  - for  $h \neq i$  and  $j \neq k$ ,  $\langle h, i \rangle < \langle j, k \rangle$  if and only if  $x_h \land x_i \prec x_j \land x_k$ .

・ロト ・回ト ・ヨト

- Suppose further that for distinct  $i, j \in \mathbb{N}$  there are elements w(i, j) of the set  $\{\frown, \frown\}$  with the following properties:
  - For  $i \neq j$ ,  $w(i,j) = \frown$  if and only if  $w(j,i) = \frown$ .
  - For distinct  $i, j, k \in \mathbb{N}$ , if  $x_i \land x_j = x_i \land x_k \prec x_j \land x_k$ , then w(i, j) = w(i, k).
- FACT: There is a unique pair of partial orders  $<_L$  and  $<_R$  on  $\{\langle i,j \rangle: i,j \in \mathbb{N}\}$  such that

$$\langle i,j \rangle <_L i \text{ and } \langle i,j \rangle <_R j \iff w(i,j) = \curvearrowright.$$

• END RESULT: The objects  $\mathbb{N}$ ,  $\equiv$ ,  $\langle \cdot, \cdot \rangle$ ,  $<_L$ ,  $<_R$ , < form a didendritic system

- Start with a complete separable  $\mathbb{R}$ -tree S and a distinguished point  $\rho \in S$ , and suitably randomize the above construction as follows.
- Fix a diffuse probability measure  $\mu$  on **S** and take  $\{x_n : n \in \mathbb{N}\}$  to be a realization of  $\{\xi_n : n \in \mathbb{N}\}$ , where  $(\xi_n)_{n \in \mathbb{N}}$  are i.i.d. with common distribution  $\mu$ .
- Require that  $\mu$  is such that almost surely for distinct  $i,j,k\in\mathbb{N},$  one of

$$\begin{split} \xi_i &\land \xi_j = \xi_i \land \xi_k \prec \xi_j \land \xi_k, \\ \xi_j &\land \xi_k = \xi_j \land \xi_i \prec \xi_k \land \xi_i, \end{split}$$

or

$$\xi_k \land \xi_i = \xi_k \land \xi_j \prec \xi_i \land \xi_j$$

holds.

• Define the equivalence relation  $\equiv$ , equivalence classes  $\langle\cdot,\cdot\rangle$ , and partial order < as above.

<ロト <回ト < 回ト < 回

- Construct a sequence of i.i.d. [0, 1]-valued r.v. (U<sub>n</sub>)<sub>n∈ℕ</sub> with common uniform distribution.
- Define  $\{\frown, \frown\}$ -valued r.v.  $w(i, j), i, j \in \mathbb{N}, i \neq j$ , by setting

 $w(i,j) := W(\xi_i, U_i, \xi_j, U_j)$ 

for a function  $W: \mathbf{S} \times [0,1] \times \mathbf{S} \times [0,1] \to \{\frown,\frown\}$  such that almost surely:

- for  $i \neq j$ ,  $W(\xi_i, U_i, \xi_j, U_j) = \cap$  if and only if  $W(\xi_j, U_j, \xi_i, U_i) = \cap$ ;
- for distinct i, j, k, if  $\xi_i \land \xi_j = \xi_i \land \xi_k \prec \xi_j \land \xi_k$ , then  $W(\xi_i, U_i, \xi_j, U_j) = W(\xi_i, U_i, \xi_k, U_k)$ .
- Define partial orders  $<_L$  and  $<_R$  as above.

・ロト ・回ト ・ヨト ・

- The above construction builds an ergodic exchangeable random didendritic system (and hence an extremal infinite Rémy bridge).
- Conversely, any ergodic exchangeable random didendritic system (and hence any extremal infinite Rémy bridge) arises from this construction this converse takes a lot of work and involves the Aldous-Hoover-Kallenberg theory of exchangeable arrays. Moreover, there are parallels with graph limits and graphons.