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Binary trees

Write {0, 1}? :=
⊔∞
k=0{0, 1}

k for the set of �nite words drawn from the alphabet
{0, 1} (with the empty word ∅ allowed).
A binary tree is a �nite subset t ⊂ {0, 1}? with the properties:

v1 . . . vk ∈ t =⇒ v1 . . . vk−1 ∈ t,
v1 . . . vk0 ∈ t⇐⇒ v1 . . . vk1 ∈ t.

1 0 

00 

101 

10 11 

000 001 

01 

100 

Figure: A binary tree is just a �nite rooted tree in which every individual has zero or two children
and we can distinguish left from right.
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Counting binary trees

Call the empty word ∅ the root of the tree.

A binary tree has 2n+ 1 vertices for some n ∈ N: n+ 1 leaves and n interior vertices.

The number of binary trees with 2n+ 1 vertices is the Catalan number
Cn := 1

n+1

(
2n
n

)
.
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Rémy's algorithm

Rémy's (1985) algorithm generates a sequence of random binary trees T1, T2, . . .
such that T1 is the unique binary tree ℵ := {∅, 0, 1} with 3 vertices and Tn is
uniformly distributed on the set of binary trees with 2n+ 1 vertices.

Steven N. Evans (U.C. Berkeley) In�nite Rémy bridges August, 2017 5 / 40



Example of one iteration of Rémy's algorithm

1 0 

00 

101 

10 11 

000 001 

01 

100 

Figure: First step in an iteration of Rémy's algorithm: pick a vertex v uniformly at random.
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Example of one iteration of Rémy's algorithm � continued

000 001 

0 

00 01 

Figure: Second step in an iteration of Rémy's algorithm: cut o� the subtree rooted at v and
attach a copy of ℵ to the end of the edge that previously led to v.
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Example of one iteration of Rémy's algorithm � continued

000 001 

0 

00 01 

1 

10 11 

100 101 

1000 1001 

Figure: Third step in an iteration of Rémy's algorithm: re-attach the subtree rooted at v to one
of the two leaves of the copy of ℵ, and re-label the vertices appropriately. The solid circle is the
new location of v and the open circles are the clones of v.
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R-trees = tree-like metric spaces

A segment in a metric space (X, d) is the image of an isometry α : [a, b]→ X. The
endpoints of the segment are α(a) and α(b).

An R-tree is a metric space (X, d) with the following properties.
For all x, y ∈ X there is a segment in X with endpoints {x, y}.
If two segments of (X, d) intersect in a single point, which is an endpoint of both,
then their union is a segment.

Fact: If (X, d) is an R-tree, then for all x, y ∈ X there is a unique segment in X
with endpoints {x, y}.
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Connections between Rémy's chain and Aldous' Brownian CRT

Marchal (2003) showed that Rémy's sequence of trees thought of as R-trees with
unit edge lengths converge almost surely in a suitable sense to a random R-tree T
called Aldous' Brownian continuum random tree (CRT) after rescaling the edge

lengths by n−
1
2 at step n.

Conversely, Le Gall (1999) showed that if one successively samples points in a
conditionally independent manner from the Brownian CRT T using the associated
mass measure on the leaves and thinks of the trees induced by the sampled leaves as
(combinatorial) binary trees, then the resulting process is Rémy's chain.

It follows from Hewitt-Savage that the limit Brownian CRT T generates the tail
σ-�eld of the Rémy chain up to null sets.
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In�nite Rémy bridges

Conditioning the Rémy chain on the event {limn→∞ n
− 1

2 Tn = t} produces a
Markov chain that has the same backward transition probabilities as (Tn)n∈N itself
and a trivial tail σ-�eld.

We call Markov chain that starts at ℵ and has the same backward transition
probabilities as (Tn)n∈N an in�nite Rémy bridge.

We say that an in�nite Rémy bridge with a trivial tail σ-�eld is extremal.

By general theory, any in�nite Rémy bridge is a mixture of extremal ones.

What are all the extremal in�nite Rémy bridges?
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Backward transition probabilities

An in�nite Rémy bridge evolves backwards in time as follows:
Pick a leaf uniformly at random.
Delete the chosen leaf and its sibling.
Close up the gap if there is one.
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Example of a backward transition for a Rémy bridge

000 001

0

00 01

1

10 11

100 101

1000 1001

Figure: First step in a backward transition of an in�nite Rémy bridge: pick a leaf w uniformly at
random.
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Example of a backward transition � continued

000 001

0

00 01

Figure: Second step in a backward transition of an in�nite Rémy bridge: delete the chosen leaf w
and its sibling.
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Example of a backward transition � continued

10

00

101

10 11

000 001

01

100

Figure: Third step in a backward transition of an in�nite Rémy bridge: close up the gap.

Steven N. Evans (U.C. Berkeley) In�nite Rémy bridges August, 2017 15 / 40



Radix sort trees

The radix sort tree for a collection of distinct inputs z1, z2, . . . , zn ∈ {0, 1}∞ is the
tree R(z1, z2, . . . , zn) with leaves ζ1, ζ2, . . . , ζn ∈ {0, 1}?, where ζi is the shortest
pre�x of zi that is not a pre�x of ζj for j 6= i.

Note that R(z1, . . . , zn) = R(zσ(1), . . . , zσ(n)) for any permutation σ of [n].

The possible radix sort trees are the trees such that if v1 . . . v`−1v` is a leaf, then
v1 . . . v`−1v̄` is a vertex, where 0̄ := 1 and 1̄ := 0.

10

101

10

100

Figure: The radix sort tree for the inputs z1 = 100 ∗ ∗∗, z2 = 0 ∗ ∗∗, z3 = 101 ∗ ∗∗.
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PATRICIA trees

Write Φ for the map that takes a tree, removes the vertices with outdegree 1, and
�closes up the gaps� to produce a binary tree.

The PATRICIA (�Practical Algorithm To Retrieve Information Coded In
Alphanumeric�) tree for a collection of inputs z1, z2, . . . , zn is the binary tree
R̄(z1, z2, . . . , zn) := Φ ◦R(z1, z2, . . . , zn).

10

1110

Figure: The PATRICIA tree for the inputs z1 = 100 ∗ ∗∗, z2 = 0 ∗ ∗∗, z3 = 101 ∗ ∗∗.
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PATRICIA chains

Given i.i.d. {0, 1}∞-valued random variables Z1, Z2, . . . with common distribution
some di�use probability measure ν, set

ν
R̄n := R̄(Z1, . . . , Zn+1).

The Markov chain (
ν
R̄n)n∈N is an extremal in�nite Rémy bridge.
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Yet another example: the zig-zag chain

Let ((Un, ηn))n∈N be an in�nite sequence of independent identically distributed
[0, 1]× {0, 1}-valued random variables such that

Un has the uniform distribution on [0, 1],
P{ηn = 0} = 1− p and P{ηn = 1} = p,
Un and ηn are independent.

Let σn be the random permutation of [n] such that Uσn(1) < Uσn(2) < . . . < Uσn(n).

For k ∈ [n], put εn,k = ησn(k).

Set Sn :=
⋃
k∈[n]{εn,1 . . . εn,k, εn,1 . . . εn,(k−1)ε̄n,k} for n ∈ N

The tree Sn consists of a single path of length n with obligatory leaves attached.

The process evolves by inserting an additional independent random step into the
path at a uniformly chosen position. The step is to the left with probability 1− p
and to the right with probability p.

The Markov chain (Sn)n∈N is an extremal in�nite Rémy bridge.

Figure: A possible realization at time n = 9 of the zig-zag chain.
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Consistently labeling the leaves in an in�nite Rémy bridge

Fix an in�nite Rémy bridge (T∞n )n∈N.

By Kolmogorov's extension theorem, there is a Markov process (T̃∞n )n∈N such that

for each n ∈ N the random element T̃∞n is a leaf-labeled binary tree with n+ 1
leaves labeled by [n+ 1] and the following hold.

The binary tree obtained by removing the labels of T̃∞n is T∞n .

For every n ∈ N, the conditional distribution of T̃∞n given T∞n is uniform over the
(n+ 1)! possible labelings of T∞n .

In going backward from time n+ 1 to time n, T̃∞n+1 is transformed into T̃∞n as
follows:

The leaf labeled n + 2 is deleted, along with its sibling.
If the sibling of the leaf labeled n + 2 is also a leaf, then the common parent (which is
now a leaf) is assigned the sibling's label.
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What does the labeling do for us?

We will use the labeling and a projective limit construction to build an in�nite
binary-tree-like structure for which N plays the role of the leaves.

The �subtree spanned by the leaves labeled by [n+1]� in the projective limit will be
essentially T̃∞n , and hence the projective limit will encode the whole of (T̃∞n )n∈N
(and hence the whole of (T∞n )n∈N).
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Most recent common ancestors

If i, j ∈ N are the labels of two leaves T∞n that are represented as the words
u1 . . . uk and v1 . . . v` in {0, 1}?, then set [i, j]n := u1 . . . um = v1 . . . vm, where
m := max{h : u1 . . . uh = v1 . . . vh}.
That is, [i, j]n is the most recent common ancestor in T∞n of the leaves labeled i
and j.

i j

[i,j]n= [k,l]n 

k

l
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Interior vertices

De�ne an equivalence relation ≡ on the Cartesian product N× N by declaring that
(i′, j′) ≡ (i′′, j′′) if and only if [i′, j′]n = [i′′, j′′]n for some (and hence all) n such
that i′, j′, i′′, j′′ ∈ [n+ 1].

Write 〈i, j〉 for the equivalence class of the pair (i, j).

Think of 〈i, j〉 as the being the most recent common ancestor of the leaves i and j
and of such points being interior vertices of a tree-like object.
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Ordering equivalence classes � below and to the left

De�ne a partial order <L on the set of equivalence classes by declaring for
(i′, j′), (i′′, j′′) ∈ N× N that 〈i′, j′〉 <L 〈i′′, j′′〉 if and only if for some (and hence
all) n such that i′, j′, i′′, j′′ ∈ [n+ 1] we have [i′, j′]n = u1 . . . uk and
[i′′, j′′]n = u1 . . . uk0v1 . . . v` for some u1, . . . , uk, v1, . . . , v` ∈ {0, 1}.
Interpret the ordering 〈i′, j′〉 <L 〈i′′, j′′〉 as the �vertex� 〈i′′, j′′〉 being below and to
the left of the �vertex� 〈i′, j′〉.

i jk l

Figure: Con�guration leading to 〈i, j〉 <L 〈k, `〉 in the projective limit.
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Ordering equivalence classes � below and to the right

Similarly, de�ne another partial order <R by declaring that 〈i′, j′〉 <R 〈i′′, j′′〉 if and
only if for some (and hence all) n such that i′, j′, i′′, j′′ ∈ [n+ 1] we have
[i′, j′]n = u1 . . . uk and [i′′, j′′]n = u1 . . . uk1v1 . . . v` for some
u1, . . . , uk, v1, . . . , v` ∈ {0, 1}.
Interpret the ordering 〈i′, j′〉 <R 〈i′′, j′′〉 as the �vertex� 〈i′′, j′′〉 being below and to
the right of the �vertex� 〈i′, j′〉.

i jk l

Figure: Con�guration leading to 〈i, j〉 <R 〈k, `〉 in the projective limit.
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Yet another partial order � below

De�ne a third partial order < on the set of equivalence classes of N×N by declaring
that 〈i′, j′〉 < 〈i′′, j′′〉 if either 〈i′, j′〉 <L 〈i′′, j′′〉 or 〈i′, j′〉 <R 〈i′′, j′′〉.
Interpret the ordering 〈i′, j′〉 < 〈i′′, j′′〉 as the �vertex� 〈i′′, j′′〉 being below the
�vertex� 〈i′, j′〉.
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Properties of the equivalence relation and partial orders

The equivalence relation ≡ and the partial orders <L, <R, and < have the following
properties.

(A) For i, j ∈ N, (i, j) ≡ (j, i).

(B) For i, j, k ∈ N (i, j) 6≡ (k, k) unless i = j = k.

(C) Fix f, g, h, i, j, k ∈ N. If 〈f, g〉 <L 〈h, i〉 and 〈h, i〉 <R 〈j, k〉, then 〈f, g〉 <L 〈j, k〉.
Similarly, if 〈f, g〉 <R 〈h, i〉 and 〈h, i〉 <L 〈j, k〉, then 〈f, g〉 <R 〈j, k〉.

(D) For h, i, j, k ∈ N,
〈h, i〉 <L 〈j, k〉 if and only if 〈h, i〉 <L j and 〈h, i〉 <L k;
〈h, i〉 <R 〈j, k〉 if and only if 〈h, i〉 <R j and 〈h, i〉 <R k;
〈h, i〉 = 〈j, k〉 if and only if either 〈h, i〉 ≤L j and 〈h, i〉 ≤R k or 〈h, i〉 ≤L k and
〈h, i〉 ≤R j.

(E) For h, i, j, k ∈ N, 〈h, i〉 < 〈j, k〉 if and only if 〈h, i〉 <L 〈j, k〉 or 〈h, i〉 <R 〈j, k〉.
(F) For distinct i, j, k ∈ N there exist `,m ∈ {i, j, k} such that 〈`,m〉 < p for all

p ∈ {i, j, k}.
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Didendritic systems

A didendritic system is a set N ×N for some non-empty (possibly in�nite) set N
that is equipped with an equivalence relation ≡, equivalence classes 〈·, ·〉, and partial
order <L, <R, and < on the equivalence classes such that (A) � (F) hold (with N
replaced by N ).

We have coined the word �didendritic� from the Greek roots �δις� = �two, twice or
double� and �δενδριτης� = �of or pertaining to a tree, tree-like� as an adjective
meaning �binary tree-like�.

A �nite didendritic system is the same things as a leaf-labeled binary tree.

A didendritic system on N is the same things as a sequence of leaf-labeled trees
(t̃n)n∈N with the property that the leaves of t̃n, n ∈ N, are labeled by [n+ 1] and
the sequence is is consistent in the sense that t̃n is produced from t̃n+1 by:

deleting leaf labeled n+ 2 along with its sibling;
if the sibling was also a leaf, assigning its label to the common parent (which is now a
leaf).

Steven N. Evans (U.C. Berkeley) In�nite Rémy bridges August, 2017 28 / 40



The action of permutations on a didendritic system

Given a didendritic system D = (N ,≡, 〈·, ·〉, <L, <R, <) and a permutation σ of
N the didendritic system Dσ = (N ,≡σ, 〈·, ·〉σ, <σL, <σR, <σ) is de�ned by

(i′, j′) ≡σ (i′′, j′′) if and only if (σ(i′), σ(j′)) ≡ (σ(i′′), σ(j′′)),
〈i, j〉σ is the equivalence class of the pair (i, j) for the equivalence relation ≡σ ,
〈h, i〉σ <σL 〈j, k〉

σ if and only if 〈σ(h), σ(i)〉 <L 〈σ(j), σ(k)〉,
〈h, i〉σ <σR 〈j, k〉

σ if and only if 〈σ(h), σ(i)〉 <R 〈σ(j), σ(k)〉,
〈h, i〉σ <σ 〈j, k〉σ if and only if 〈σ(h), σ(i)〉 < 〈σ(j), σ(k)〉.
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Exchangeable random didendritic systems

A random didendritic system D = (N,≡, 〈·, ·〉, <L, <R, <) is exchangeable if for
each permutation σ of N such that σ(i) = i for all but �nitely many i ∈ N the
random didendritic system Dσ has the same distribution as D.
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Didendritic systems and in�nite Rémy bridges

The random didendritic system on N corresponding to the labeled version of an
in�nite Rémy bridge is exchangeable.

Conversely, the sequence of random labeled binary trees produced from an
exchangeable random didendritic system by successively restricting to [n+ 1],
n ∈ N, is the labeled version of an in�nite Rémy bridge.
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Ergodic exchangeable random didendritic systems

An exchangeable random didendritic system D is ergodic if

P({D ∈ A}4{Dσ ∈ A}) = 0

for some measurable set A for all permutations σ of N with σ(i) = i for all but
�nitely many i ∈ N implies that

P{D ∈ A} ∈ {0, 1}.

Any exchangeable random didendritic system is a mixture of ergodic exchangeable
random didendritic systems.

An in�nite Rémy bridge is extremal if and only if the corresponding exchangeable
random didendritic system is ergodic.
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Building a didendritic system on N from a R-tree: Step 1

Consider a complete separable R-tree S and a distinguished point ρ ∈ S.

De�ne a partial order ≺ on S by declaring that x ≺ y if [ρ, x] ( [ρ, y].

Given x, y ∈ S de�ne x f y ∈ S by [ρ, x f y] = [ρ, x] ∩ [ρ, y].

Observe that x f y � x, x f y � y, and for any z ∈ S with z � x and z � y we
have z � x f y.
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Building a didendritic system on N from a R-tree: Step 2

Let {xn : n ∈ N} be a subset of S.
Suppose that for distinct i, j, k ∈ N, one of

xi f xj = xi f xk ≺ xj f xk,

xj f xk = xj f xi ≺ xk f xi,

or
xk f xi = xk f xj ≺ xi f xj

holds.
ρ

xj

xi

xk

Figure: Although this R-tree is not �binary�, the required condition holds for the given
choice of xi, xj , xk.
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Building a didendritic system on N from a R-tree: Step 3

De�ne an equivalence relation ≡ on N× N by declaring that
(i, i) ≡ (j, k) if and only if xi = xj = xk (equivalently, i = j = k),
for h 6= i and j 6= k, (h, i) ≡ (j, k) if and only if xh f xi = xj f xk.

Write 〈i, j〉 for the ≡-equivalence class of (i, j).

For simplicity, write i for 〈i, i〉.
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Building a didendritic system on N from a R-tree: Step 4

De�ne a partial order < on {〈i, j〉 : i, j ∈ N} by declaring that
for 〈i, j〉 6= k, 〈i, j〉 < k if and only if i 6= j and xi f xj � xk (in particular, 〈i, j〉 < i
and 〈i, j〉 < j for i 6= j),
for h 6= i and j 6= k, 〈h, i〉 < 〈j, k〉 if and only if xh f xi ≺ xj f xk.
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Building a didendritic system on N from a R-tree: Step 5

Suppose further that for distinct i, j ∈ N there are elements w(i, j) of the set
{y,x} with the following properties:

For i 6= j, w(i, j) =y if and only if w(j, i) =x.
For distinct i, j, k ∈ N, if xi f xj = xi f xk ≺ xj f xk, then w(i, j) = w(i, k).

FACT: There is a unique pair of partial orders <L and <R on {〈i, j〉 : i, j ∈ N} such
that

〈i, j〉 <L i and 〈i, j〉 <R j ⇐⇒ w(i, j) =y .

END RESULT: The objects N, ≡, 〈·, ·〉, <L, <R, < form a didendritic system
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Building an ergodic exchangeable random didendritic system: Step 1

Start with a complete separable R-tree S and a distinguished point ρ ∈ S, and
suitably randomize the above construction as follows.

Fix a di�use probability measure µ on S and take {xn : n ∈ N} to be a realization of
{ξn : n ∈ N}, where (ξn)n∈N are i.i.d. with common distribution µ.

Require that µ is such that almost surely for distinct i, j, k ∈ N, one of

ξi f ξj = ξi f ξk ≺ ξj f ξk,

ξj f ξk = ξj f ξi ≺ ξk f ξi,

or
ξk f ξi = ξk f ξj ≺ ξi f ξj

holds.

De�ne the equivalence relation ≡, equivalence classes 〈·, ·〉, and partial order < as
above.

Steven N. Evans (U.C. Berkeley) In�nite Rémy bridges August, 2017 38 / 40



Building an ergodic exchangeable random didendritic system: Step 2

Construct a sequence of i.i.d. [0, 1]-valued r.v. (Un)n∈N with common uniform
distribution.

De�ne {y,x}-valued r.v. w(i, j), i, j ∈ N, i 6= j, by setting

w(i, j) := W (ξi, Ui, ξj , Uj)

for a function W : S× [0, 1]× S× [0, 1]→ {y,x} such that almost surely:
for i 6= j, W (ξi, Ui, ξj , Uj) =y if and only if W (ξj , Uj , ξi, Ui) =x;
for distinct i, j, k, if ξi f ξj = ξi f ξk ≺ ξj f ξk, then
W (ξi, Ui, ξj , Uj) =W (ξi, Ui, ξk, Uk).

De�ne partial orders <L and <R as above.
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Conclusion

The above construction builds an ergodic exchangeable random didendritic system
(and hence an extremal in�nite Rémy bridge).

Conversely, any ergodic exchangeable random didendritic system (and hence any
extremal in�nite Rémy bridge) arises from this construction � this converse takes a
lot of work and involves the Aldous�Hoover�Kallenberg theory of exchangeable
arrays. Moreover, there are parallels with graph limits and graphons.
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