Sebastian Hummel

based on joint work (in progress) with Ellen Baake and Fernando Cordero and thanks to many discussions with Anton Wakolbinger

Bielefeld University

Genealogies of Interacting Particle Systems

08.08.2017

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 >

08.08.2017 1 / 39

1 2-type Moran model and its deterministic limit

- 2-type Moran model
- Deterministic limit
- Properties of deterministic limit

2 Ancestries in the Moran model and in the deterministic limit

- Ancestral selection graph
- Killed ancestral selection graph
- Pruned lookdown ancestral selection graph

1 2-type Moran model and its deterministic limit

- 2-type Moran model
- Deterministic limit
- Properties of deterministic limit

2 Ancestries in the Moran model and in the deterministic limit

- Ancestral selection graph
- Killed ancestral selection graph
- Pruned lookdown ancestral selection graph

Sebastian Hummel

Bielefeld University

æ 08.08.2017 4 / 39

≣⇒

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イヨト

Sebastian Hummel

Bielefeld University

メロト メロト メヨト メヨト

< ≧ ▶ ≧ ∽ ९ ୯ 08.08.2017 5 / 39

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イヨト

< ≧ ▶ ≧ ∽ ९ ୯ 08.08.2017 5 / 39

イロト イヨト イヨト イヨト

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ∃ ▶ ∃ ∽ ९
08.08.2017 6 / 39

Sebastian Hummel

Bielefeld University

メロト メロト メヨト メヨト

< ≧ ▶ ≧ ∽ ९ ୯ 08.08.2017 6 / 39

Sebastian Hummel

Bielefeld University

< ≣ ► ঊ ∽ ৭.০ 08.08.2017 7 / 39

イロン イ団 と イヨン イヨン

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

at rate uv_1

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 >

< ≣ ► ঊ ∽ ৭.০ 08.08.2017 8 / 39

at rate uv_1

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

メロト メロト メヨト メヨト

< ≣ ► ঊ ∽ ৭.০ 08.08.2017 8 / 39

Moran model with 2-types

- Haploid population of fixed size ${\cal N}$
- Types: 0 ('fit') and 1 ('unfit')
- Individuals of type 1 reproduce at rate 1
- $\blacksquare \ \mbox{Individuals of type } 0 \ \mbox{reproduce at rate } 1+s, \quad s \geq 0 \\$
- Single offspring inherits parent's type and replaces uniformly chosen individual
- Parent-independent mutation at rate u > 0
- Resulting type: 0 with probability ν_0 ; 1 with probability ν_1

(日)

• $Y_t^{(N)}$ proportion of type 1 is Markov process on [0,1]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

- $Y_t^{(N)}$ proportion of type 1 is Markov process on [0,1]
- $y(t,y_0)$ solution of IVP

$$\begin{aligned} \frac{dy}{dt}(t) &= -sy(t)(1 - y(t)) - u\nu_0 y(t) + u\nu_1(1 - y(t)) \quad (t \ge 0) \\ y(0) &= y_0 \qquad \text{for } y_0 \in [0, 1] \end{aligned}$$

イロト イヨト イヨト

- $Y_t^{(N)}$ proportion of type 1 is Markov process on [0,1]
- $y(t,y_0)$ solution of IVP

$$\begin{aligned} \frac{dy}{dt}(t) &= -sy(t)(1-y(t)) - u\nu_0 y(t) + u\nu_1(1-y(t)) \quad (t \ge 0) \\ y(0) &= y_0 \qquad \text{for } y_0 \in [0,1] \end{aligned}$$

If
$$\lim_{N
ightarrow\infty}Y_0^{(N)}=y_0$$
, then $orallarepsilon,T>0$,

$$\lim_{N \to \infty} P\Big(\sup_{t \le T} |Y_t^{(N)} - y(t, y_0)| > \varepsilon\Big) = 0$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

イロト イヨト イヨト

- $Y_t^{(N)}$ proportion of type 1 is Markov process on [0,1]
- $y(t, y_0)$ solution of IVP

$$\begin{aligned} &\frac{dy}{dt}(t) = -sy(t)(1 - y(t)) - u\nu_0 y(t) + u\nu_1(1 - y(t)) \quad (t \ge 0) \\ &y(0) = y_0 \qquad \text{for } y_0 \in [0, 1] \end{aligned}$$

If
$$\lim_{N\to\infty}Y_0^{(N)}=y_0$$
, then $\forall \varepsilon,T>0$,

$$\lim_{N \to \infty} P\Big(\sup_{t \le T} |Y_t^{(N)} - y(t, y_0)| > \varepsilon\Big) = 0$$

 \blacksquare Convergence carries over to the stationary state $(t \rightarrow \infty)$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト

- $Y_t^{(N)}$ proportion of type 1 is Markov process on [0,1]
- $y(t,y_0)$ solution of IVP

$$\begin{aligned} \frac{dy}{dt}(t) &= -sy(t)(1 - y(t)) - u\nu_0 y(t) + u\nu_1(1 - y(t)) \quad (t \ge 0) \\ y(0) &= y_0 \qquad \text{for } y_0 \in [0, 1] \end{aligned}$$

If
$$\lim_{N\to\infty}Y_0^{(N)}=y_0,$$
 then $\forall\varepsilon,T>0,$

$$\lim_{N \to \infty} P\Big(\sup_{t \le T} |Y_t^{(N)} - y(t, y_0)| > \varepsilon\Big) = 0$$

Convergence carries over to the stationary state (t

 $\rightarrow \infty$)
 Neither time nor parameters are rescaled

イロト 不得 トイヨト イヨト 二日

• If s = 0: unique equilibrium $\bar{y} = \nu_1 \Rightarrow$ stable

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

- If s = 0: unique equilibrium $\bar{y} = \nu_1 \Rightarrow$ stable
- If s > 0, two equilibria

$$\bar{y} = \frac{1}{2} \left(1 + \frac{u}{s} - \sqrt{\left(1 - \frac{u}{s}\right)^2 + 4\frac{u}{s}\nu_0} \right) \qquad \in [0, 1]$$
$$y^* = \frac{1}{2} \left(1 + \frac{u}{s} + \sqrt{\left(1 - \frac{u}{s}\right)^2 + 4\frac{u}{s}\nu_0} \right) \qquad \ge 1$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

- If s = 0: unique equilibrium $\bar{y} = \nu_1 \Rightarrow$ stable
- If s > 0, two equilibria

$$\bar{y} = \frac{1}{2} \left(1 + \frac{u}{s} - \sqrt{\left(1 - \frac{u}{s}\right)^2 + 4\frac{u}{s}\nu_0} \right) \qquad \in [0, 1]$$
$$y^* = \frac{1}{2} \left(1 + \frac{u}{s} + \sqrt{\left(1 - \frac{u}{s}\right)^2 + 4\frac{u}{s}\nu_0} \right) \qquad \ge 1$$

If
$$\nu_0 > 0$$
,
 $\bar{y} \in [0, 1) \rightarrow \text{stable}; \ y^{\star} > 1 \rightarrow \text{unstable}$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

- If s = 0: unique equilibrium $\bar{y} = \nu_1 \Rightarrow$ stable
- If s > 0, two equilibria

$$\bar{y} = \frac{1}{2} \left(1 + \frac{u}{s} - \sqrt{\left(1 - \frac{u}{s}\right)^2 + 4\frac{u}{s}\nu_0} \right) \qquad \in [0, 1]$$
$$y^* = \frac{1}{2} \left(1 + \frac{u}{s} + \sqrt{\left(1 - \frac{u}{s}\right)^2 + 4\frac{u}{s}\nu_0} \right) \qquad \ge 1$$

$$\begin{array}{l} \text{If } \nu_0 > 0, \\ \bar{y} \in [0,1) \rightarrow \text{stable}; \ y^{\star} > 1 \rightarrow \text{unstable} \\ \text{If } \nu_0 = 0, \\ \bar{y} = \min\left\{\frac{u}{s}, 1\right\} \rightarrow \text{stable}; \ y^{\star} = \max\left\{1, \frac{u}{s}\right\} \rightarrow \text{unstable} \end{array}$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

The equilibrium frequency

- error threshold -

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

If $\bar{y}\in(0,1)$ and $y_0\in(0,1),$ then

- if $y_0 < \bar{y} \ \Rightarrow y(t;y_0)$ monotonically increases to \bar{y} as $t \to \infty$
- if $y_0 > \bar{y} \ \Rightarrow y(t;y_0)$ monotonically decreases to \bar{y} as $t \to \infty$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 >

2-type Moran model and its deterministic limit

- 2-type Moran model
- Deterministic limit
- Properties of deterministic limit

2 Ancestries in the Moran model and in the deterministic limit

- Ancestral selection graph
- Killed ancestral selection graph
- Pruned lookdown ancestral selection graph

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< □ > < □ > < □ > < □ >

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・
Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・日 ・ ・ ヨ ・ ・

Introduced by Krone and Neuhauser [1997]

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

Ancestries

Pecking order

D=Descendant C=Continuing I=Incoming

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イ

Ancestries

Pecking order

D=Descendant C=Continuing I=Incoming

Descendant is of type $1 \Leftrightarrow$ all potential ancestors are of type 1

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・ 同 ト ・ ヨ ト

ASG in the deterministic limit

- No coalescence events, no collisions
- Branching at rate *s* per existing line
- Mutation to type 0 at rate $u\nu_0$ per existing line
- Mutation to type 1 at rate $u\nu_1$ per existing line

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

08.08.2017 18 / 39

< ロ > < 同 > < 三 > < 三 >

Ancestries

Backward picture?

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

08.08.2017 19 / 39

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

 $q_R(k,k+1)=ks$

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

 $q_R(k,k+1) = ks$

イロト イポト イヨト イヨト

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

08.08.2017 20 / 39

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

$$\begin{split} q_R(k,k+1) &= ks \\ q_R(k,k-1) &= ku\nu_1 \end{split}$$

イロト イポト イヨト イヨト

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

08.08.2017 20 / 39

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イポト イヨト イヨト

08.08.2017 20 / 39

- Type of uniformly chosen individual?
- Count potential ancestors of a single individual
- Stop ASG if type is determined

 $\to (R_r)_{r\geq 0}$ counts potential ancestors until type is known Absorption states: 0 and Δ

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Theorem

For $t \ge 0$,

$$y(t, y_0)^n = \mathbb{E}\left[y_0^{R_t} \mid R_0 = n\right] \qquad \forall n \in \mathbb{N}_0 \cup \{\Delta\}, \ y_0 \in [0, 1],$$

where $y^{\Delta} := 0$ $y(t, y_0)$: proportion of type 1 R_t : number of potential ancestors until descendant's type is known

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロン イロン イヨン イヨン

Theorem

For $t \ge 0$,

$$y(t, y_0)^n = \mathbb{E}\left[y_0^{R_t} \mid R_0 = n\right] \qquad \forall n \in \mathbb{N}_0 \cup \{\Delta\}, \ y_0 \in [0, 1],$$

where $y^{\Delta} := 0$ $y(t, y_0)$: proportion of type 1 R_t : number of potential ancestors until descendant's type is known

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Theorem

For $t \ge 0$,

$$y(t, y_0)^n = \mathbb{E}\Big[y_0^{R_t} \mid R_0 = n\Big] \qquad \forall n \in \mathbb{N}_0 \cup \{\Delta\}, \ y_0 \in [0, 1],$$

where $y^{\Delta} := 0$ $y(t, y_0)$: proportion of type 1 R_t : number of potential ancestors until descendant's type is known

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

08.08.2017 21 / 39

•
$$w_n := P(\lim_{r \to \infty} R_r = 0 \mid R_0 = n)$$

•
$$w_0 = 1$$
 and $w_\Delta = 0$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 >

< ≣ ► ≣ ৩৭৫ 08.08.2017 22 / 39

- $w_n := P(\lim_{r \to \infty} R_r = 0 \mid R_0 = n)$
- $w_0 = 1$ and $w_\Delta = 0$
- First-step analysis $\Rightarrow w_k = \frac{s}{u+s}w_{k+1} + \frac{u\nu_1}{u+s}w_{k-1}$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ≣ ► ≣ ৩৭৫ 08.08.2017 22 / 39

イロト 不同 トイヨト イヨト

- $\bullet w_n := P(\lim_{r \to \infty} R_r = 0 \mid R_0 = n)$
- $w_0 = 1$ and $w_\Delta = 0$
- First-step analysis $\Rightarrow w_k = \frac{s}{u+s}w_{k+1} + \frac{u\nu_1}{u+s}w_{k-1}$
- Independence of ancestries $\Rightarrow w_k = w_1^k$

イロト 不同 トイヨト イヨト

- $\bullet w_n := P(\lim_{r \to \infty} R_r = 0 \mid R_0 = n)$
- $w_0 = 1$ and $w_\Delta = 0$
- First-step analysis $\Rightarrow w_k = \frac{s}{u+s}w_{k+1} + \frac{u\nu_1}{u+s}w_{k-1}$
- Independence of ancestries $\Rightarrow w_k = w_1^k$

Hence,

$$w_1 = \begin{cases} \frac{1}{2} \left(1 + \frac{u}{s} - \sqrt{(1 - \frac{u}{s})^2 + 4\frac{u}{s}\nu_0} \right) & \text{if } s > 0\\ \nu_1 & s = 0 \end{cases}$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト 不得 とくきとくきとうき

- $\bullet w_n := P(\lim_{r \to \infty} R_r = 0 \mid R_0 = n)$
- $w_0 = 1$ and $w_\Delta = 0$
- First-step analysis $\Rightarrow w_k = \frac{s}{u+s}w_{k+1} + \frac{u\nu_1}{u+s}w_{k-1}$
- Independence of ancestries $\Rightarrow w_k = w_1^k$

Hence,

$$w_1 = \begin{cases} \frac{1}{2} \left(1 + \frac{u}{s} - \sqrt{(1 - \frac{u}{s})^2 + 4\frac{u}{s}\nu_0} \right) & \text{if } s > 0\\ \nu_1 & s = 0 \end{cases}$$

• Duality $\Rightarrow w_1 = \text{proportion of } 1$ at stationarity $= \bar{y}$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト 不得 トイヨト イヨト 二日

The equilibrium frequency and absorption probability

Black line: stable. Grey line: unstable.

- error threshold -

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

Representative ancestral type

Definition

The representative ancestral (RA) type at backward time r, denoted by $I_r \in \{0, 1\}$, is the type of the ancestor at backward time r of an individual uniformly chosen at time 0.

< ロ > < 同 > < 三 > < 三 >

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

08.08.2017 24 / 39

Representative ancestral type

Definition

The representative ancestral (RA) type at backward time r, denoted by $I_r \in \{0, 1\}$, is the type of the ancestor at backward time r of an individual uniformly chosen at time 0.

Quantities of interest

$$g(y_0, r) := P_{y_0}(I_r = 1)$$

•
$$g_{\infty}(y_0) := \lim_{r \to \infty} g(y_0, r)$$

 \to conditional RA type distribution

•
$$g_{\infty}(\bar{y})$$

 $ightarrow$ RA type distribution in
equilibrium

< ロ > < 同 > < 三 > < 三 >

Pruned lookdown ASG (p-LD-ASG)

- In the diffusion case: Common ancestor type distribution Fearnhead [2002] and Taylor [2007] ⇒ analytic argument p-LD-ASG introduced by Lenz et al. [2015] ⇒ probabilistic argument
- Translation of p-LD-ASG to deterministic limit by Cordero [2017]

イロト 不得 トイヨト イヨト

Pruned lookdown ASG (p-LD-ASG)

- In the diffusion case: Common ancestor type distribution Fearnhead [2002] and Taylor [2007] ⇒ analytic argument p-LD-ASG introduced by Lenz et al. [2015] ⇒ probabilistic argument
- Translation of p-LD-ASG to deterministic limit by Cordero [2017]

Idea of p-LD-ASG:

- Count potential ancestors of a single individual
- Arrange potential ancestors in hierarchy
- Mutations rule out some potential ancestors

イロト 不得 トイヨト イヨト

p-LD-ASG in deterministic limit

$$q_L(k,k+1) = ks$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

p-LD-ASG in deterministic limit

$$q_L(k,k+1) = ks$$

イロト イロト イヨト イヨト

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

p-LD-ASG in deterministic limit

$$q_L(k,k+1) = ks$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロン イヨン イヨン
$$\begin{aligned} q_L(k,k+1) &= ks \\ q_L(k,k-1) &= (k \qquad) u\nu_1 \end{aligned}$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロン イロン イヨン イヨン

$$\begin{aligned} q_L(k,k+1) &= ks \\ q_L(k,k-1) &= (k \qquad) u\nu_1 \end{aligned}$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イヨト

$$q_L(k, k+1) = ks$$
$$q_L(k, k-1) = (k-1)u\nu_1$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロン イロン イヨン イヨン

$$q_L(k, k+1) = ks$$
$$q_L(k, k-1) = (k-1)u\nu_1$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

ヘロト ヘロト ヘヨト ヘヨト

$$q_L(k, k+1) = ks$$
$$q_L(k, k-1) = (k-1)u\nu_1$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

・ロト ・回ト ・ヨト ・ヨト

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

<ロ> <四> <四> <四> <三</p>

 $\Rightarrow~(L_r)_{r\geq 0}$ line-counting process, no absorbing states

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト 不得 トイヨト イヨト 二日

 $\Rightarrow (L_r)_{r \ge 0} \text{ line-counting process, no absorbing states} \\\Rightarrow \text{ ancestor of type } 1 \Leftrightarrow \text{ all potential ancestors in p-LD-ASG of type } 1$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

08.08.2017 26 / 39

イロト 不得 トイヨト イヨト 二日

p-LD-ASG - exploiting the hierarchy

$$\Rightarrow g(y_0, r) = \mathbb{E}[y_0^{L_r} \mid L_0 = 1] \\= 1 - (1 - y_0) \sum_{n \ge 0} P(L_r > n \mid L_0 = 1) y_0^n$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 >

< ≣ ► ≣ ৩৭৫ 08.08.2017 27 / 39

p-LD-ASG - exploiting the hierarchy

$$\Rightarrow g(y_0, r) = \mathbb{E}[y_0^{L_r} \mid L_0 = 1] \\= 1 - (1 - y_0) \sum_{n \ge 0} P(L_r > n \mid L_0 = 1) y_0^n$$

 $g_{\infty}(y_0) := \lim_{r \to \infty} g(y_0, r) ??$

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 >

p-LD-ASG - exploiting the hierarchy

$$\Rightarrow g(y_0, r) = \mathbb{E}[y_0^{L_r} \mid L_0 = 1] \\= 1 - (1 - y_0) \sum_{n \ge 0} P(L_r > n \mid L_0 = 1) y_0^n$$

$$g_{\infty}(y_0) := \lim_{r \to \infty} g(y_0, r) ??$$

Proposition

1 If
$$s = 0$$
, L_r absorbs in 1 almost surely

2 If
$$u < s$$
 and $u_0 = 0$, L_r is transient, so $L_r o \infty$ a.s. $(r o \infty)$

3 If
$$u = s$$
 and $\nu_0 = 0$, L_r is null recurrent

4 If u > s or $\nu_0 > 0$, L_r is positive recurrent and the stationary distribution is geometric with parameter 1 - p, where

$$p = \begin{cases} \frac{s}{u\nu_1}\bar{y}, & \text{if } \nu_1 > 0, \\ \frac{s}{u+s}, & \text{if } \nu_1 = 0. \end{cases}$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

Intuition behind the geometric law

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イ

э 08.08.2017 28 / 39

Intuition behind the geometric law

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イボト イヨト イヨト

Intuition behind the geometric law

Then,

$$a_n = \frac{s}{u+s}a_{n-1} + \frac{u\nu_1}{u+s}a_{n+1}$$

 $\blacksquare \Rightarrow \mathsf{lack} \text{ of memory property}$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< □ > < □ > < □ > < □ >

Recursion as FSA for absorption probabilities

Let D_t be the continuous-time Markov chain on $\mathbb{N} \cup \{\Delta\}$ with transition rates

$$q_D(d,j) = \begin{cases} (d-1)s, & \text{if } j = d-1, \\ (d-1)u\nu_1, & \text{if } j = d+1, \\ (d-1)u\nu_0, & \text{if } j = \Delta. \end{cases}$$

イロト イヨト イヨト イヨト

Recursion as FSA for absorption probabilities

Let D_t be the continuous-time Markov chain on $\mathbb{N} \cup \{\Delta\}$ with transition rates

$$q_D(d,j) = \begin{cases} (d-1)s, & \text{if } j = d-1, \\ (d-1)u\nu_1, & \text{if } j = d+1, \\ (d-1)u\nu_0, & \text{if } j = \Delta. \end{cases}$$

Proposition

 L_t and D_t are Siegmund dual, i.e. for $t \ge 0$,

 $P(m \le L_t \mid L_0 = n) = P(D_t \le n \mid D_0 = m), \quad \forall n \in \mathbb{N}, \ m \in \mathbb{N} \cup \{\Delta\}.$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト 不得 トイヨト イヨト 二日

Consequences of Siegmund duality

Corollary

$$P(D_{\infty} = 1 \mid D_0 = n+1) = \lim_{r \to \infty} P_1(L_r > n).$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< ロ > < 回 > < 回 > < 回 > < 回 >

Consequences of Siegmund duality

Corollary

$$P(D_{\infty} = 1 \mid D_0 = n+1) = \lim_{r \to \infty} P_1(L_r > n).$$

Corollary (null recurrent case)

If u = s and $\nu_0 = 0$,

$$\lim_{r \to \infty} P(L_r > n \mid L_0 = 1) = 1.$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イヨト

< ≣ ► ≣ ৩৭৫ 08.08.2017 30 / 39

Conditional RA type distribution

Theorem

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イヨ

(注) 注 ⊙ Q (0 08.08.2017 31 / 39

RA type distribution in equilibrium

Properties of RA type distribution

RA type at backward time r

• By means of non-absorbing $(L_r)_{r\geq 0}$

Killed process? Absorption probability?

Piecewise-deterministic Markov process

- Inspired by Taylor [2007]
- \tilde{Y}_t piecewise-deterministic Markov process on [0,1] with generator

$$\mathcal{A}_{\tilde{Y}}f(y) = [-sy(1-y) - yu\nu_0 + u\nu_1(1-y)]\frac{\partial f}{\partial y} + \frac{y}{1-y}u\nu_0 [f(1) - f(y)] + \frac{1-y}{y}u\nu_1 [f(0) - f(y)]$$

with
$$\lim_{y\to 1} \mathcal{A}_{\tilde{Y}} f(y) = \lim_{y\to 0} \mathcal{A}_{\tilde{Y}} f(y) = 0.$$

Absorbs in either 0 or 1

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

Piecewise-deterministic Markov process

Theorem

The piecewise-deterministic Markov processes \tilde{Y}_t and the line-counting process of p-LD-ASG L_t are dual with respect to duality function y^n , and hence for $t \ge 0$,

$$\mathbb{E}\left[\left(\tilde{Y}_t\right)^n \mid \tilde{Y}_0 = y_0\right] = \mathbb{E}\left[y_0^{L_t} \mid L_0 = n\right] \qquad \forall y_0 \in [0, 1], \ n \in \mathbb{N}.$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

Theorem

The piecewise-deterministic Markov processes \tilde{Y}_t and the line-counting process of p-LD-ASG L_t are dual with respect to duality function y^n , and hence for $t \ge 0$,

$$\mathbb{E}\left[\left(\tilde{Y}_t\right)^n \mid \tilde{Y}_0 = y_0\right] = \mathbb{E}\left[y_0^{L_t} \mid L_0 = n\right] \qquad \forall y_0 \in [0, 1], \ n \in \mathbb{N}.$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

< □ > < □ > < □ > < □ >

08.08.2017 37 / 39

Theorem

The piecewise-deterministic Markov processes \tilde{Y}_t and the line-counting process of p-LD-ASG L_t are dual with respect to duality function y^n , and hence for $t \ge 0$,

$$\mathbb{E}\left[\left(\tilde{Y}_t\right)^n \mid \tilde{Y}_0 = y_0\right] = \mathbb{E}\left[y_0^{L_t} \mid L_0 = n\right] \qquad \forall y_0 \in [0, 1], \ n \in \mathbb{N}.$$

Corollary

$$g_{\infty}(y_0) = \mathbb{E}\left[y_0^{L_{\infty}} \mid L_0 = 1
ight] = P(ilde{Y}_t \text{ absorbs in } 1 \mid ilde{Y}_0 = y_0)$$

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

(日)

Bibliography

- F. Cordero. Common ancestor type distribution: A Moran model and its deterministic limit. *Stoch. Proc. Appl.*, 127:590 – 621, 2017.
- P. Fearnhead. The Common Ancestor at a nonneutral locus. J. Appl. Probab., 39:38–54, 2002.
- S. M. Krone and C. Neuhauser. Ancestral processes with selection. *Theoretical population biology*, 51(3):210–237, 1997.
- U. Lenz, S. Kluth, E. Baake, and A. Wakolbinger. Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution. *Theor. Popul. Biol.*, 103:27 – 37, 2015.
- J. E. Taylor. The Common Ancestor Process for a Wright-Fisher Diffusion. *Electron. J. Probab.*, 12:808–847, 2007.

イロト 不得 トイヨト イヨト

Thank you for your attention!!!

Mutation, selection, and ancestry in the deterministic limit of the Moran model

Sebastian Hummel

Bielefeld University

イロト イヨト イヨト イ

08.08.2017 39 / 39