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Annihilating Brownian Motions (aBMs)

• Consider a system of finitely many particles performing
independent Brownian motions until two of them meet.

• At the time of collision, the colliding pair annihilates instantly.

• Write (Xx
t )t≥0 for such a system of aBMs started from x ⊂ R.

Construction straightforward as long as x is finite.
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From finitely many to infinitely many
One can start a system of aBMs from an infinite discrete subset
x ⊆ R at time zero.

• Possible approach: For x = {x1, x2, . . .} discrete, take
xn := {x1, . . . , xn} and show that the system Xxn of aBMs
started in xn converges as n→∞.

• Convergence in which sense? (see e.g. [Tribe & Zaboronski
2011] for a weak convergence approach)

• Let (Yxn
t )t≥0 resp. (Yx

t )t≥0 denote a system of coalescing
Brownian motions (cBMs) started from xn resp. x such that

Yxn
t ⊆ Yxn+1

t ⊆ · · · ⊆ Yx
t for all t > 0, n ∈ N.

This monotonicity property does not hold for aBMs!
• For y ∈ Yx

t , let

C (t, y) := #BMs which have coalesced in the path leading to (t, y)

and define
Xx
t := {y ∈ Yx

t |C (t, y) is odd}.
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Entrance laws

The space
D := {x ⊆ R | x is discrete}

is a suitable state space for the evolution of aBMs.

Question: What happens if we take a sequence xn ∈ D such that
eventually, xn becomes dense in R as n→∞?
Problems:
• Characterize all sequences xn ∈ D such that (Xxn

t )t>0
converges to some limiting annihilating system (Xt)t>0 with
Xt ∈ D for all t > 0 ; entrance laws.

• Is there more than one limit which starts densely everywhere?
• For cBMs, the limit is unique ; coalescing point set of the
Brownian web started from R, ‘maximal entrance law’ for
coalescing Brownian motions ([Arratia 1979]).
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Simulations with discrete starting configurations
Credits to Florian Völlering. . .

(a) x(1)n = 1
nZ (b) x(2)n ∼ PPP(n)

(c) x(3)n = 1
nZ + {0, 1

n2 } (d) x(4)n = 1
nZ + {0, 1

4n}
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Measure-valued description of the path space
• Given x ∈ D, color R \ x alternatingly, say blue and red.

• Extend this coloring to [0,∞)× R so that the boundaries are
given by aBM paths Xx starting from x.

• Define measures r(Xx, t) and b(Xx, t) via the densities

dr(Xx, t)

dz
(z) := 1{(t, z) is red},

db(Xx, t)

dz
(z) := 1{(t, z) is blue}.

Note that d
dz r(Xx, t) = 1− d

dz b(Xx, t).
• Then Xx

t can be recovered as the interface

Xx
t = supp(r(Xx, t)) ∩ supp(b(Xx, t)).

• Define the (compact) space

M1(R) := {u(x) dx | u : R→ [0, 1] measurable}.

Topology: Vague convergence, i.e. un → u inM1(R) iff
〈un, φ〉 → 〈u, φ〉 for all φ ∈ Cc(R).

• Path-space topology of C([0,∞);M1(R)).
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Simulations (again)
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Voter model

Classical (nearest-neighbor) voter model (ut)t≥0 on Z: Markov
process in {0, 1}Z with transitions

u(x) flips at rate
1
2
(
1u(x−1) 6=u(x) + 1u(x+1)6=u(x)

)

Moment duality: For all u0 ∈ {0, 1}Z and y ⊂ Z finite, we have

Eu0

[∏
x∈y

ut(x)

]
= Ey

[ ∏
x∈Yt

u0(x)

]
, t ≥ 0,

where (Yt)t≥0 denotes a system of instantly coalescing random
walks.
Continuous-space analogue?
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Continuous-space stepping stone / voter model

Theorem 1 ([Evans 1997], [Donnelly, Evans et. al. 2000])
There exists a unique Feller semigroup (Pt)t≥0 onM1(R) such
that the corresponding Feller process (ut)t≥0 is characterized by
the following moment duality: For all u0 ∈M1(R) and y ⊂ R finite
we have

Eu0

[∏
x∈y

ut(x)

]
= Ey

[∏
x∈Yt

u0(x)

]
, t ≥ 0, (1)

where (Yt)t≥0 is a system of instantly coalescing Brownian
motions.

The process (ut)t≥0 has continuous sample paths, and for all t > 0
fixed, we have almost surely

ut(x) ∈ {0, 1} for almost all x ∈ R.
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Stepping stone model: discrete case
A system of interacting Wright-Fisher diffusions on Z:{

du(γ)

t (x) = 1
2∆u(γ)

t (x) dt +
√
γu(γ)

t (x)(1− u(γ)

t (x)) dWt(x),

u0(x) ∈ [0, 1], x ∈ Z.

Here ∆ is the discrete Laplacian, {(Wt(x))t≥0 : x ∈ Z} is a system
of independent Brownian motions, and γ ∈ (0,∞) is a parameter.
Notation: dSSM(γ)u0 .

Moment duality ([Shiga 1988]): For all u0 ∈ [0, 1]Z and y ⊆ Z
finite, we have

Eu0

[∏
x∈y

u(γ)

t (x)

]
= Ey

[ ∏
x∈Y(γ)

t

u0(x)

]
, t ≥ 0, (2)

where (Y(γ)

t )t≥0 is a system of delayed coalescing random walks.
Fact:

dSSM(γ)
f .d .d .−−−→
γ↑∞

voter model =: dSSM(∞).
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Stepping stone model: continuous case
Stochastic heat equation with Wright-Fisher noise:{

∂
∂t u

(γ)

t (x) = 1
2∆u(γ)

t (x) +
√
γu(γ)

t (x)(1− u(γ)

t (x)) Ẇt(x),

u0(x) ∈ [0, 1], x ∈ R.

Here ∆ is the usual Laplacian, Ẇ is a standard Gaussian white
noise, and γ ∈ (0,∞) is a parameter.
Notation: cSSM(γ)u0 .

Moment duality ([Shiga 1988]): For all u0 ∈M1(R) and y ⊂ R
finite, we have

Eu0

[∏
x∈y

u(γ)

t (x)

]
= Ey

 ∏
x∈Y(γ)

t

u0(x)

 , t ≥ 0 (3)

where (Y(γ)

t )t≥0 is a system of delayed coalescing Brownian
motions.
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Convergence of the continuous-space stepping stone model

Theorem 2 (H., Ortgiese, Völlering 2016)
For any u0(·) ∈M1(R), the process (u(γ)

t )t≥0 converges as γ →∞
in C([0,∞);M1(R)) to the process (ut)t≥0 from Theorem 1.

Notation: In view of Theorem 2, write cSSM(∞)u0 for the process
from Theorem 1 introduced in [Evans 1997] (i.e. for the
‘continuous-space voter model’).

Remark: As argued in [Athreya & Sun 2011], it is also true that
the (discrete-space) voter model converges to cSSM(∞) under
diffusive space-/time rescaling.
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The relation between cSSM(∞) and aBMs

For u ∈M1(R), define the set of interface points

I(u) := supp(u) ∩ supp(1− u).

Theorem 3 (H., Ortgiese, Völlering 2016)
Let (ut)t≥0 be the ‘continuous-space voter model’ cSSM(∞)u0 .

a) If I(u0) ∈ D and we color the support of u0 in red, then

L ((ut)t≥0 |Pu0) = L
(
r(X, t)t≥0

∣∣PI(u0)

)
,

on C([0,∞);M1(R)), where X is a system of aBMs.
b) [‘Coming down from infinity’]

Let u0 ∈M1(R). Then for all t0 > 0, almost surely
I(ut0) ∈ D, and the evolution of (ut)t≥t0 is decribed (in law)
by a system of aBMs started from I(ut0) as in a).
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See also [Tribe 1995] for the case that I(u0) is finite.
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The relation between cSSM(∞) and aBMs
• The dynamics of the cSSM(∞)-process (ut)t≥0 is described in
terms of a system of aBMs (Xt)t≥0.

• Equivalently, we can describe aBMs in terms of cSSM(∞).
• The model is symmetric in u and 1− u, and

I(u) = supp(u) ∩ supp(1− u)

; for u ∈M1(R) identify u ∼ (1− u) and write [u] for the
equivalence class.

• The coloring procedure gives rise to an injection

D → V :=M1(R)/ ∼
with inverse given by the ‘interface operator’ I(·), thus we can
identify (homeomorphically)

D ∼= Vd ⊆ V.
• Now Theorem 3 gives, for all x ∈ D,
L ((Xt)t≥0 |Px) = L

(
(I[ut ])t≥0

∣∣PI−1(x)
)

on C([0,∞);D).
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Classification of entrance laws
Theorem 4 (H., Ortgiese, Völlering 2017)

a) Let (µ(n))n be a sequence of probability measures on D. Then
L
(
(Xt)t>0

∣∣Pµ(n)) converges weakly in C((0,∞);D) iff the
sequence (µ(n) ◦ I)n of probability measures on Vd converges
weakly to some probability measure ν0 on V, in which case

lim
n→∞

L
(

(Xt)t>0

∣∣∣Pµ(n)) = L ((I[ut ])t>0 |Pν0) . (4)

b) There is a bijective correspondence between probability
entrance laws (µt)t>0 for aBMs on D and probability measures
ν0 on V, given by the formula

µt = L (I[ut ] |Pν0) , t > 0. (5)

Moreover, any such entrance law is a suitable limit as in a).
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Back to the examples

(a) x(1)n = 1
nZ→ [ 1

2 ] (b) x(2)n ∼ PPP(n)→ [ 1
2 ]

(c) x(3)n = 1
nZ + {0, 1

n2 } → [0] (d) x(4)n = 1
nZ + {0, 1

4n} → [ 1
4 ]
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Generalization: The symbiotic branching model
Symbiotic Branching Model ([Etheridge & Fleischmann 2004]):

∂
∂t u

(γ)

t (x) = 1
2∆u(γ)

t (x) +
√
γu(γ)

t (x)v (γ)

t (x) Ẇ (1)
t (x),

∂
∂t v

(γ)

t (x) = 1
2∆v (γ)

t (x) +
√
γu(γ)

t (x)v (γ)

t (x) Ẇ (2)
t (x),

u0(·), v0(·) ≥ 0, x ∈ R

where γ > 0 is the branching rate and the white noises are
correlated with parameter ρ ∈ [−1, 1].
Notation: cSBM(ρ, γ)u0,v0 (resp. dSBM(ρ, γ)u0,v0 for the
discrete-space analogue).

The continuous-space stepping stone model corresponds to the
special case ρ = −1 and u0(·) + v0(·) ≡ 1:

cSSM(γ)u0 = cSBM(−1, γ)u0,1−u0 .

For ρ = 0: Mutually catalytic branching, [Dawson & Perkins 1998].
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Symbiotic branching model for ρ = −1
LetMb(R) := {u(x) dx | u : R→ R+ measurable and bounded}.

Theorem 5 (H., Ortgiese, Völlering 2016)
Let ρ = −1 and consider (u0, v0) ∈Mb(R)2.

a) As γ →∞, the process (u(γ)

t , v (γ)

t )t≥0 converges in law in
C([0,∞);Mb(R)2) to a Feller process (ut , vt)t≥0 with
separated types, i.e. for all t > 0 we have almost surely

ut(x)vt(x) = 0 for almost all x ∈ R.

b) Suppose w0 := u0 + v0 6= 0. Then in analogy with Theorem 3,
the dynamics of the limit cSBM(−1,∞)u0,v0 from a) is
described in law by a system of aBMs with drift

It = Bt +

∫ t

0

w ′s(Is)

ws(Is)
ds,

where ∂
∂twt = 1

2∆wt , w0 = u0 + v0.
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Moment duality

Theorem 6 (H., Ortgiese, Völlering 2016)
Let ρ = −1 and consider (u0, v0) ∈Mb(R)2. The limit (ut , vt)t≥0
from Theorem 5 is characterized by a moment duality: For all
n ∈ N, a.e. y ∈ Rn and all measures µ on {1, 2}n we have

Eu0,v0 [H(ut , vt ; y, µ)] = Ey,µ [H(u0, v0;Bt ,Mt)] , t ≥ 0, (6)

where (Bt)t≥0 = (B (1)
t , . . . ,B

(n)

t )t≥0 is an n-dimensional Brownian
motion and (Mt)t≥0 is a process taking values in the measures on
{1, 2}n and depending only on the collisions between (B (i)

s )0≤s≤t .

The duality function H is

H(u, v ; y, µ) =
∑

m∈{1,2}n
µ(m)

∏
i∈{1,...,n},

mi=1

u(yi )
∏

j∈{1,...,n},
mj=2

v(yj)

for (u, v) ∈Mb(R)2, y ∈ Rn, µ measure on {1, 2}n.
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Further results and outlook

• For ρ ∈ (−1, 0), we can still prove convergence to a
(measure-valued) infinite rate limit cSBM(ρ,∞)

(u(γ)

t , v (γ)

t )t≥0
γ↑∞−−−→ (ut , vt)t≥0

with separated types: For all t > 0 fixed, we have almost surely

ut(x)vt(x) = 0 for almost all x ∈ R,

see [Blath, H., Ortgiese 2016].

• Characterization via an abstract martingale problem.
• The moment duality (6) continues to hold for all ρ ∈ (−1, 0)
and n ∈ N such that ρ+ cos(π/n) < 0 ([H., Ortgiese,
Völlering 2016]).
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• Characterization via an abstract martingale problem.

• The moment duality (6) continues to hold for all ρ ∈ (−1, 0)
and n ∈ N such that ρ+ cos(π/n) < 0 ([H., Ortgiese,
Völlering 2016]).
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Further results and outlook

• For discrete space, convergence to an infinite rate-limit

dSBM(ρ, γ)
γ↑∞−−−→ dSBM(ρ,∞)

established in [Klenke & Mytnik 2010-12] (for % = 0) and
[Döring & Mytnik 2012] (for ρ ∈ (−1, 1).

• Characterization via a martingale problem and as solution to an
infinite system of stochastic integral equations of jump type.

• For all ρ ∈ (−1, 0), we have convergence

dSBM(ρ,∞)→ cSBM(ρ,∞)

under diffusive rescaling, see [H. & Ortgiese 2016].
• Open problems: ‘Explicit’ characterization of cSBM(ρ,∞)
for ρ ∈ (−1, 0)? (E.g. in terms of interfaces, SPDE. . . )
Positive correlations ρ ≥ 0 ?
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