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Coalescing simple random walk on Z

One walker starting from eve-
ry site in the lattice

Z2
even := {(x , n) : x+n is even}.

For each (x , n) ∈ Z2
even, an

independent arrow is drawn
from (x , n) to either (x −
1, n + 1) or (x + 1, n + 1),
with probability 1/2.

To find the scaling limit if space and time are scaled by 1/
√
n

and 1/n.  Brownian web
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Space of compact sets of paths
Let R2

c be the completion of R2 under the metric

ρ((x1, t1), (x2, t2)) = | tanh(t1)−tanh(t2)|∨
∣∣∣∣tanh(x1)

1 + |t1|
− tanh(x2)

1 + |t2|

∣∣∣∣ .

A path π ∈ R2
c is map with starting point σπ,

π : [σπ,∞]→ [−∞,∞] ∪ {∗} such that π(∞) = ∗,
π(−∞) = ∗ and the map t → (π(t), t) is continuous in
(R2

c , ρ)

Let Π the set of path in R2
c with the metric

d(π1, π2) =| tanh(σπ1)− tanh(σπ2)|∨

sup
t≥σπ1∧σπ2

∣∣∣∣tanh(π1(t ∨ σπ1))

1 + |t|
− tanh(π2(t ∨ σπ2))

1 + |t|

∣∣∣∣ .
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Space of compact sets of paths

Denote by H the space of compact subsets of (Π, d) with the
Hausdorff metric

dH(K1,K2) = sup
π1∈K1

inf
π2∈K2

d(π1, π2) ∨ sup
π2∈K2

inf
π1∈K1

d(π1, π2),

and BH is the Borel σ-algebra associated.

For K ∈ H and A ⊂ R2
c , K (A) will denote the set of paths in

K with starting point in A.
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Construction of the Brownian web

Theorem

There exists an (H,BH)-valued random variable W , called the
Brownian web, whose distribution is uniquely determined by:

(a) For each deterministic z ∈ R2, a.s. there is a unique path
πz ∈ W(z).

(b) For any finite deterministic set of points z1, · · · , zk ∈ R2,
the collection (πz1 , · · · , πzk ) is distributed as coalescing
Brownian motions.

(c) For any deterministic countable dense subset D ⊂ R2,
a.s. W is the closure of {πz , z ∈ D} in (Π, d).
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Proof

It can be find in [FINR03, FINR04]. The main steps are

1. Let D = {(x , t) : x , t ∈ Q} and construct the collection
of coalescing Brownian motions W(D) = {πz}z∈D where
πz is a Brownian motion starting at z .

2. Show that W(D) is pre-compact in (Π, d) and then
W =W(D) is a random compact set.

3. Show that properties (a) and (b) hold for W .
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Dual coalescing simple random walk on Z

Downward arrows connecting
points in the lattice

Z2

odd := {(x , n) : x+n is odd}

such that the upward and
backward arrows do not cross
each other.

The scaling limit of the joint collection of forward and
backward coalescing random walks  double Brownian web
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Double Brownian web
Given a z = (x , t) ∈ R2

c let denote by −z = (−x ,−t). Given
a path π ∈ Π we denote by π̂ := −π with starting point
σ̂π̂ = −σπ. We denote by Π̂ the associated backward paths
with metric d̂ inherited from (Π, d) under the map −.

Theorem (STW00, FINR06)

There exists an H× Ĥ-valued r.v. (W , Ŵ ), whose
distribution is determined by

(a) W and −Ŵ are distributed as Brownian webs.

(b) a.s. no path πz ∈ W crosses any path π̂ẑ ∈ Ŵ in the
sense that z = (x , t) and ẑ = (x̂ , t̂) with t < t̂ and
(πz(s1)− π̂ẑ(s1))(πz(s2)− π̂ẑ(s2)) < 0 for some
t < s1 < s2 < t̂ .

Furthermore, for each z ∈ R2, Ŵ (z) a.s. consists of a single

path π̂z which is the unique path in Π̂ that doesn’t cross any
path in W .
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Double Brownian web
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Coalescing point set
Given the Brownian web W and a closed set A ⊂ R we define
the coalescing point set by

ξAt := {y ∈ R : y = π(t) for some π ∈ W(A× {0})}.

Proposition

For all t > 0 and a < b we have

E
[
|ξRt ∩ [a, b]|

]
=

b − a√
πt

.

In other words, ξRt becames a.s. locally finite for t > 0.
 We have a coming down from infinity phenomenon.
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Special points.

Given a z = (x , t) ∈ R2 we say that a path π enters z if
σπ < t and π(t) = x , and π leaves z if σπ ≤ t and π(t) = x .

Two paths π and π′ leaving z are equivalent, denoted by
π ∼z

out π
′, if π = π′ on [t,∞). Two paths π and π′ entering z

are equivalent, denoted by π ∼z
in π

′, if π = π′ on [t − ε,∞) for
some ε > 0.

Let denote by min(z) and mout(z) the number of equivalence
classes of paths in W entering and leaving z , le define m̂in(z)

and m̂out(z) similarly by Ŵ .
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Special points of the Brownian web

Theorem (TW98,FINR06)

Let (W , Ŵ) be a double Brownian web. Then, a.s.

mout(z) = m̂in(z) + 1 and m̂out(z) = min(z) + 1,

and z is one of the following types according to
(min(z),mout(z))/(m̂in(z), m̂out(z)):
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If Si ,j is the set of points in R2 that are of type (i , j).

Then a.s. S0,1 has full Lebesgue measure in R2.

S1,1 and S0,2 have Hausdorff dimension 3/2 each.

S1,2 has Hausdorff dimension 1.

and S2,1 and S0,3 are both countable and dense in R2.
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Branching-coalescing random walks

For each (x , n) ∈ Z2
even, an arrow

is drawn from (x , n) to either (x−1,
n + 1) or (x + 1, n + 1), with pro-
bability (1− ε)/2, and with proba-
bility ε arrows are drawn to both
(x − 1, n + 1) or (x + 1, n + 1).

To find the scaling limit if space and time are scaled by ε and
ε2, respectably and the branching probability by bε.
 Brownian net with branching parameter b.

leftmost-rightmost r.walks  left-right Brownian web
(W l ,W r ).
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Left-right coalescing Brownian motions
The joint law of (W l ,W r ) is characterized by: if lz1 ∈ W l(z1), · · · ,
lzk ∈ W l(zk) and rz ′1 ∈ W

r (z ′1), · · · , rz ′n ∈ W
r (z ′n)

• The paths (lz1 , · · · , lzk ; rz ′1 , · · · , rz ′n) evolve independently
when they are apart.

• the leftmost paths (lz1 , · · · , lzk ) coalesce when they meet, the
same is true for the rightmost paths (rz ′1 , · · · , rz ′n).

• Every pair (lzi , rz ′j ) solves the SDE

dLt = 1{Lt 6=Rt}dB
1
t + 1{Lt=Rt}dB

s
t − dt

dRt = 1{Lt 6=Rt}dB
2
t + 1{Lt=Rt}dB

s
t + dt.

Moreover, Lt ≤ Rt for all t ≥ T = inf{u : σR : Lu ≤ Ru}.
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Left-right Brownian web and its dual

Theorem (SS08)
There exists an H2-valued r.v. (W l ,W r ), whose distribution is
determined by

(i) The left Brownian web W l

(resp. W r ) is a Brownian web
with drift −1 (resp. 1).

(ii) For z1, · · · zk , z ′1 · · · z ′n ∈ R2 the
paths (lz1 , · · · lzk ; rz ′1 , · · · , rz ′n) is
a family of left-right coalescing
Brownian motions.

Moreover, a.s. there exists a dual left-right Brownian web
(Ŵ l , Ŵ r ) ∈ Ĥ2.
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Hopping construction of Brownian net

Given π1 and π2 with π1(t) = π2(t), we say that t is the
crossing time between π1 and π2 if there exists t− < t+ with
(π1(t−)− π2(t−))(π1(t+)− π2(t+)) < 0 and

t = inf{s ∈ (t−, t+) : (π1(t−)− π2(t−))(π1(s)− π2(s)) < 0}.

In this case we define the path π obtained by hopping π1 to π2
at time t by π = π1 in [σπ1 , t] and π = π2 in [t,∞).

Given a set of paths K , we denote by Hcross(K ) the set of
paths obtained by hopping a finite number of times among
paths in K at crossing times.
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Hopping characterization of the Brownian web

Brownian net  N := Hcross(W l ∪W r ).

Theorem (Brownian net, SS08)
There exists an (H,BH)-valued r.v. N , whose distribution is
determined by:

(i) For each z ∈ R2, N (z) a.s. contains a unique left-most
path lz and right-most path rz .

(ii) For z1, · · · zk , z ′1 · · · z ′n ∈ R2 the paths
(lz1 , · · · , lzk ; rz ′1 , · · · , rz ′n) is a family of left-right coalescing
Brownian motions.

(iii) For any countable dense sets Dl ,Dr ⊂ R2

N = Hcross({lz : z ∈ Dl} ∪ {rz : z ∈ Dr}) a.s.
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Remarks

Let (W l ,W r ) be a left-right Brownian web and N its
associated Brownian net.

• a.s. for any π1, π2 ∈ N with π1(t) = π2(t) and
σπ1 , σπ1 < t, the hopping path defined as π = π1 on
[σπ1 , t] and π = π2 on [t,∞) is in N .

• a.s. no path in W l can cross from left to right any path
in W r , Ŵ r or N . (π1 cross π2 from left to right if there
exist s < t such that π1(s) < π2(s) and π1(t) > π2(t))

• Similarly, paths in W r cannot cross from right to left
paths in W l , Ŵ l or N .
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Wedges

Let (W l ,W r , Ŵ l , Ŵ r ) be a dou-
ble left-right Brownian web. For
any r̂ ∈ Ŵ r and l̂ ∈ Ŵ l that
are ordered r̂(s) < l̂(s) at time
s = σ̂r̂ ∧ σ̂l̂ . Let

T = sup{t < s : r̂(t) = l̂(t)}

We call the open set

W = W (r̂ , l̂) = {(x , u) ∈ R2 : T < u < s, r̂(u) < x < l̂(u)}

a wedge of (Ŵ l , Ŵ r ) with boundary r̂ and l̂ and bottom point
z = (r̂(T ),T ). A path π enters W from outside if exist
σπ ≤ s < t such that (π(s), s) /∈ W and (π(t), t) ∈ W .
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Wedge construction of the Brownian net

Theorem (SS08)

Let (W l ,W r , Ŵ l , Ŵ r ) be a left-right Brownian web with its
dual. Then, a.s.

N = {π : π doesn’t enter any wedge of (Ŵ l , Ŵ r ) from outside}

is the Brownian net associated with (W l ,W r ).
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Wedge characterisation of the Brownian web

The wedge characterisation can be applied to the Brownian
web W with its dual Ŵ .

In other words, W, the Brownian web, is a.s. equal to the set
of continuous paths π that doesn’t enter from outside any
wedge that it is formed with two paths in Ŵ .
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