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Introduction Brownian web Brownian net

Coalescing simple random walk on Z

One walker starting from eve-
ry site in the lattice

Zaven = {(x,n) : x+nis even}.

/ For each (x,n) € Z&yen, an
independent arrow is drawn
5 from (x,n) to either (x —

ILn+1)or (x+1,n+1),
with probability 1/2.

To find the scaling limit if space and time are scaled by 1/,/n
and 1/n. ~» Brownian web
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Space of compact sets of paths
Let R? be the completion of R? under the metric
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A path 7 € R? is map with starting point o,

T [0r, 00] = [—00, 00] U {*} such that 7(c0) = *,
7(—00) = * and the map t — (w(t), t) is continuous in
(Re,p)
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Space of compact sets of paths

Let R? be the completion of R? under the metric

tanh(x;)  tanh(xy)
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o((x1, t1), (x2, t2)) = | tanh(t;)—tanh(&)|V

Let I the set of path in R2 with the metric
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Space of compact sets of paths

Denote by #H the space of compact subsets of (I1, d) with the
Hausdorff metric

dy(Ki, K3) = sup inf d(my,m) V sup inf d(mq,m),

mEK MK mEKTEKL

and By is the Borel o-algebra associated.

For K € H and A C R?, K(A) will denote the set of paths in
K with starting point in A.
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Construction of the Brownian web
Theorem

There exists an (H, By, )-valued random variable W, called the
Brownian web, whose distribution is uniquely determined by:

(a) For each deterministic z € R?, a.s. there is a unique path

7, € W(z).
(b) For any finite deterministic set of points z;,- - , z, € R2,
the collection (7,,,--- ,m,,) is distributed as coalescing

Brownian motions.

(c) For any deterministic countable dense subset D C R?,
a.s. W is the closure of {m,,z € D} in (I, d).
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Proof

It can be find in [FINRO3, FINRO4]. The main steps are

1. Let D = {(x,t): x,t € Q} and construct the collection
of coalescing Brownian motions W(D) = {7, },ep where
7, is a Brownian motion starting at z.

2. Show that W(D) is pre-compact in (I1, d) and then
W = W(D) is a random compact set.

3. Show that properties (a) and (b) hold for W.
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Dual coalescing simple random walk on Z

Downward arrows connecting
points in the lattice

Z?)dd = {(x, n) : x+n is odd}

such that the upward and
backward arrows do not cross
each other.

The scaling limit of the joint collection of forward and
backward coalescing random walks ~~ double Brownian web
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Double Brownian web
Given a z = (x,t) € R? let denote by —z = (—x, —t). Given
a path 7 € I1 we denote by 7 := —7 with starting point
0z = —0,. We denote by I1 the associated backward paths
with metric d inherited from (I, d) under the map —.
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Double Brownian web

Theorem (STWO00, FINRO06)

There exists an H x H-valued r.v. W, W) whose
distribution is determined by
(a) W and —W are distributed as Brownian webs.

(b) a.s. no path m, € W crosses any path 7t; € W in the
sense that z = (x, t) and 2 = (X, t) with t < t and
(m2(s1) — 72(51))(72(s2) — Ts(s2)) < O for some
t<s <s <t

Furthermore, for each z € R?, W(z) a.s. consists of a single

path 7, which is the unique path in N that doesn't cross any
path in W.
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Coalescing point set

Given the Brownian web W and a closed set A C R we define
the coalescing point set by

&= {y €R:y=mn(t)for some T € W(A x {0})}.

Proposition

For all t > 0 and a < b we have

B [lef 1la, 6] = 2=

In other words, £F becames a.s. locally finite for t > 0.
~» We have a coming down from infinity phenomenon.
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Special points.

Given a z = (x,t) € R? we say that a path 7 enters z if
or < tand m(t) = x, and 7 leaves z if o, < t and 7(t) = x.

Two paths 7 and 7’ leaving z are equivalent, denoted by
7w~z 7, if m=7"on [t,00). Two paths 7 and 7’ entering z
are equivalent, denoted by m ~% 7/, if m = 7/ on [t — €, 00) for
some € > 0.

Let denote by m;,(z) and m,,:(z) the number of equivalence
classes of paths in W entering and leaving z, le define rf;,(z)

and iy (z) similarly by W.
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Special points of the Brownian web
Theorem (TW98,FINRO6)

Let (W, W) be a double Brownian web. Then, a.s.

Moye(2) = Min(z) + 1 and Mout(2) = min(z) + 1,

and z is one of the following types according to

(Min(2), Mout(2))/(Min(2), Mout(2)):

N
1 \ v ’
'

[ '
1 A \

OD/00) LD/02)  @D/03) 02/11) 03/21) 1L2/02), (1.2,/(12),

’
-
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If S;; is the set of points in R? that are of type (/,/).
Then a.s. 5o 1 has full Lebesgue measure in R2.

S11 and Sy have Hausdorff dimension 3/2 each.
512 has Hausdorff dimension 1.

and S, and Sy 5 are both countable and dense in R2.
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Branching-coalescing random walks

For each (x,n) € Z&yen, an arrow
is drawn from (x, n) to either (x—1,
n+1)or (x+1,n+ 1), with pro-
bability (1 — €)/2, and with proba-
bility € arrows are drawn to both
(x—1L,n+1)or(x+1,n+1).

To find the scaling limit if space and time are scaled by ¢ and
¢?, respectably and the branching probability by be.

~ Brownian net with branching parameter b.

leftmost-rightmost r.walks ~~ left-right Brownian web

(W' W)
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Left-right coalescing Brownian motions

The joint law of (W/, W') is characterized by: if I,, € W/(z),---,
/Zk € WI(Zk) and rz{ S Wr(zi)7 ERE € Wr(zr/1)

e The paths (I, -, I,; Tzl , Iz1) evolve independently
when they are apart.

e the leftmost paths (I, -,/ ) coalesce when they meet, the
same is true for the rightmost paths (rZ{, e ).

e Every pair (/;, rzjg) solves the SDE

st = l{LﬁﬁRt}dBtl + l{Lt:Rt}dBts — dt
dR; = I{LﬁéRt}dBf + l{Lt:Rt}dBf + dt.

Moreover, Ly < Ry forall t > T =inf{u:og: L, < R,}.
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Left-right Brownian web and its dual
Theorem (SS08)

There exists an H?-valued r.v. (W', W), whose distribution is
determined by

(i) The left Brownian web W'
(resp. W') is a Brownian web
with drift —1 (resp. 1).

(i) Forzi,---zk, 2| -z, € R? the
paths (I, - - I,; STEERE ry) is
a family of left-right coalescing
Brownian motions.

Moreover, a.s. there exists a dual left-right Brownian web

OV W) e H2.
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Hopping construction of Brownian net

Given 71 and 7, with m1(t) = m,(t), we say that t is the
crossing time between 71 and 7, if there exists t~ < t* with
(m1(t7) — ma(t7))(m(th) — ma(th)) < 0 and

t=inf{s € (t7,t7) : (m(t7) — ma(t™))(m(s) — ma(s)) < O}.

In this case we define the path 7 obtained by hopping m; to m;
at time t by m# = 7y in [0, t] and ™ = 7, in [t, 00).

Given a set of paths K, we denote by H ..(K) the set of
paths obtained by hopping a finite number of times among
paths in K at crossing times.
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Hopping characterization of the Brownian web
Brownian net ~» N := Hcross(W' U WT).

Theorem (Brownian net, SS08)

There exists an (H, By )-valued r.v. N, whose distribution is
determined by:

(i) For each z € R?, N(z) a.s. contains a unique left-most
path I, and right-most path r,.
i) Forz,---zy, 2z, ---z, € R? the paths
( ) ’ | n p
(lys =+ s by rzgy - s 1) is a family of left-right coalescing
Brownian motions.
(iii) For any countable dense sets D', D" C R?

N =Heoss({l: z€ D'} U{r,: z€ Dr}) as.
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Remarks

Let (W', W") be a left-right Brownian web and N its
associated Brownian net.

e as. for any m,m € N with my(t) = m(t) and
Ony, On, < t, the hopping path defined as m = m; on
[0r,,t] and T = 7 on [t,00) is in NV,

e a.s. no path in W! can cross from left to right any path
in W', W or N. (1 cross m from left to right if there
exist s < t such that m1(s) < ma(s) and 71(t) > ma(t))

e Similarly, paths in W’ cannot cross from right to left
paths in W/, W/ or \.
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Wedges

Let (W', W, W', W) be a dou- A
ble left-right Brownian web. For % 7 l
any F € W and | € W' that
are ordered 7(s) < I(s) at time
s =07 N\ 0. Let

T=sup{t<s:Ff(t)=1I(t)} T+

$

We call the open set
W=W(E)={(x,u) e R: T <u<s,iu) <x<I(u)}
a wedge of (W’,Wr) with boundary 7 and [ and bottom point

z=(F(T), T). A path 7 enters W from outside if exist
or < s < tsuch that (7(s),s) ¢ W and (7 (t),t) € W.
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Wedge construction of the Brownian net

Theorem (SS08)

Let (W' W, )7\/\’, 17\/\’) be a left-right Brownian web with its
dual. Then, a.s.

N = {x : 7 doesn't enter any wedge of (17\)\/, W\r) from outside}

is the Brownian net associated with (W' Wr).
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Wedge characterisation of the Brownian web

The wedge characterisation can be applied to the Brownian
web W with its dual W.

In other words, W, the Brownian web, is a.s. equal to the set
of continuous paths 7 that doesn’t enter from outside any
wedge that it is formed with two paths in W.
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