Convergence to the web	Universality	Alternative topologies	True SRM	Convergence to the net	The role of (1, 2) points	Some open questions
0000	0000	00	0	00000	0000	0

Brownian Web and Net, part II

Nic Freeman & Sandra Palau

Institute of Mathematical Sciences, NUS

2nd August 2017

References in [magenta] from: E. Schertzer, R. Sun and J.M. Swart. *The Brownian web, the Brownian net, and their universality.* Cambridge University Press, 2017. (arXiv:1506.00724)

Consider a sequence X_n of random compact sets of continuous paths. Three steps:

1. Tightness

Ignore everything outside of large finite box. Within box, rel. compactness \Leftrightarrow equicontinuity. \rightarrow Low level criteria based on uniform control of small-time behaviour of paths (w.h.p). [e.g. P6.1]

Consider a sequence X_n of random compact sets of continuous paths. Three steps:

1. Tightness

Ignore everything outside of large finite box. Within box, rel. compactness \Leftrightarrow equicontinuity. \rightarrow Low level criteria based on uniform control of small-time behaviour of paths (w.h.p). [e.g. P6.1]

2. Lower bound

Need enough paths for coalescing Brownian motions 'from every point':

 There exists π_{n,z} ∈ X_n for each z ∈ ℝ² such that, for any deterministic z₁,..., z_k ∈ ℝ², (π_{n,z_i})^k_{i=1} converges in distribution to coalescing Brownian motions starting at (z_i)^k_{i=1}.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider a sequence X_n of random compact sets of continuous paths. Three steps:

1. Tightness

Ignore everything outside of large finite box. Within box, rel. compactness \Leftrightarrow equicontinuity. \rightarrow Low level criteria based on uniform control of small-time behaviour of paths (w.h.p). [e.g. P6.1]

2. Lower bound

Need enough paths for coalescing Brownian motions 'from every point':

(I) There exists $\pi_{n,z} \in X_n$ for each $z \in \mathbb{R}^2$ such that, for any deterministic $z_1, \ldots, z_k \in \mathbb{R}^2$, $(\pi_{n,z_i})_{i=1}^k$ converges in distribution to coalescing Brownian motions starting at $(z_i)_{i=1}^k$.

Happily: for non-crossing X_n , condition (I) \Rightarrow tightness! [P6.4]

3. Upper bound

Need to avoid having more paths than the BW. Two strategies:

a. For non-crossing paths X_n , find a 'suitable' dual system \hat{X}_n . [T6.6, EFS15, RSS16b]

More precisely:

- (U') For each n there exists $\hat{X}_n \in \hat{\mathcal{H}}$ whose path a.s. do not cross those of \hat{X}_n , and whose starting points are dense as $n \to \infty$. Also:
 - > Paths of \widehat{X}_n do not enter wedges of X_n from outside.

> Condition (I) holds for \hat{X}_n (automatically); this convergence must be joint with convergence of meeting times

・ロト ・四ト ・ヨト ・ヨト ・ヨ

3. Upper bound

Need to avoid having more paths than the BW. Two strategies:

a. For non-crossing paths X_n , find a 'suitable' dual system \hat{X}_n . [T6.6, EFS15, RSS16b]

More precisely:

- (U') For each n there exists $\hat{X}_n \in \hat{\mathcal{H}}$ whose path a.s. do not cross those of \hat{X}_n , and whose starting points are dense as $n \to \infty$. Also:
 - > Paths of \widehat{X}_n do not enter wedges of X_n from outside.

> Condition (I) holds for \hat{X}_n (automatically); this convergence must be joint with convergence of meeting times

・ロト ・四ト ・ヨト ・ヨト ・ヨ

3. Upper bound

Need to avoid having more paths than the BW. Two strategies:

a. For non-crossing paths X_n , find a 'suitable' dual system \hat{X}_n . [T6.6, EFS15, RSS16b]

More precisely:

- (U') For each n there exists $\hat{X}_n \in \hat{\mathcal{H}}$ whose path a.s. do not cross those of \hat{X}_n , and whose starting points are dense as $n \to \infty$. Also:
 - > Paths of \widehat{X}_n do not enter wedges of X_n from outside.

> Condition (I) holds for \widehat{X}_n (automatically); this convergence must be joint with convergence of meeting times

b. Control $\eta(t, h, a, b)$, the number of distinct positions of paths, at time t + h, that passed through (a, b) at time t.

Several variants, [T6.2, T6.3, T6.5, FINR04, NSR05, etc]. Finer control required for crossing case.

Theorem. [T6.6, R6.7] Let (X_n) be a sequence of \mathcal{H} valued random variables. Suppose that each X_n consists of non-crossing paths, and that conditions (I) and (U') are satisfied. Then X_n converges in distribution to the Brownian web.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem. [*T6.6*, *R6.7*] Let (X_n) be a sequence of \mathcal{H} valued random variables. Suppose that each X_n consists of non-crossing paths, and that conditions (I) and (U') are satisfied. Then X_n converges in distribution to the Brownian web.

For coalescing SSRWs on \mathbb{Z}^2_{even} , with diffusive rescaling X_n , convergence to the BW is then straightforward:

• Dual \hat{X}_n has same distribution as X_n .

Convergence to the web Universality

0000

- Finite number of coalescing SSRWs converges to coalescing BMs.
- Meeting times also converge, jointly.
- Paths in X_n don't enter wedges of X̂_n (obvious from picture!).

Theorem. [*T6.6*, *R6.7*] Let (X_n) be a sequence of \mathcal{H} valued random variables. Suppose that each X_n consists of non-crossing paths, and that conditions (I) and (U') are satisfied. Then X_n converges in distribution to the Brownian web.

For coalescing SSRWs on \mathbb{Z}^2_{even} , with diffusive rescaling X_n , convergence to the BW is then straightforward:

Dual X̂_n has same distribution as X_n.

Convergence to the web Universality

0000

- Finite number of coalescing SSRWs converges to coalescing BMs.
- Meeting times also converge, jointly.
- Paths in X_n don't enter wedges of X̂_n (obvious from picture!).

Now (switch to continuous time and) consider more general coalescing RWs X_n on \mathbb{Z} , with jump distribution J. Assume $\mathbb{E}[J] = 0$, $\operatorname{Var}(J) < \infty$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now (switch to continuous time and) consider more general coalescing RWs X_n on \mathbb{Z} , with jump distribution J. Assume $\mathbb{E}[J] = 0$, $\operatorname{Var}(J) < \infty$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem. [NSR05, BMSV06] X_n converges (in law) to the BW

- 1. if $\mathbb{E}[|J|^{3+\epsilon}] < \infty$,
- 2. but not if $\mathbb{E}[|J|^{3-\epsilon}] = \infty$.

Convergence to the web Universality

0000

Voter-like population models (web)

Instantaneously coalescing SSRWs are dual to nearest neighbour voter model, rescales to BW. [NRS05]

Convergence to the web Universality

0000

Voter-like population models (web)

Instantaneously coalescing SSRWs are dual to nearest neighbour voter model, rescales to BW. [NRS05]

・ロト ・四ト ・ヨト ・ヨト ・ヨ

500

Continuum of individuals at each site: (dual of) 'spatial Fleming-Viot process'.

 \rightarrow Effect on dual: now pairs of RWs within same site coalesce at rate 1

Also rescales to BW.

Reason: once nearby, coalescence quickly.

Convergence to the web 0000 Universality Alte

e topologies I

A Convergence to the net 00000

e net The role of (1 0000

e role of (1, 2) points

Some open question

Voter-like population models (web)

Instantaneously coalescing SSRWs are dual to nearest neighbour voter model, rescales to BW. [NRS05]

Continuum of individuals at each site: (dual of) 'spatial Fleming-Viot process'.

 \rightarrow Effect on dual: now pairs of RWs within same site coalesce at rate 1.

Also rescales to BW.

Reason: once nearby, coalescence quickly.

Move into continuous space: (dual of) 'spatial A-Fleming-Viot process'. \rightarrow Effect on dual: pairs of RWs in R affected by same event (drawn in black) coalesce instantaneously. Also rescales to BW. [EFS15] Reason: when paths not nearby, independent:

once nearby, coalescence quickly.

Convergence to the web Universality

0000

Supercritical orientated percolation

Supercritical bond percolation on \mathbb{Z}^2_{even} , edges directed downwards.

Points in infinite cluster have positive density when $p > p_c$. For X_n use only right-most paths (to ∞) starting from such points.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

-

Convergence to the web 0000 Universality Al

topologies I ru

Convergence to

The role of (1, 2) po 0000 Some open questions O

Supercritical orientated percolation

Supercritical bond percolation on $\mathbb{Z}^2_{\text{even}},$ edges directed downwards.

Points in infinite cluster have positive density when $p > p_c$. For X_n use only right-most paths (to ∞) starting from such points.

・ロット (雪) () () () ()

Converges to BW. [SS13]

[K89]: single r-most path satisfies CLT; can be extended to convergence to BM. Complication: The r-most paths are (long-range) correlated. [SS13]: r-most paths are approximately independent until nearby, then coalesce quickly.

(日)、

From left to right:

1. [RSS16b] Howard's drainage network, converges to BW.

Each vertex of \mathbb{Z}^2 is a water-source, with probability $p \in (0, 1)$. Single directed edge from each water-source to nearest (strictly) downwards water-source. Key idea: approximate self-duality, martingale approach to (I) for dual.

イロト 不得 トイヨト イヨト

From left to right:

- 1. [RSS16b] Howard's drainage network, converges to BW. Each vertex of \mathbb{Z}^2 is a water-source, with probability $p \in (0, 1)$. Single directed edge from each water-source to nearest (strictly) downwards water-source. Key idea: approximate self-duality, martingale approach to (I) for dual.
- 2. [RSS16a] Discrete spanning forest, converges to BW.

Variant of 1, graph distance on (square lattice) \mathbb{Z}^2 instead of Euclidean. Key ideas: approximate self-duality, control $\eta(t, h, a, b)$ for dual

From left to right:

- 1. [RSS16b] Howard's drainage network, converges to BW. Each vertex of \mathbb{Z}^2 is a water-source, with probability $p \in (0, 1)$. Single directed edge from each water-source to nearest (strictly) downwards water-source. Key idea: approximate self-duality, martingale approach to (I) for dual.
- 2. [RSS16a] Discrete spanning forest, converges to BW.

Variant of 1, graph distance on (square lattice) \mathbb{Z}^2 instead of Euclidean. Key ideas: approximate self-duality, control $\eta(t, h, a, b)$ for dual

3. Directed spanning forest, converges to BW [RSS, to appear].

Continuous space/time version, introduced in [BB07] in the study of the radial spanning tree. Key ideas: approximate self-duality and a variant of (U') based on

- convergence of meeting times of forward paths,
- non-overlap of dual with forwards model.

From left to right:

- 1. [RSS16b] Howard's drainage network, converges to BW. Each vertex of \mathbb{Z}^2 is a water-source, with probability $p \in (0, 1)$. Single directed edge from each water-source to nearest (strictly) downwards water-source. Key idea: approximate self-duality, martingale approach to (I) for dual.
- 2. [RSS16a] Discrete spanning forest, converges to BW.

Variant of 1, graph distance on (square lattice) \mathbb{Z}^2 instead of Euclidean. Key ideas: approximate self-duality, control $\eta(t, h, a, b)$ for dual

3. Directed spanning forest, converges to BW [RSS, to appear].

Continuous space/time version, introduced in [BB07] in the study of the radial spanning tree. Key ideas: approximate self-duality and a variant of (U') based on

- convergence of meeting times of forward paths,
- non-overlap of dual with forwards model.

Key idea in all cases: approximate independence until nearby, then coalesce quickly

Convergence to the webUniversalityAlternative topologiesTrue SRMConvergence to the netThe role of (1, 2) pointsSome open questions000000000000000000000

Planar Aggregation

Hastings-Levitov model:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Defines a 'weak flow' $F_n(\cdot)$ on \mathbb{S}^1 .

A weak flow is essentially a stochastic flow in which an order structure is used to allow (binary) branching. The BW can be formulated as a weak flow on S^1 .

Convergence to the webUniversalityAlternative topologiesTrue SRMConvergence to the netThe role of (1, 2) pointsSome open questions0000000000000000000000000

Planar Aggregation

Hastings-Levitov model:

Defines a 'weak flow' $F_n(\cdot)$ on \mathbb{S}^1 .

A weak flow is essentially a stochastic flow in which an order structure is used to allow (binary) branching. The BW can be formulated as a weak flow on S^1 .

Let δ = particle radius. As $\delta \to 0$, with time sped up by δ^{-3} , the weak flow $F_n(\cdot)$ converges to BW on \mathbb{S}^1 in 'weak flow topology'. [NT15]

イロト 不得 トイヨト イヨト

Alternative topologies

Recall that convergence of (non-simple) coalescing RWs \rightarrow BW needed a $3 + \epsilon$ moment condition, for tightness.

Workaround: Change topology.

Main issue: BW has (1,2) points (dim $_{\mathcal{H}} = 1$ and a.s. dense in \mathbb{R}^2) \rightarrow want to allow for binary branching.

Alternative topologies

Recall that convergence of (non-simple) coalescing RWs \rightarrow BW needed a $3 + \epsilon$ moment condition, for tightness.

Workaround: Change topology.

Main issue: BW has (1,2) points (dim $_{\mathcal{H}}$ = 1 and a.s. dense in \mathbb{R}^2) \rightarrow want to allow for binary branching.

1. Weak flows [NT15]

Usual stochastic flow property $X_{s,t} = X_{s,u} \circ X_{u,t}$ does not allow branching. Key idea: Use a 'weak flow' of order preserving (i.e. non-strictly increasing) functions. Left/right branch represented using left/right-continuous versions.

Alternative topologies

Recall that convergence of (non-simple) coalescing RWs \rightarrow BW needed a $3 + \epsilon$ moment condition, for tightness.

Workaround: Change topology.

Main issue: BW has (1,2) points (dim_H = 1 and a.s. dense in \mathbb{R}^2) \rightarrow want to allow for binary branching.

1. Weak flows [NT15]

Usual stochastic flow property $X_{s,t} = X_{s,u} \circ X_{u,t}$ does not allow branching. Key idea: Use a 'weak flow' of order preserving (i.e. non-strictly increasing) functions. Left/right branch represented using left/right-continuous versions.

2. Marked Metric Measures [DGP11, GSW15]

 $\begin{array}{l} \mbox{Metric } d\big((x,t),(y,s)\big) = t+s-2\tau_{(x,t),(y,s)} \mbox{ on } \mathbb{R}^2.\\ \mbox{Characterize a set of paths using the distributions of}\\ \mbox{the distance matrices between finitely many sampled points of } \mathbb{R}^2.\\ \mbox{Needs enrichment of } \mathbb{R}^2 \mbox{ to handle } (1,2) \mbox{ points.} \end{array}$

イロト 不得 トイヨト イヨト

Sac

Alternative topologies

3. Tube topology [BGS15]

A tube $(\mathcal{T}, \partial \mathcal{T}_0, \partial \mathcal{T}_1)$: homeomorphic to $[0, 1]^2$, with flat top $\partial \mathcal{T}_1$ and flat bottom $\partial \mathcal{T}_0$. Crossing a tube: enter by crossing $\partial \mathcal{T}_0$, stay inside \mathcal{T} until exit by crossing $\partial \mathcal{T}_1$.

 \mathcal{T} = set of all tubes, with Hausdorff metric (coordinate-wise on \mathcal{T} , $\partial \mathcal{T}_1$, $\partial \mathcal{T}_2$) $\operatorname{Cr}(X) = \{ \text{tubes crossed by at least one path in } X \}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Alternative topologies

3. Tube topology [BGS15]

A tube $(\mathcal{T}, \partial \mathcal{T}_0, \partial \mathcal{T}_1)$: homeomorphic to $[0, 1]^2$, with flat top $\partial \mathcal{T}_1$ and flat bottom $\partial \mathcal{T}_0$. Crossing a tube: enter by crossing $\partial \mathcal{T}_0$, stay inside \mathcal{T} until exit by crossing $\partial \mathcal{T}_1$.

 \mathcal{T} = set of all tubes, with Hausdorff metric (coordinate-wise on T, ∂T_1 , ∂T_2) $\operatorname{Cr}(X) = \{ \text{tubes crossed by at least one path in } X \}.$

Lemma: If X is compact (in uniform topology), then Cr(X) is a closed subset of \mathcal{T} . So, define \mathscr{T} = set of closed subsets of \mathcal{T} , equipped with Fell topology.

Alternative topologies

3. Tube topology [BGS15]

A tube $(\mathcal{T}, \partial \mathcal{T}_0, \partial \mathcal{T}_1)$: homeomorphic to $[0, 1]^2$, with flat top $\partial \mathcal{T}_1$ and flat bottom $\partial \mathcal{T}_0$. Crossing a tube: enter by crossing $\partial \mathcal{T}_0$, stay inside \mathcal{T} until exit by crossing $\partial \mathcal{T}_1$.

 \mathcal{T} = set of all tubes, with Hausdorff metric (coordinate-wise on \mathcal{T} , $\partial \mathcal{T}_1$, $\partial \mathcal{T}_2$) $\operatorname{Cr}(X) = \{ \text{tubes crossed by at least one path in } X \}.$

Lemma: If X is compact (in uniform topology), then Cr(X) is a closed subset of \mathcal{T} . So, define \mathscr{T} = set of closed subsets of \mathcal{T} , equipped with Fell topology.

In fact $\mathrm{Cr}:\mathcal{H}\mapsto\mathscr{H}$ is a continuous map, where \mathscr{H} is a compact subset of $\mathscr{T}.\to\mathsf{Tightness}$ is free!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

True SRM Convergence to the net The role of (1, 2) points Some open questions

(日)、

True self-repelling motion

[TW98] began the modern study of BW.

([FINR04] introduced paths topology, [SS08] introduced BN.)

Special case of true self-avoiding walk:

On Z: rectangular blocks arranged into columns; vertices as center points of cols, edges as borders between cols. walk is vertex valued

True SRM Convergence to the net The role of (1, 2) points Some open questions

(日)、

True self-repelling motion

[TW98] began the modern study of BW.

([FINR04] introduced paths topology, [SS08] introduced BN.)

Special case of true self-avoiding walk:

On Z: rectangular blocks arranged into columns; vertices as center points of cols, edges as borders between cols. walk is vertex valued

Self-avoiding walk is represented in red. Edge-local time L is recorded by the black/blue arrows. Dynamics:

- Move either one edge left or one edge right, on each time-step.
- If L(left edge) < L(right edge), move left and vice versa. If L(left edge) = L(right edge), toss coin. In this case: on a rightwards step, leave a \checkmark behind. on a leftwards step, leave a behind.

TSW = projection of walk onto \mathbb{Z} . TSM = continuum limit of TSW. DBW appears as the environment (black/blue arrows).

Consider a sequence X_n of random compact sets of continuous paths. Similar style of conditions as for convergence to the BW, but more structure needed. Currently, only known for non-crossing paths.

Three steps:

Consider a sequence X_n of random compact sets of continuous paths. Similar style of conditions as for convergence to the BW, but more structure needed. Currently, only known for non-crossing paths.

Three steps:

- 1. Identify subsets of non-crossing left-most (resp. right-most) paths:
 - (C) There exist non-crossing subsets $W_n^l, W_n^r \subseteq X_n$, such that

 - > No path $\pi \in X_n$ crosses any $\pi^l \in W_n^l$ from right to left. > No path $\pi \in X_n$ crosses any $\pi^r \in W_n^r$ from left to right.
 - (H) X_n contains any path obtained by hopping between paths of W_n^l , W_n^r at crossing times.

Consider a sequence X_n of random compact sets of continuous paths. Similar style of conditions as for convergence to the BW, but more structure needed. Currently, only known for non-crossing paths.

Three steps:

- 1. Identify subsets of non-crossing left-most (resp. right-most) paths:
 - (C) There exist non-crossing subsets $W_n^l, W_n^r \subseteq X_n$, such that
 - > No path $\pi \in X_n$ crosses any $\pi^l \in W_n^l$ from right to left. > No path $\pi \in X_n$ crosses any $\pi^r \in W_n^r$ from left to right.
 - (H) X_n contains any path obtained by hopping between paths of W_n^l , W_n^r at crossing times.

・ロト ・四ト ・ヨト ・ヨ

Consider a sequence X_n of random compact sets of continuous paths. Similar style of conditions as for convergence to the BW, but more structure needed. Currently, only known for non-crossing paths.

Three steps:

- 1. Identify subsets of non-crossing left-most (resp. right-most) paths:
 - (C) There exist non-crossing subsets $W_n^l, W_n^r \subseteq X_n$, such that
 - > No path $\pi \in X_n$ crosses any $\pi^l \in W_n^l$ from right to left. > No path $\pi \in X_n$ crosses any $\pi^r \in W_n^r$ from left to right.
 - (H) X_n contains any path obtained by hopping between paths of W_n^l , W_n^r at crossing times.

Consider a sequence X_n of random compact sets of continuous paths. Similar style of conditions as for convergence to the BW, but more structure needed. Currently, only known for non-crossing paths.

Three steps:

- 1. Identify subsets of non-crossing left-most (resp. right-most) paths:
 - (C) There exist non-crossing subsets $W_n^l, W_n^r \subseteq X_n$, such that
 - > No path $\pi \in X_n$ crosses any $\pi^l \in W_n^l$ from right to left. > No path $\pi \in X_n$ crosses any $\pi^r \in W_n^r$ from left to right.
 - (H) X_n contains any path obtained by hopping between paths of W_n^l , W_n^r at crossing times.

2. Lower bound:

Left/right-most paths must converge to left-right Brownian motions.

 (I_{net}) There exist $I_{n,z} \in W_n^l$ and $r_{n,z}$ for all $z \in \mathbb{R}^2$, such that for any deterministic $z_1, \ldots, z_k \in \mathbb{R}^2$,

 $(I_{n,z_1}, \ldots, I_{n,z_k}, r_{n,z_1}, \ldots, z_{n,z_k})$

converge in distribution to left-right coalescing Brownian motions started from z_1, \ldots, z_k .

2. Lower bound:

Left/right-most paths must converge to left-right Brownian motions.

 (I_{net}) There exist $I_{n,z} \in W_n^l$ and $r_{n,z}$ for all $z \in \mathbb{R}^2$, such that for any deterministic $z_1, \ldots, z_k \in \mathbb{R}^2$,

$$(I_{n,z_1},\ldots,I_{n,z_k},r_{n,z_1},\ldots,z_{n,z_k})$$

converge in distribution to left-right coalescing Brownian motions started from z_1, \ldots, z_k .

Remarks:

- $(I_{net}) \Rightarrow (I)$ for W_n^l and W_n^r (+drift) \Rightarrow tightness for W_n^l and $W_n^r \Rightarrow$ tightness for $\mathcal{H}_{cross}(W_n^l, W_n^r)$.
- Reason for $n^{-1/2}$ scaling for the branching rate (in e.g. SSRW case):

Two (newly branched) SSRW paths are born at separation $n^{-1/2}$. The probability that such paths achieve macroscopic rescaled distance is order $n^{-1/2}$. So want order $n^{1/2}$ branches in 1 unit of rescaling time (= time n) \Rightarrow want to branch at rate $n^{-1/2}$.

3. Upper bound:

Find 'suitable' dual systems $\widehat{W}_n^l, \widehat{W}_n^r$. More precisely:

- (U'_net) There exists $\widehat{W}_n^l, \, \widehat{W}_n^r \in \widehat{\mathcal{H}}$ such that
 - > Starting points of paths in \widehat{W}_n^l (resp. \widehat{W}_n^r) are dense as $n \to \infty$.
 - > Paths in \widehat{W}_n^l and paths in W_n^l do not cross. Paths in \widehat{W}_n^r and paths in W_n^r do not cross.
 - > Paths in X_n do not enter wedges of $(\widehat{W}_n^l, \widehat{W}_n^r)$ from the outside.

> Condition (I_{net}) holds automatically for $(\widehat{W}_n^l, \widehat{W}_n^r)$; this convergence must occur jointly with convergence of meeting times.

3. Upper bound:

Find 'suitable' dual systems $\widehat{W}_n^l, \widehat{W}_n^r$. More precisely:

- (U'_net) There exists $\widehat{W}_n^l, \, \widehat{W}_n^r \in \widehat{\mathcal{H}}$ such that
 - > Starting points of paths in \widehat{W}_n^l (resp. \widehat{W}_n^r) are dense as $n \to \infty$.
 - > Paths in \widehat{W}_n^l and paths in W_n^l do not cross. Paths in \widehat{W}_n^r and paths in W_n^r do not cross.
 - > Paths in X_n do not enter wedges of $(\widehat{W}_n^l, \widehat{W}_n^r)$ from the outside.

> Condition (I_{net}) holds automatically for $(\widehat{W}_n^l, \widehat{W}_n^r)$; this convergence must occur jointly with convergence of meeting times.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

3. Upper bound:

Find 'suitable' dual systems $\widehat{W}_n^l, \widehat{W}_n^r$. More precisely:

- (U'_net) There exists $\widehat{W}_n^l, \, \widehat{W}_n^r \in \widehat{\mathcal{H}}$ such that
 - > Starting points of paths in \widehat{W}_n^l (resp. \widehat{W}_n^r) are dense as $n \to \infty$.
 - > Paths in \widehat{W}_n^l and paths in W_n^l do not cross. Paths in \widehat{W}_n^r and paths in W_n^r do not cross.
 - > Paths in X_n do not enter wedges of $(\widehat{W}_n^l, \widehat{W}_n^r)$ from the outside.

> Condition (I_{net}) holds automatically for $(\widehat{W}_n^l, \widehat{W}_n^r)$; this convergence must occur jointly with convergence of meeting times.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

3. Upper bound:

Find 'suitable' dual systems $\widehat{W}_n^l, \widehat{W}_n^r$. More precisely:

- (U'_net) There exists $\widehat{W}_n^l, \, \widehat{W}_n^r \in \widehat{\mathcal{H}}$ such that
 - > Starting points of paths in \widehat{W}_n^l (resp. \widehat{W}_n^r) are dense as $n \to \infty$.
 - > Paths in \widehat{W}_n^l and paths in W_n^l do not cross. Paths in \widehat{W}_n^r and paths in W_n^r do not cross.
 - > Paths in X_n do not enter wedges of $(\widehat{W}_n^l, \widehat{W}_n^r)$ from the outside.

> Condition (I_{net}) holds automatically for $(\widehat{W}_n^l, \widehat{W}_n^r)$; this convergence must occur jointly with convergence of meeting times.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

3. Upper bound:

Find 'suitable' dual systems $\widehat{W}_n^l, \widehat{W}_n^r$. More precisely:

- (U'_net) There exists $\widehat{W}_n^l, \, \widehat{W}_n^r \in \widehat{\mathcal{H}}$ such that
 - > Starting points of paths in \widehat{W}_n^l (resp. \widehat{W}_n^r) are dense as $n \to \infty$.
 - > Paths in \widehat{W}_n^l and paths in W_n^l do not cross. Paths in \widehat{W}_n^r and paths in W_n^r do not cross.
 - > Paths in X_n do not enter wedges of $(\widehat{W}_n^l, \widehat{W}_n^r)$ from the outside.

> Condition (I_{net}) holds automatically for $(\widehat{W}_n^l, \widehat{W}_n^r)$; this convergence must occur jointly with convergence of meeting times.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Convergence of coalescing SSRWs to the Brownian net

Theorem. [*T6.6*, *R6.7*] Let (X_n) be a sequence of \mathcal{H} valued random variables. Suppose that each X_n consists of non-crossing paths, and that conditions (C), (H), (I_{net}) and (U_{net}) are satisfied. Then X_n converges in distribution to the Brownian net.

Coalescing SSRW on \mathbb{Z}^2_{even} , with branching at rate $n^{-1/2}$ converges to the Brownian net.

Voter-like population models (net)

00000

Crossing case: in progress [Sun, Swart, Yu]

True SRM Convergence to the net The role of (1, 2) points Some open questions

Voter-like population models (net)

Convergence to the net 0000

0

Add branching events to (dual of) SAFV process:

(Forwards in time: SAFV process with selection)

 \rightarrow Effect on dual: *branching*-coalescing RWs in \mathbb{R}

Rescales to BN. [EFS15]

[EFS15] Key idea: approximate self-duality, mimic SSRW

Voter-like population models (net)

Convergence to the net

Add branching events to $_{(dual of)}$ SAFV process:

(Forwards in time: SAFV process with selection)

 \rightarrow Effect on dual: *branching*-coalescing RWs in $\mathbb R$

Rescales to BN. [EFS15]

[EFS15] Key idea: approximate self-duality, mimic SSRW

Some open question:

Coupling the Brownian web and net

Drift-less connection between BW and BN:

Discrete picture: [NRS10, SSS14]

 $BN \mapsto BW$: At each branch point, Delete either left or right arrow, chosen by a fair coin toss.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $\begin{array}{l} {\rm BW}\mapsto {\rm BN}:\\ {\rm Sample \ branch \ points \ (w.p. \ n^{-1/2}).}\\ {\rm Include \ left \ and \ right \ arrows \ at \ each \ branch \ point.} \end{array}$

Convergence to the web Universality Alternative topologies True SRM Convergence to the net The role of (1, 2) points Some open questions

0000

Coupling the Brownian web and net

Drift-less connection between BW and BN:

Continuous picture: [NRS10, SSS14]

Coupling the Brownian web and net

Drift-less connection between BW and BN:

Continuous picture: [NRS10, SSS14]

For the BW, there exists a natural 'local time' measure ℓ on $S_{1,2}\text{: }\left[\text{P4.1}\right]$

space

True SRM Convergence to the net The role of (1, 2) points Some open questions

$$\ell\left(\left\{(x,t)\in\mathbb{R}^2 \, ; \, \sigma_\pi < t < \sigma_{\hat{\pi}}, \pi(t) = x = \hat{\pi}(t)\right\}\right) = \lim_{\epsilon \to 0} \frac{|\{t\in\mathbb{R} \, ; \, \sigma_\pi < t < \sigma_{\hat{\pi}}, |\pi(t) - \hat{\pi}(t)| < \epsilon\}|}{\epsilon}$$

for any $\pi \in \mathcal{W}, \hat{\pi} \in \widehat{\mathcal{W}}$.

 ℓ is a.s. non-atomic, σ -finite, concentrated on the set $S_{1,2}$ of (1,2) points of $\mathcal W$.

Coupling the Brownian web and net

Drift-less connection between BW and BN:

Continuous picture: [NRS10, SSS14]

For the BW, there exists a natural 'local time' measure ℓ on $S_{1,2}$: [P4.1]

The role of (1, 2) points Some open questions

0000

$$\ell\left(\left\{(x,t)\in\mathbb{R}^2 \, ; \, \sigma_\pi < t < \sigma_{\hat{\pi}}, \pi(t) = x = \hat{\pi}(t)\right\}\right) = \lim_{\epsilon \to 0} \frac{|\{t\in\mathbb{R} \, ; \, \sigma_\pi < t < \sigma_{\hat{\pi}}, |\pi(t) - \hat{\pi}(t)| < \epsilon\}|}{\epsilon}$$

for any $\pi \in \mathcal{W}, \hat{\pi} \in \widehat{\mathcal{W}}$.

 ℓ is a.s. non-atomic, σ -finite, concentrated on the set $S_{1,2}$ of (1,2) points of \mathcal{W} .

time

BW \mapsto BN: [T4.2] Take Poisson point process *P* with intensity ℓ , allow incoming paths to branch at points of *P* ('marked (1.2) points').

True SRM Convergence to the net The role of (1, 2) points Some open questions 0000

イロト 不得 トイヨト イヨト

3

Coupling the Brownian web and net

Next, want $BN \mapsto BW$. Need to identify an equivalent of marked (1,2) points, within the net. \rightarrow special points of the net.

Separation points: right-most paths left-most paths

Convergence to the web 0000 OO OO

pologies True O

True SRMConvergence to the netO00000

t The role of (1, 2) points

Some open questions

Coupling the Brownian web and net

Next, want BN \mapsto BW. Need to identify an equivalent of marked (1,2) points, within the net. \rightarrow special points of the net.

Separation points: right-most paths left-most paths

(S, U)-relevant separation points

・ロト ・ 雪 ト ・ ヨ ト

Lemma: For deterministic S < U the set of (S, U)-relevant separation points is a.s. locally finite. [P4.7, SSS09] In other words, for all but finitely many separation points, I and r meet again within time $\epsilon > 0$. Sketch proof: If $R_{S,U} = \{(S, U)$ -relevant separation points $\}$, can calculate $\mathbb{E}[|R_{S,U} - [a, b] \times (S, U)];$ using density of z = (x, t) such that l, r (born at z) have a dual path in between them during (t, U).

A separation point is 'relevant' if it is (S, U)-relevant for some S < U.

True SRM Convergence to the net

0000

The role of (1, 2) points Some open questions

Coupling the Brownian web and net

Next, want $BN \mapsto BW$. Need to identify an equivalent of marked (1,2) points, within the net. \rightarrow special points of the net.

Separation points: right-most paths left-most paths

(S, U)-relevant separation points:

Lemma: For deterministic S < U the set of (S, U)-relevant separation points is a.s. locally finite. [P4.7, SSS09] In other words, for all but finitely many separation points, l and r meet again within time $\epsilon > 0$. Sketch proof: If $R_{S,U} = \{(S, U) \text{-relevant separation points}\}$, can calculate $\mathbb{E}[|R_{S,U} \cap [a, b] \times (S, U)|]$; using density of z = (x, t) such that *l*, *r* (born at *z*) have a dual path in between them during (t, U).

A separation point is 'relevant' if it is (S, U)-relevant for some S < U.

$BN \mapsto BW$: [T4.2]

For each relevant separation point: Sample a random sign, include in BW only paths which turn in that direction.

Convergence to the web Universality Alternative topologies True SRM Convergence to the net The role of (1, 2) points Some open questions 0000 000 00000 00000 00000 00000 0

The dynamical Brownian web

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The dynamical Brownian web $\lambda \mapsto W_{\lambda}$: constructed by flipping the sign of (1,2) points with 'intensity' $\lambda > 0$.

Take P_{λ} to be a Poisson point process on $S_{1,2}$, where P_{λ} has intensity $\lambda \ell$. Coupled so that $\lambda \mapsto P_{\lambda}$ is increasing. Define \mathcal{W}_{λ} by flipping the signs of the (1, 2) points of \mathcal{W} that are in P_{λ} .

(First constructed as limit of discreet dynamical webs in [HW09b].)

The dynamical Brownian web

The dynamical Brownian web $\lambda \mapsto W_{\lambda}$: constructed by flipping the sign of (1,2) points with 'intensity' $\lambda > 0$.

Take P_{λ} to be a Poisson point process on $S_{1,2}$, where P_{λ} has intensity $\lambda \ell$. Coupled so that $\lambda \mapsto P_{\lambda}$ is increasing. Define W_{λ} by flipping the signs of the (1, 2) points of W that are in P_{λ} .

(First constructed as limit of discreet dynamical webs in [HW09b].)

Exceptional times:

[FNRS09] show that a.s. there is a dense set of λ such that the path from 0 fails the law of the iterated logarithm. Reason: When a path hits a switched (1, 2) point it goes on an excursion away from its original path. Size of this excursion is heavy tailed, with infinite mean.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The dynamical Brownian web

The dynamical Brownian web $\lambda \mapsto W_{\lambda}$: constructed by flipping the sign of (1,2) points with 'intensity' $\lambda > 0$.

Take P_{λ} to be a Poisson point process on $S_{1,2}$, where P_{λ} has intensity $\lambda \ell$. Coupled so that $\lambda \mapsto P_{\lambda}$ is increasing. Define \mathcal{W}_{λ} by flipping the signs of the (1, 2) points of \mathcal{W} that are in P_{λ} .

(First constructed as limit of discreet dynamical webs in [HW09b].)

Exceptional times:

[FNRS09] show that a.s. there is a dense set of λ such that the path from 0 fails the law of the iterated logarithm. Reason: When a path hits a switched (1, 2) point it goes on an excursion away from its original path. Size of this excursion is heavy tailed, with infinite mean.

Connection to black noise:

Informally: A process is a 'black noise' if re-sampling an arbitrarily small, but evenly spread, fraction of its underlying randomness results in a new, independent sample. The BW is a black noise [EF16, T04a/b]. This stems from the dense (1, 2) points.

- 1. Convergence criteria to the net, for crossing paths?
- 2. Construction of Lévy webs?
- 3. Characterization of net as a branching-coalescing point set?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4. Universality class of BN with killing?